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Hybrid proper orthogonal decomposition (PODh) formulation is a POD-based reduced-order modeling method where
the continuous equation of the physical system is projected on the POD modes obtained from a discrete model of the
system. The aim of this paper is to evaluate the hybrid POD formulation and to compare it with other POD formulations
on the simple case of a linear elastic rod subject to prescribed displacements in the perspective of building reduced-order
models for coupled fluid—structure systems in the future. In the first part of the paper, the hybrid POD is compared to two
other formulations for the response to an initial condition: an approach based on the discrete finite elements equation of
the rod called the discrete POD (PODd), and an analytical approach using the exact solution of the problem and
consequently called the analytical POD (PODa). This first step is useful to ensure that the PODh performs well with respect
to the other formulations. The PODh is therefore used afterwards for the forced motion response where a displacement is
imposed at the free end of the rod. The main contribution of this paper lies in the comparison of three techniques used to
take into account the non-homogeneous Dirichlet boundary condition with the hybrid POD: the first method relies on
control functions, the second on the penalty method and the third on Lagrange multipliers. Finally, the robustness of the
hybrid POD is investigated on two examples involving firstly the introduction of structural damping and secondly a
nonlinear force applied at the free end of the rod.

1. Introduction

The proper orthogonal decomposition (POD) is a powerful method providing the description of a high-
dimensional system by means of a small number of elements, called the POD modes (POMs). These POMs



contain the main characteristics of the system response such that the solution of the system can be
reconstructed as a linear combination of the POMs. The method is closely related to the Karhunen—Loéve
decomposition originating from the probability theory [1] and to the principal component analysis commonly
used in the field of statistics. Connexions with the singular value decomposition can also be highlighted [2].
Liang et al. [3] demonstrated the equivalence between the preceding methods when they are used to handle
discrete random vectors of finite dimension. According to Liang et al. [3], the POD method can thus be
considered as a general term comprising the Karhunen—Loéve decomposition, the principal component
analysis and the singular value decomposition.

The starting point of the POD is a set of snapshots describing the system and obtained either from
numerical simulations or experiments. The set of snapshots is combined into a correlation tensor, whose
properties ensure that real eigenvectors exist. These eigenvectors are the POD modes and represent the
coherent structures of the system. The most important feature of the POD is its optimality: for a given number
of POMs, the POD basis containing these modes provides the best approximation of any element of the
snapshots set. The POD is therefore a powerful technique for data analysis since an important database can be
efficiently represented by only a small number of modes. Moreover, the interpretation of the database is
simplified because the main characteristics of the system are contained within the POMs.

However, the method is not restricted to data analysis but can be combined with the equation governing a
dynamical system to form a reduced-order model. Lumley [4] was one of the first to use POD in this context:
using the POMs and drastic approximations to the Navier—Stokes equations, he derived a simplified model
which was able to reproduce approximately the dynamics of flows characterized by large-scale spatially
coherent structures. The Galerkin projection of the Navier—Stokes equations on the first POMs, namely the
most energetic, leads to a low-dimensional system of nonlinear ordinary differential equations that can be
solved very efficiently compared to direct numerical simulations. The POD method, which is originally only
applicable to stationary stochastic fields, is justified for turbulent flows exhibiting a somewhat chaotic
behavior, but could not a priori been used for a deterministic system. The method can, however, be formulated
in a different way for such systems: the POD basis is sought as the solution of an optimization problem where
the error in approximating any member of the snapshots set must be minimized. This leads to the same
eigenproblem without adducing probabilistic arguments.

The POD has been extensively used for fluid dynamics systems because of the lack of efficient reduction
methods for fluids. Indeed, the eigenmode reduction technique commonly used in structural dynamics is
difficult to apply since the determination of fluid eigenmodes is a delicate issue. Fluids are generally governed
by strongly nonlinear equations which have to be linearized before being able to define the eigenvalue problem
from which the eigenmodes are obtained. The second limitation comes from the great number of degrees of
freedom which in most cases prevents the extraction of the eigenmodes. These two limitations are avoided with
the POD since (i) it can as well be formulated for a linear or a nonlinear system and (ii) the POMs can be
obtained from the resolution of an eigenproblem whose dimension is equal to the number of snapshots and is
consequently very small compared with the number of degrees of freedom. The construction of POD reduced-
order models for the fluid has therefore expanded rapidly since the first works and a great part of the POD
literature is devoted to fluid reduced-order models that could be built for a wide variety of flows to perform
parametric studies or active control. Since the present paper focuses on a structural test case, the construction
of POD reduced-order models for the fluid is not detailed here but the reader is referred to review articles like
those of Lucia et al. [5] or Dowell et al. [6] for more details.

Historically, the POD-Galerkin method has been introduced for fluid dynamics systems but the technique
has spread over various mechanical systems and notably structural mechanics ones. Kerschen et al. [7] give an
overview of the general method and several examples of the use of POD (i) for the determination of nonlinear
dynamical effects in continuous systems due to vibro-impact of a beam and a rotor, or (ii) for the dynamical
analysis of linear truss dynamics where traditional modal analysis methods are difficult to apply as the modal
densities are high. The POD method therefore provides an interesting alternative to the classical modal
reduction using the modes of vibration, also called the eigenmodes in the following to contrast with the POM:s.
The POD is especially useful for nonlinear systems, since for linear systems and under additional assumptions,
the POMs are closely related to the eigenmodes. Indeed, Feeny and Kappagantu [8] and Kerschen and
Golinval [9] explained with two different approaches that the POMs converge to the eigenmodes of an



undamped and unforced linear system when the mass matrix is proportional to identity and if a sufficient
number of snapshots is considered. For such systems, the POD has no real advantage over the eigenmode
reduction except if the modal densities are high. Thus POD is preferably applied to nonlinear systems [10,11],
sometimes subject to vibro-impacts [12]. However, Sampaio and Soize [13] claim that the POD basis is not
more efficient than the eigenmodes basis for nonlinear elastodynamics.

The construction of reduced-order models can be handled in different ways according to the nature (discrete
or continuous) of the equation and snapshots used and the formulation often differs when fluids or solids are
considered. For structural dynamics problems, the system is commonly discretized with finite elements; the
POD eigenvalue problem is then constructed with the discretized snapshots and the resolution provides
the generalized coordinates of the POMs. The matrix composed of the POMs is then directly used to project
the discretized equation of the structure via a simple matricial product. This procedure is simple to implement
and leads to a reduced-order model whose form is identical to the original discretized equation but with fewer
degrees of freedom. This method will be referred in the following to the discrete POD (PODd). However, the
whole discretized equation is not always available. Indeed, fluid mechanics problems, for example, involve a
great number of degrees of freedom preventing the construction of the whole discretized matrices. As the
reduced-order model cannot be directly formed from the discretized equation, the procedure consists in
working from the continuous equations. The reduced-order model is then built by projecting the continuous
equations on each POM according to the Galerkin method [14]. The difficulty is that POMs have been
obtained with discrete snapshots resulting from the resolution of the equations discretized by a certain
approximation formalism (finite differences, finite elements, finite volumes, etc.). The following step in the
construction of the reduced-order model relies on the introduction of the discrete components of the POMs
into the continuous formulation of the Galerkin projection. The most coherent approach consists in using the
same formalism to connect the discrete components to the continuous formulation but other choices are
possible. This formulation will be called the hybrid POD (PODh) since the discrete POMs are used in
conjunction with the continuous equation.

Since our aim is to build later reduced-order models for fluids in the context of fluid—structure interaction
simulations, we focus on the hybrid POD which is the common approach adopted for fluids. In this paper, the
method is evaluated on the simple case of a free elastic rod subject to traction and compression. The use of
POD for such a simple system has a very limited interest except for the evaluation of the hybrid POD
formulation since an analytical solution can be exhibited. Although the application of the hybrid POD to a
solid system seems quite paradoxical since we mentioned before that PODh is preferably used for fluids, this
example is well-tailored for comparison purposes. Indeed, PODh as well as PODd can be casily formulated for
the rod. Morecover, due to the extreme simplicity of the system, a third formulation based on the analytical
solution of the system can be developed. This formulation, which is abbreviated in PODa, provides a reference
to evaluate the errors relative to the two other formulations. It should be made clear that other reduction
techniques (like the classical eigenmode reduction) are adapted to handle structural dynamics problems.
However, our purpose is not to compare the hybrid POD to the eigenmode reduction method since this work
has already been published in the literatures (see Ref. [13] for example). The eigenmode basis will only be used
in the analytical POD formulation to define the exact solution of the system but it will not be used as a
reduction method.

When dealing with fluid—structure interaction problems, the coupling condition between the fluid and the
structure involves prescribed displacements on the fluid—structure interface. It is therefore of prime importance
to investigate the forced response with prescribed displacements (non-homogeneous boundary condition) in
the hybrid POD reduced-order model. Homogeneous boundary conditions are easily taken into account since
those properties are inherited by the POMs. However, when non-homogeneous boundary conditions are
applied to the system, the POD reduced-order model has to be adapted so that the boundary condition is
satisfied. Three techniques are considered here to take into account a displacement imposed at the free end.
The first method relies on a weak formulation of the boundary condition: the strong non-homogeneous
Dirichlet boundary condition is transformed into a weak Neumann boundary condition by means of a small
parameter whose inverse will be called the penalty factor. This method is therefore called the penalty method
(PM). In the second approach, the system can be considered as a problem with a constraint which, in this case,
represents the boundary condition that must be verified. The constraint is treated by means of a Lagrange



multiplier, hence the name of Lagrange multiplier method (LMM) for the formulation. The last technique is
based on a different formulation of the POD in which the POMs are computed for snapshots that have been
previously homogenized. The homogenization step uses a suitably chosen “Control Function” that can be
changed later in the reduced-order model to have the desired boundary condition. According to the paper of
Tang et al. [15], this formulation will be called the control function method (CFM). The main contribution of
this paper concerns the evaluation and the comparison of different techniques which can be used to take into
account a prescribed displacement in the POD reduced-order model.

The paper is organized as follows: after having recalled the principle of the POD method in Section 2, the
hybrid POD is compared with the PODd and the PODa in the case of the free response in Section 3.
Thereafter, the different techniques (CFM, PM and LMM) developed for the hybrid POD to take into
account the non-homogeneous boundary condition for the forced response are presented and evaluated in
Section 4. Finally, in Section 5, two examples to investigate the robustness of the hybrid POD are performed.

2. The proper orthogonal decomposition (POD) method

The POD method is presented here in the context of a deterministic system and we do not refer to the
Karhunen—Loéve theorem usually adduced in the stochastic setting. The description, close to the one of
Holmes et al. [16], relies on an optimization problem which consists in finding the best basis to approximate a
set of snapshots. The snapshots are in fact solutions u¥) of the system evaluated at different instants #; and the
snapshots set U = {u® € H,k = 1,..., M} gathers a finite number of them. The solutions are contained in a
Hilbert space H with N = dim (H) (N being eventually infinite), whose vectors can be continuous squared
integrable functions on a spatial domain Q (H = L*(Q)) or real discrete finite vectors (H = RY) for example.
Let (-, -) be the inner product associated to the Hilbert space H and || - || denote the norm induced by this inner
product so that Vx € H, ||x|*> = (x, x).

The POD consists then in finding a subspace S C H of finite dimension ¢ < N which provides the best
approximation of any member of U. This subspace is entirely characterized by the basis {9 € H,j =1,...,q}
so that S = span{p", ..., ¢'?}. Each snapshot can therefore be approximated on the subspace S by a linear
combination of the POMs ¢):

u® = Za(k) O vk e [1; M], (1)

where the a]( ) are real scalars representing the modal amplitudes associated to the mode @7 in the
decomposition of the snapshot u¥). The subspace S has to be sought so that the basis {¢@) }]‘.1= | is optimal in the
sense that it is better than any other basis of same dimension ¢. To ensure optimality, we impose that the time-
averaged squared projection error E(|u® — 25u®|?) is minimal. The time-averaging operation for a function
f@®) depending on the snapshots is the sum E(f(u®)) ="M o f (u®) where the oy are weighting
coefficients. The minimization problem is equivalent to maximizing the time-averaged squared projection of
the snapshots E(||2su®|?). Indeed the operator 2 defines an orthogonal projection on the subspace S in
order to minimize the distance between each snapshot in A and its approximation in S. Developing the
expression of the orthogonal projector in Zsu® =31 (u®), )" and using the orthonormality of the
POMs, the mathematical statement of optimality is to ﬁnd the

E((u®, )2 2
M= ]Z ( @

for suitably normalized POMs ¢). The problem of finding the maximum subject to the constraint ||¢?| = 1
can be transformed into the following variational problem defined for the functional J:

JeP] = E(u®, o)) = 2P| — 1) 3)

A necessary condition to obtain the maximum is that the functional derivative vanishes for all variations
oY) + o € H,5 € R. After some mathematical manipulations (for more details, see Ref. [16]), the preceding
condition which must be true for all variation y, turns out to be equivalent to solving the following eigenvalue



problem:

Rp” = 29" Vj € [1:q] @)
where the operator R is an endomorphism of H defined by
R=Eu® ® u®)") (5)

In the preceding expression, (u®)* is the dual of the vector u®®, ie. the linear application defined by
@ v— W) v = (,u®),Yve H and ® is the usual tensor product so that w® (u®)*v=
w(v,u®), Yo, w € H. The operator R is self-adjoint and has a finite rank r since it is spanned by the snapshots.
R is therefore a Hilbert—Schmidt operator and is consequently compact. With these properties the spectral
theory for compact self-adjoint operators is valid and ensures that there is only a finite number r of real non-
null eigenvalues 4;. The associated eigenvectors which are the POMs we looked for are orthonormal.

Taking the inner product of Eq. (4) with ¢’ and using the expression Eq. (5) of the operator R lead to the
following relation:

2y = E(®,9)?) (6)

The preceding relation indicates that the greatest eigenvalues A; maximize in average the projection of the
snapshots on the POMs. Consequently, the greatest eigenvalues capture the most of ““energy’ contained in the
snapshots set in the sense of the norm induced by the Hilbert space. In order to be efficient, the reduced-order
model constructed with the POMs has therefore to be composed of the first ¢ <r eigenvectors associated to the
largest eigenvalues.

The process described previously would face the same problem as the one mentioned in the introduction for
the eigenmode extraction (for classical modal reduction) when the size of the problem becomes important.
Indeed, the dimension of the operator R is related to the number of degrees of freedom in the system.
A powerful variant called the snapshots method proposed by Sirovich [17] reduces considerably the size of the
problem to be solved. The method is based on the fact that the POMs are a linear combination of the
snapshots:

M
0 = z cg)u(k) (7
k=1

since the image of R is a subset of the space spanned by the snapshots. Introducing Eq. (7) into Eq. (4) with the
expression Eq. (5) of R leads, after reorganization of the terms, to

M M ‘ Mo
> Dl | = ;Y ™ (8)
k=1 I=1 m=1

If the snapshots are assumed to be linearly independent, the previous expression reduces to the new eigenvalue
problem whose dimension is now M <N

M
Z o (u®, u(l))cy) = /ljcg) Vk € [1; M] 9)
=1

The prev1ous rela‘uon can be transposed in the matricial form R*e?) = 2,0 with R = o; (u®, u¥) and

e = [c(’) e ] However, the matrix R is not symmetrical except if all the weights oc, associated to the

time-averaging operator E(-) are identical. If all weights are strictly positive, the problem can be symmetrized

by using the matrix « = diag(,/o1, ..., /o). The eigenvalue problem obtained with the snapshots method is
finally:

RO — 1,0 (10)

where R, = /@0 (u, u) and the eigenvectors are related to the coefficients ¢’ of the decomposition Eq. (7)
by the following relation ¢ = &d".
The snapshots method has been obtained here for snapshots of possibly infinite dimension. The equivalence

with the direct method holds only if the snapshots are linearly independent, so that one can infer Eq. (9) from



Eq. (8). If snapshots of finite dimension are considered, it is not necessary to assume that they are linearly
independent. The equivalence between the direct method and the snapshots method can be proved for example
by using the singular value decomposition of the matrix containing the snapshots of finite dimension. In this
case, the snapshots method provides as many POMs as the rank r of the snapshots matrix and the POMs are
strictly identical to those of the direct method. For practical applications, finite dimension snapshots are
always used and consequently the snapshots method will be preferably adopted in the remainder of this paper.

It should also be noted that better results are obtained when the POD is performed for the fluctuations s%)
of the data rather than for the raw data «®. Indeed, Tamura et al. [18] observed that if the POD is carried out
directly for the snapshots u®, the first POD mode is rather similar to the mean of the snapshots and the
eigenspectra is distorted. The fluctuations, or centered data, are defined by s = u® — 7, where 7 = Eu®)
represents the time-average of the snapshots. The operators R and R* are thus based on the s instead of the
u® and the decomposition Eq. (1) of the snapshots is modified in:

q
WP =7+ Z a;k)(p(j) vk e [1; M] (1)
j=1

3. Hybrid POD formulation for the response to an initial condition

We present here the hybrid POD formulation (PODh) in the case of the free response. The PODh will be
evaluated and compared to two other formulations, namely the discrete formulation (PODd) and the
analytical formulation (PODa), which are briefly described in the following. The problem considered is a
one-dimensional rod subject to traction and compression. The rod is characterized by its length L, the
section S and the material is represented by the Young’s modulus E and the density p. In absence of external
forces, the displacement u(x, ¢) of the rod section at a given point x and at time ¢ is governed by the wave
equation:

Q*u ’u
C  _ES—— —
PS5~ BS

A unique solution is specified with a set of boundary conditions corresponding to a clamped—free rod and
initial conditions representing an initial displacement U, applied at the free end:

0 (12)

ux=0,0)=0 u(x,t =0)=(Uy/L)x
ES% _o Yr>0, oul - _ 0 Vx € [0; L] (13)
Ox x=L ot =0

The following paragraphs present the different reduced-order models built from the preceding equation
according to the approach considered.

3.1. Hybrid POD formulation (PODh)

The aim of this formulation is to use a discrete snapshots database in conjunction with the continuous
equation of the system. Indeed, the snapshots are almost always described by a discrete quantity coming either
from a numerical simulation or an experiment. Nonetheless, the discrete equation that could be combined with
this discrete approximation of the snapshots is not always available and the continuous equation will therefore
be necessary. If the snapshots have been obtained from numerical simulations, the most coherent approach
consists in using the same approximation formalism to link the discrete variable and the continuous equation.
However, it is not always possible to use the same formalism and sometimes it is even not available (this is the
case for example when the snapshots stem from experiments).

The dataset available is used to approximate directly the L? inner product which appears in the PODh
formulation since it relies on the continuous equation of the system. The inner product of two continuous



functions f and g is therefore approximated by the trapezoidal rule:

N N N
)y = /Q (CICEEDY /Q JEeax = S 7.3.00. (14)

where f . and g, are the average values relative to the functions f'and g evaluated on each element e and 6Q, is
. . .. . ~T
the Lebesgue measure of the element €,. The previous expression takes the matricial form: (f,g) 2 ~ f Ag

with f = [f1 f v1T (resp., for 8) and A = diag(dQ,...,0Qy). As the problem is unidimensional, the average
values of the function f on one element is simply given here by the arithmetic mean f (fi + fiy1)/2, where
the f; are the values contained in the dataset and which are supposed to be the values at the nodes of the mesh.

The correlation tensor R* is defined by the L? inner product since the reduced-order model is built from the
continuous equation. The inner product is then approximated with Eq. (14) so that the general term of R* is:
Ry = /e (sV,s0) 2 ~ Vo8 ASD. With matricial notations, the previous relation is rewritten as

R* = (§T§T)A(§&). The POMs extracted from the eigenvalue problem are discrete like the snapshots they have
been derived from. In order to build the reduced-order model, the continuous POD decomposition Eq. (11) is
substituted into the governing equation (12) and the resulting expression is projected onto each POM:

dzak " d>p® d2u )
p Zdtz o0 ESZak< (')>+ES<@7(PU> (15)

The integrals involved in the L? inner product allow parts integrations to be performed so that the order of the
derivatives can be lowered. In this case, the boundary terms vanish since the POMs, which are linear
combinations of the snapshots, inherits the homogeneous boundary conditions defined in Eq. (13). Finally, the
left-hand side term of Eq. (15) can be simplified due to the orthonormality of the POMs and the equation
governing the modal amplitudes writes:

d*a; de® d 0 du de?
PREC Z< O ms(R00) (16)

The reduced-order model is not usable under this continuous form since only the discrete forms of the POMs
and snapshots are known. Firstly, the inner products are approximated according to Eq. (14). The first inner

product writes (dp® )" A(dp®) and the second is (d/l_I)TA(d(p(i)), where d is a notation standing for the spatial
derivative: de is thus the discrete approximation corresponding to the derivative of the discrete vector @
and similarly du is the derivative of the time-averaged part. The second and last step to obtain the reduced-
order model consists in computing the derivatives of the POMs and of the time-averaged part with a
numerical approximation scheme based for example on finite differences (a central differences scheme will be
adopted here because of its second-order accuracy). The mean values of the derivative vectors de” and du are

then computed so that the matrix AP = [dpD - .. dp@] and the vector du can be constructed.

The ¢ equations obtained by projecting on each POM can be gathered in the matricial ordinary differential
equation a = Pa+ A defining the unknown amplitudes a =J[a; ... aq]T of the decomposition Eq. (11).
Denoting ¢ = y/E/p, the matrix % and the vector 4" are given by

L = —Ad®)'A[dD), H = —c*(d®) Adu (17)

3.2. Discrete POD formulation (PODd)

Instead of using a continuous framework, the equation governing the rod can be discretized with the finite
elements method. The continuous solution u(x,) is approximated by a finite number of generalized
coordinates u; such that u(x, t) ~ Z]N 14;(0)y;(x) where N is the number of nodes used for the discretization and
the z;(x) are linear shape functions. The weak variational formulation of Eq. (12) leads to the following
matricial equation: Mii + Ku = 0, where u = [u; - --uy]" is the vector containing the unknown generalized
coordinates and M and K are, respectively, the mass and rigidity matrices.



The continuous variable u is now entirely represented by its generalized coordinates u and the snapshots will
be considered under this discrete form rather than the continuous one. We, therefore, introduce the matrix of
the snapshots U = [u" ... u®™)] and the centered matrix of the snapshots S =[s()...s] =U — U. The
matrix U contains the time-averaged part of the snapshots which is subtracted from each component such that
S = sE’) = ug’) — E(ugk)). In opposition to the hybrid formulation, the operator R* is now defined for the
discrete Hilbert space H = R" of finite dimension. In this case, the components of the correlation tensor R*
are obtained with the canonical inner product of RY: R} = /oa;(s?,s9) g = /755" 1s\"s{ and the inner
product can be interpreted as the following matricial product: R* = &' STSa. The resolution of Eq. (10) with
the new expression of R* provides the coefficients d¥) and ¢V that define the POMs by Eq. (7). However,
attention must be paid to the fact that the POMs are now a linear combination of discrete snapshots u since
the Hilbert space is RY. For the sake of clarity, the relation is written ¢ = > s® or with matricial
notations ® = SC, where C =[cV...c?] and ® =[pV...¢?] is the matrix containing the generalized
coordinates of the POMs. The vector of the generalized coordinates u is thus approximated by u = u + ®@a,
which is the discrete form of Eq. (11). The reduced-order model is then built directly from the discrete
equation by introducing the previous decomposition into Mii + Ku = 0 and projecting on the POMs matrix ®.
This results in: M, + K,a = F,, with M, = ®'M®, K, = ®'K® and F, = —®"Ku. Since the matrix M, is
symmetric and positive definite, the preceding equation can be pre-multiplied by M;l to regain the same

form of the reduced-order model as for the hybrid formulation. The matrix & and the vector 4" are now
defined by

L =-M'K,, A =-M]"F, (18)

3.3. Analytical POD formulation (PODa)

For the free response, an analytical expression can be easily exhibited by assuming the separation of time
and space for the solution which can be written u(x,?) = > 2 (0,0, (x), with {, = (—1)"_1(4J§ZU0)/
((2n — Dm)?, O(1) = cos(k,t) and y,(x) = 1/2/Lsin((k,x)/c). The constants k, = (2n — 1)nc/(2L),Vn € N* are
the wavenumbers stemming from the boundary conditions and the parameter ¢ = \/E/p represents the speed
of sound propagation in the rod. The fundamental period of the system which will be used later for the
adimensionalization of time, is Ty = 4L/c.

The analytical solution involves series of trigonometric functions, which, in this particular case, coincide
with the eigenmodes of the clamped—free rod. The spatial functions ,(x) are thus the eigenmodes which are
usually obtained from the generalized eigenvalue problem associated to the conservative part of the elastic
system. Although it is here talked of the eigenmode basis, it does not be understood as a reduction method but
rather as the analytical solution of the system. This basis will only serve to formulate the analytical POD and
to evaluate later the POMs by comparison with the eigenmodes.

The analytical expression of the displacements can be used to obtain the expression of the snapshots, which
can be decomposed on the eigenmode basis with the coefficients szk )=, cos(kyty):

o0

W) = (0, (x) (19)

n=1

Eq. (19) provides a continuous expression of the snapshots which can be considered as vectors of the Hilbert
space H = L*(Q) with Q = [0; L]. The POMs are obtained with the snapshots method for which the operator
R* is defined on H = L*. The general term R;} = /%% (s, 59> can be simplified since the eigenmodes ,, are
orthonormal functions for the L? inner product. This leads to R;} = WZ;";I(C;’) - Cn)(Cf{) —{,), where
(= E(C;k)) is the time-averaged part of the amplitudes Cﬁlk). The eigenvalue problem Eq. (10) is then solved
with the previous expression of R* to find the eigenvectors d” and ¢) = ad"’ so that the POMs are known
with Eq. (7). As the POMs are linear combinations of the snapshots, they can be decomposed on the



eigenmode basis {y,},~; which spans the space of the solutions containing the snapshots:

o) M
PV(x) = Py, (x) with g =" - T,)cf’ (20)
=1

n=1

The reduced-order model associated to the analytical expression of the snapshots is obtained by first
introducing the decomposition Eq. (11) of the variable into Eq. (12) governing the dynamics of the system. If
the decomposition Eq. (19) of the snapshots on the eigenmode basis is used (and similarly for the
decomposition Eq. (20) of the POMs), analytical expressions of the spatial derivatives can be obtained, so that
Eq. (12) becomes

q 00
sy Gt res s 3 () o Jas 555 () 20 e

k=1 n=1

Finally, the reduced-order model is obtained by projecting the preceding equation on each POM ¢
according to the Galerkin projection method. The first term with the time derivative reduces to pSa; since the
POMs are orthonormal. In the two remaining terms, the inner product between a POM ¢ and an eigenmode
Y, reduces to (,, ") = u¥. The reduced-order model developed with this last formulation keeps the same
structure as the two preceding but the components of the matrix % and of the vector 24" are now given by:

L= =3 U, A= Zkzcnu(’) (22)

n=1
The analytical expressions of the coefficients involve infinite series that have to be truncated for numerical

applications. Consequently, only a finite number p of eigenmodes is used to evaluate the coefficients of the
reduced-order model.

3.4. Hybrid POD evaluation for the response to an initial condition

In this section, the hybrid POD formulation is evaluated in the case of the free response. The time
integration of the reduced-order model is easily performed by the ODEPACK solver. The efficiency of the
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Fig. 1. Comparison of the eigenvalue spectra relative to the correlation tensor R* of each POD formulation.



ROM is evaluated by means of the following spatio-temporal error &, defined for the discrete responses:

_ ”U - Ur”oo

Eoo = 23
[LOF[p @)

The matrix U contains the response obtained with the POD reduced-order model at each point of the mesh
and at each discrete instant depending on the time step used for the time integration of the reduced-order
model. Similarly, the matrix U, is the reference solution evaluated at the same points in space and time.

The hybrid formulation of the POD is briefly compared here to the discrete and analytical formulations.
The analytical formulation uses p = N eigenmodes, i.e. as many as the number of elements used for the
discretized approach. Fig. 1 presents the POMs eigenspectra relative to each POD formulation. The spectrum
corresponding to the analytical formulation is clearly much more regular than the two others since the PODa
uses the analytical solution of the snapshots Eq. (19) to form the correlation tensor, whereas the other
formulations (PODd and PODh) rely on discrete snapshots stemming from a numerical finite elements
simulation.

However, the eigenspectra have globally the same shape except small irregularities about the 12th and 18th
eigenvalues. The most important point is that the slopes of the eigenspectra are nearly identical at least for the
first eigenvalues, so that in each case the first five eigenvalues that will be kept in the ROM contain 99.98% of
the “‘energy’ of the system. The percentage of “‘energy’ captured by the reduced-order model is defined by the
ratio Z}leij / Z}f:lij since the eigenvalues represent the “energy’ of the system captured by each POM, see
Eq. (6).

The POMs computed with the three formulations are very similar and the differences are barely
distinguishable on the first POMs (see Fig. 2). The POMs computed with the snapshots of the free response are
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Fig. 2. Comparison of the first four POMs computed by the PODa (—), the PODd (-—--) and the PODh (—). The black circles (o)
represent the rod eigenmodes {l//n}izl.
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Table 1
Comparison of the infinite reconstruction errors &, computed over 5 or 10 fundamental periods of oscillation for each POD formulation

PODa PODh PODd
5 periods 1.89 2.39 3.74
10 periods 2.76 3.58 4.44

(a) (b)

Fig. 3. Convergence of the infinite reconstruction error &, relative to the different POD formulations for the response to the initial
condition in function of the number ¢ of POMs used in the POD basis (a). The plot (b) presents the convergence of ¢y, for the PODh when
the number ¢ of POMs and the numbers of snapshots M used to compute the POMs are increased.

very close to the modes of vibration as noted by Feeny and Kappagantu [8] and Kerschen and Golinval [9].
Indeed it can be demonstrated in this particular case that the POMs converge to the eigenmodes when a
sufficient number of linearly independent snapshots are used in the correlation tensor.

Table 1 summarizes the values of the infinite error &, defined in Eq. (23) and computed for each
formulation over 5 and 10 fundamental periods of oscillation. It can be seen that the error produced by the
PODN is comprised between the errors produced by the two other formulations. This result is interesting since
it means that the error produced by the PODh has the same order of magnitude as the one of the PODd: the
two formulations could therefore be used together in a coupled problem.

Fig. 3a compares the convergence behavior of each POD formulation. The PODa has the most regular
convergence behavior and quickly reaches a small asymptotic error close to 1.7%. The PODd is characterized
by an infinite error which is slowly decreasing when the number of POMs used in the reduced-order model is
increased. Finally, the PODh has a more irregular convergence with small localized peaks of error. However,
the mean error is acceptable and for a relatively small number of POMs, this formulation is a good
compromise between the PODa and the PODd.

The second graph Fig. 3b describes the convergence of the infinite error for the PODh when the number of
POMs ¢g and the number of snapshots M used to compute the POMs are increased. The graph is truncated
when ¢ > M since the number of POMs extracted from the correlation tensor is limited by its rank, itself being
equal to the number of snapshots M when the snapshots have been chosen to be linearly independent like here.
It is clear that when ¢ and M increase, an asymptotic error is reached about ey, &~ 2.7%. However, the minimal
error encountered is not the asymptotic one but is found for (M, g) = (13,9) where ¢5, = 1.23%. This means
that it is not necessary to increase too much the number of snapshots or POMs in the reduced-order model to
obtain an accurate response. Indeed, with only 5 POMs, 99.98% of the energy contained in the system is
captured by the projection basis and additional POMs added to the projection basis are always associated with
smaller eigenvalues which are contaminated with round-off errors preventing an improvement of the accuracy.
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A more theoretical reason proposed by Rempfer [19] is that while the local dynamics is guaranteed to improve
by increasing the number of POMs, the global dynamical behavior of the system is not always preserved by the
POD-Galerkin approach.

4. Hybrid POD formulations for the response to a prescribed displacement

The three preceding formulations have been presented for the free response to an initial condition for the
sake of simplicity although they are not restricted to it and could be extended to the forced response with some
additional work. The forced response considered here involves a displacement imposed at the free end of the
rod (Dirichlet boundary condition). The displacement y(¢) applied at the free end modifies the boundary
conditions in

u(x=L,t)=y({) Vt>0 (24)

The Dirichlet boundary condition at the free-end is non-homogeneous and consequently the POMs no longer
inherit this property: the boundary conditions which were implicitly satisfied by the reduced-order
model through the POMs for the free response must now be explicitly imposed. Several techniques are
presented in the following for the hybrid POD formulation but all of them could also be applied to the discrete
POD.

4.1. The penalty method (PM)

The PM is often used to impose Dirichlet boundary conditions in structural problems [20] and has already
been used by Tang et al. [15] in the context of POD reduced-order model. The principle consists in replacing
the strong Dirichlet boundary condition u(x = L, t) = y(¢) by the artificial Neumann boundary condition:

ul  _ur— ()

25
0x|._, g 25)

where ¢ is a parameter small enough to satisfy approximately the boundary condition with uy = u(x = L, t).
We define the penalty factor f, = ¢*/e whose value has to be great so as to u; = y(¢) when Sy — oo. The
artificial Neumann boundary condition can be explicitly introduced in the reduced-order model by performing
one parts integration in Eq. (15). However, unlike the free response, the boundary terms do not all vanish:
only the one corresponding to the homogeneous boundary condition at the clamped side is equal to zero. After
reorganization of the terms, the reduced-order model becomes:

2 (k) () 7 ) q (k)
M — —ESZ<d¢ do >ak - ES<% do? > +ES Zd("

dx’ dx — dx

n du
Aj -
=L dx

x=L

)W(x -1 (26)

The term in brackets is in fact the spatial derivative of the variable u evaluated in x = L when u is decomposed
by the POD with Eq. (11). The artificial boundary condition Eq. (25) can then be replaced in Eq. (26):

2. 9q (k) ()]
da_ o Z<d<” ,di>ak ¢ <d” do” > T 0) — 70 = L) @7)
k=1

de2 dx ’ dx dx’ dx

The displacement u;, is decomposed on the POD basis with Eq. (11): ur = uz + > f_,ax()e®(x = L). The
vector ¢; =[pM(x=L)---9@(x = L)]" is introduced so that the sum can be interpreted as the vector
product @]a where a is the vector of the modal amplitudes. The set of equations Egs. (27) can be grouped in
only one matricial equation a = %a + 4 such that

L=L+L, with L, =1,(0,0})

H=H+H, with H, =1, — (1), (28)
where the matrix % and the vector 24" are exactly the same as those found in Eq. (17) for the free response

with the hybrid formulation. The remaining terms can be considered as penalty terms whose action is to
enforce the boundary condition.
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4.2. The Lagrange multiplier method (LMM )

In this case, the displacement imposed at the free end is treated as a constraint which has to be added to the
equation governing the rod. The displacement generates an unknown reaction R, that should be introduced in
the second member of Eq. (12). This reaction R, is an additional unknown reflecting the constraint of the
imposed displacement and is thus the Lagrange multiplier of the following problem:

u o%u
u(x =L, 1) =(t)

The first equation is, like before, projected onto each POM after having substituted u by its decomposition Eq.
(11) on the POD basis. In the second equation, the variable u is also replaced with the same decomposition
evaluated in x = L:

d2

(p<k>
pSga = ES Z<

d’u A
>ak + ES<d 23 > + <R”/9 (/7(/))

u(x=L,1)=1ug + Z ar(De®(x = L) = y(1)
k=1

(30)

Since the reaction R, acts in fact only at the free end, it can be defined by a Dirac distribution:
R, =ro(x — L), where the scalar r; represents the intensity of the reaction at x = L. Consequently, the inner
product involving the reaction R, is simplified in: (R, ") = fo rid(x — L)yeP(x)dx = rpW(x = L). The
vector of the reaction projected on each POM is given by r; ¢, where ¢; is the vector defined in the previous
paragraph and containing the values of the POMs at the free end. This vector is also used to rewrite the second
line in Eq. (30) in uz + ¢ a = (). The reduced-order model becomes:

iizg’a—l—fi’—l—rupL
0=e¢ra+1,— (1)

where the general term of the matrix % and the vector " are given by

. d2 ) . . d2
7y = gy Hi=(The) G1)

Finally the reduced-order model is formulated for the augmented variable vector a = [a rr]" and takes the
new form .#a = %4 + A . The detailed expression of the reduced-order model is the following, where I is the

g x q identity matrix:
I 0]|a 2L o, |[a H
.| = 32
e A e R ”

4.3. The control function method (CFM )

The last technique presented in this paper to take into account the non-homogeneous boundary condition is
the CFM commonly used to build reduced-order models for active control in flow dynamics, see Ref. [15] for
example. The variable u is divided into two parts, the first verifying homogeneous boundary conditions and
denoted u; and the second representing the effects of the forcing term and denoted uy, such that u = u, 4 uy
with u;(x = L, 1) = 0 and up(x = L, 1) = 7(2).

The POMs are computed for the centered homogeneous snapshots sglk) = uzk) w, and the POD
decomposition is thus u;(x, ) = up(x) + Zzzlak(l)(pg‘)(x). The notation (ph) is now used to highlight the
homogeneous character of the POMs derived from the snapshots that have been homogenized. The previous
decomposition of u;, can be replaced in the relation u = u;, 4+ u, to obtain the POD decomposition of the

13



inhomogeneous variable u. Before doing this, it is interesting to write the forcing term uy as the product of a
spatial and a temporal function which corresponds to the temporal modulation of the boundary condition Eq.
(24): up(x, t) = y(Hu.(x). The new POD decomposition for the variable u is then:

u(x, ) = w(x) + p(uc(x) + Z (1)} (x) (33)

The forcing term is not completely defined as the shape of the spatial control function u. has not yet been
given. Several choices are possible since the only constraint imposed by us(x = L,f)=y(¢) is that
u.(x =L)=1. A Dirac distribution u.(x) = é(x — L) satisfies the previous condition but is certainly not
optimal because of the discontinuity inherent to this function. A better choice consists in choosing the static
solution of the problem for a unitary displacement imposed at the free end: u.(x) = x/L.

The reduced-order model is easily obtained by introducing the new decomposition Eq. (33) into the
continuous equation of the rod and by projecting it onto each POM:

d’a; d?p® d*w, dPu, d*y(¢ 4
T?/ ¢ Z< 02 ,<p§,’)> +c2<d zl,qoh >+c y(t)<dx2',qog)> ;2)(Mc,q0§,’)> (34)

The form & = %a + A of the reduced-order model is preserved but the matrix & and the vector A4 are now

defined by
)]
7 2 Y% (l)
: z< ol

—~ d up i dzuc i dzy(t) i
<%/‘i = Cz< dx2 ,(P§1)> + Cz“/(’)< dx2 > ¢§1)> - dt2 (uCn (P§1)> (35)

The three formulations given by Egs. (28), (32) and (35) are clearly different. The PM is very easy to
implement because the matrix and vector of the reduced-order model are the same as those obtained for the
free response; they are only modified by the addition of a penalty matrix (or vector) which is easily computed
once the POMs are known. The main drawback of the method is that the boundary condition is only
approximated and not exactly satisfied. Indeed, the greater the penalty factor, the more exact the boundary
condition but the more ill-conditioned the matrices. The Lagrange multiplier method (LMM) leads to the
introduction of a new variable in the system which changes the form of the reduced-order model: indeed, the
matrix .# in the left member is singular and prevents finding again the same form common to the other
formulations. Finally, the CFM requires more modifications since the snapshots have to be first homogenized
before computing the POMs. Another assumption is that the forcing term can be decomposed as the product
of a spatial and a temporal function. The reduced-order model derived with the new decomposition keeps the
same usual form but involves time derivatives of the boundary condition time modulation y(f). The
acceleration associated to the imposed displacement has to be known and this could sometimes be a drawback
of the method.

4.4. Hybrid POD evaluation for the response to a prescribed displacement

The time integration of the reduced-order model is now performed either by the ODEPACK solver or with
a Newmark algorithm (see Ref. [20]). This algorithm is especially adapted for the LMM where the differential
equation cannot be written under the generic form a = f(a,¢) which is solved by the ODEPACK. The
efficiency of each formulation is evaluated by means of the error ¢ defined in Eq. (23). The reference
solutions are now the solutions computed with a finite elements simulation.

The hybrid POD reduced-order model is used to reconstruct the response of the rod with a displacement
imposed at the free end. The POMs are thus evaluated from a discrete set of snapshots which have been
computed by a finite elements simulation for the forced response. The POMs for the PM and LMM are
identical. They are represented in Fig. 4 with the black filled circles: their shape is slightly different from the
one obtained with snapshots of the free response and from the eigenmodes (see Fig. 2 for the comparison).
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Fig. 4. Comparison of the first four POMs for the forced response. The empty black circles (o) represent the eigenmodes of the rod
clamped at both ends whereas the black filled circles (o) indicates the POMs of the forced response when the PM or LMM are used to
impose the displacement. The curves (—) and resp. (——) represent the shape of the POMs when the CFM is adopted and the control
function is u.(x) = d(x — L) or resp., u.(x) = x/L.

Indeed, the displacement imposed at the free end produces a reaction at this point so that the Neumann
boundary condition at the free end which was homogeneous for the free response becomes now non-
homogeneous. Thus the POMs no longer satisfy an homogeneous Neumann boundary condition at the free
end and the shape of the POMs therefore differs significantly in the neighborhood of the displacement
application point. These POMs are used only for the PM or the LMM. Indeed, if the CFM is adopted, the
snapshots have to be homogenized before computing the POMs. The shape of the POMs then depends on the
control function used for the homogenization: if a Dirac function u.(x) = d(x — L) is used, the modes are
similar to those of the PM or LMM except for the last point x = L where the value is zero. On the contrary,
with the static solution u.(x) = x/L, the modes differ significantly from the previous ones: in this case,
homogeneous boundary conditions are satisfied by the POMs at both ends of the rod but the shape does not
exhibit any discontinuity. The POMs then coincide with the eigenmodes of a rod which would be clamped at
both ends; these eigenmodes are represented with empty black circles in Fig. 4.

We then compare the efficiency of the three techniques (PM, LMM and CFM) to take into account a
displacement y(¢) = U, sin(2xnf,f) imposed at the free end. Fig. 5 presents the response of the reduced-order
model based on the CFM with u.(x) = x/L for three couples of parameters (f,, U,). The responses computed
with the other methods (PM, LMM and CFM with u.(x) = 6(x — L)) are not shown since they are not
distinguishable. For each response, the POMs have been computed from snapshots stemming from the
resolution of the problem with the excitation parameters (f',, U,) = (150,0.01). This POD basis is then used to
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Fig. 5. Comparison between the POD responses for the forced response computed for three different couples of excitation parameters (—)
and the reference solution (o): (a) (f,, U.) = (150,0.01), (b) (f,, U.) = (200,0.05), (c) (f,, Ue) = (325,0.2).

calculate the response for the three couples of parameters (f,, U.) = (150,0.01), (f,, U.) = (200,0.05) and
(f., Ue) = (325,0.2) by introducing the desired imposed displacement y(f) characterized by each couple of
parameters (f,, U,) in Eq. (35). In each case, the response coincide exactly with the reference solution which
has been computed with a finite elements simulation.

To highlight the differences between the PM, LMM and CFM, the values of the infinite error ¢, are plotted
in Fig. 6a. Except for the PM, the error grows as the parameters go away from those used to evaluate the
POMs. This is the main limitation of the POD method: since the POD basis is constructed from snapshots, the
basis vectors depend on the excitation and the reduced-order model becomes less efficient as the parameters
for which the response has to be computed take away from those characterizing the excitation with which the
snapshots, and consequently the POMs, have been obtained. Nevertheless, the errors remain small for this
simple system and the responses obtained with the different formulations are in very good agreement with the
reference solutions. The best method for this example seems to be the CFM when the POMs have been
homogenized with the static solution of the system u.(x) = x/L. However, the influence of the control function
is crucial and it can be seen that the choice of the Dirac function for u. leads to the greatest error.
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Fig. 6. Comparison of the infinite error &, produced by the different methods used to impose the displacement: (a) for different couples of
excitation parameters (f’,, U.), and (b) when the number of POMs used in the reduced-order model is increased.

Fig. 6b represents for each method the convergence of the infinite reconstruction error &5, when the number
q of POMs contained in the POD basis is increased. The PM has in fact the greatest asymptotic error and does
not converge very well. The best method is actually the CFM with the static solution, but when the number of
POMs is increased, we notice that the use of the Dirac function becomes a reliable choice, better than the PM
or even the LMM. This is an interesting result since the use of a Dirac does not require the computation of a
physical solution of the system like it is the case with the static solution, whose determination could become
time-consuming when the number of dof at the boundary is great.

The CFM seems to be the most efficient method but the choice of the control function used for the
homogenization is capital. Moreover, when a displacement u; is imposed at the free end, it is necessary to
know the acceleration #i; associated to this displacement in order to evaluate the coefficients .#"; of the
reduced-order model defined in Eq. (35). It is trivial to determine the acceleration for a sinusoidal
displacement like the one imposed here, but some difficulties can arise if other shapes are used (e.g. a sawtooth
or crenel function which is not derivable). Sometimes, the displacement is also not explicitly known (e.g. the
case of a coupled fluid—structure system) and determining the acceleration is not obvious. The PM and
LMM avoid this drawback and have besides the advantage to be more flexible: the POD basis used in the
reduced-order model can eventually come from snapshots corresponding to the free response, or the forced
response with a force (instead of a displacement) imposed at the free end. This could also be done with the
CFM but it requires the determination of the adequate time modulations y(¢) in order to homogenize the
snapshots.

5. Robustness of the hybrid POD method

In this section, the robustness of the hybrid POD formulation is investigated: the reduced-order model is
used to rebuild diverse responses with POMs stemming from snapshots computed for a different type of
excitation. The objective is to control that the POD basis is, like the traditional eigenmode basis, suitable to
rebuild responses which are very different from the one used to obtain the POMs. This is not obvious for the
POD since the POMs are computed from snapshots which could have been produced by any type of
excitation, whereas the eigenmodes are always obtained by solving an eigenvalue problem formed with the
conservative part of the elastic system for small harmonic motion.

The first example consists in computing the response of the rod to an initial displacement U at the free end
when structural damping has been introduced in the system. As the continuous equation of the system is
required to work with the PODh formulation, we choose a constant damping coefficient £ acting uniformly at
each point of the rod to simplify the equation. The continuous equation (12) is then modified by the addition
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of a non-conservative term proportional to the velocity:

*u  ou o%u

P T e B T
The POMs computed from damped snapshots for the initial condition Uy are nearly identical to the POMs of
the free response without damping and consequently to the eigenmodes of the rod. This is in agreement with
the results of Kerschen and Golinval [9] who found that the POMs still converge to the eigenmodes when the
damping is weak and in absence of any external solicitation. Therefore, the POMs obtained with conservative
snapshots can be used to rebuild the non-conservative response and vice versa since the shape of the POMs are
very close in both cases. Fig. 7 presents the response obtained by the PODh for the damped system with 5
POMs computed from snapshots of the conservative response. The agreement between the rebuilt and
reference solutions is excellent and the error remains very small: the value of the infinite error for the damped
response is &, = 2.35% when non-conservative snapshots are used and falls to ¢x, = 1.90% with conservative
snapshots. Similarly, the undamped response to the same initial condition (identical to the response studied in
Section 3.4) can be rebuilt from different sets of snapshots: the error produced is ¢5, = 2.81% when non-
conservative snapshots are used and falls to ey, = 2.39% with conservative snapshots.

The second example concerns a clamped—free rod excited by a force F whose application point is distant of
xy <L from the clamped end. An obstacle is placed at the distance e from the free end (see Fig. 8). When the
magnitude of the force is enough important, the free end section hits the obstacle; this generates vibro-impacts
and therefore produces a reaction at this point. The reaction is nonlinear and defined by R(u;) =
—Kops(up —e) if up>e and R(up) =0 if uy <e. The excitation force is sinusoidal and characterized by
F(t) = F,sin(2znf,t). According to the values of F, and f,, the free end hits or not the obstacle, whose stiffness
has a great value (Kops = 10%°) in order to model a rigid obstacle.

This second example is more interesting since the POMs are significantly different from those of the free or
forced response. Fig. 9 gives the shape of the POMs obtained from a set of snapshots computed with or
without the obstacle. In both cases, the excitation force F is characterized by (f',, F.) = (175,2.0e6). When the
rod hits the obstacle, the nonlinear reaction at the free end leads to a more complex response of the system

0 (36)

\d

L

Fig. 8. Representation of the clamped—free rod excited by the force F and subject to vibro-impacts due to the obstacle.
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Fig. 9. Panels (a)—(d) show the first four POMs of the rod subject to vibro-impacts and computed from snapshots with the obstacle (—) or
without it (——). The black circles (o) represent the rod eigenmodes.

than when there is no obstacle. In both cases (with or without the obstacle), the shape of the POMs is very
different from the rod eigenmodes: the force F applied at x; = 0.1L deforms considerably the shape of the
modes in the neighborhood of this point.

The response of the system for different couples of parameters (f,, F.) is then computed. Fig. 10 shows the
responses when the POMs used in the reduced-order model have been evaluated from snapshots with the
obstacle. For the first (a) and last (c) cases, the magnitude of the imposed force F, is great enough so that
the free end hits the obstacle, whereas in the intermediate case (b) there is no contact between the free end and
the obstacle. Although the POMs stem from snapshots with vibro-impacts, they are suitable to rebuild the
responses either with or without contact. Indeed, the global shape of the response is in each case faithful to the
reference solution, except during the phase of contact where the number and amplitude of the vibro-impacts
are not exactly reproduced. However, it should be mentioned that the time step used for the time integration
of the reduced-order model is ten times greater than the one used to compute the reference solution and this
could explain why all of the impacts are not captured.

Although Fig. 10 exhibits a somewhat good accuracy of the response, the errors produced become now
significant, notably when vibro-impacts occur. The errors are plotted in Fig. 11 for the three couples of
parameters and according to the nature of the POMs used in the reduced-order model. When the free end hits
the obstacle (first and last cases), the error is almost the same, whatever the nature of the POMs: despite slight
differences appear according to the type of the POMs used (with or without vibro-impacts contained in the
snapshots), the error has the same order of magnitude. On the contrary, if no contact happens, the POMs
computed from snapshots without the obstacle are clearly more efficient than the others. The POMs of the free
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Fig. 10. Comparison between the responses for the rod subject to vibro-impacts computed for three different couples of excitation
parameters (—) and the reference solution (o): (a) (f,, F.) = (175,2.086), (b) (f,, F.) = (150, 0.5€6), (c) (f.,F.) = (300, 5.0E6).

motion give the greatest error when no contact happens, however the results are in good agreement in other
cases.

To conclude, the POD method provides a rather robust mean to build a reduced-order model: when the
response is computed with POMs which have been evaluated for the same type of excitation, the accuracy is in
general very good. However, the use of POMs stemming from a different type of excitation is a more delicate
issue. The POMs of the free response could be employed easily to rebuild responses for other types of
excitations (e.g. response with structural damping or with a nonlinear reaction induced by an obstacle,
response to an imposed displacement with the PM or LMM) but this is somewhat obvious since in this
particular case the POMs are close to the eigenmodes of the system. However, if we want to rebuild the free
response to an initial condition, the use of POMs obtained from snapshots with a displacement or a force
imposed is not appropriate since the POMs do not satisfy the suitable boundary conditions and the reduced-

order model has to be adapted: the simplification of the boundary terms appearing in the parts integration of
is no longer possible.
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Fig. 11. Comparison of the infinite reconstruction error &, for different couples of parameters according to the nature of the POMs used.

6. Conclusion

In this paper the hybrid POD formulation has been evaluated and compared for the response to an initial
condition to two other POD formulations, namely the discrete and the analytical POD formulations. The
hybrid POD is suitable to build reduced-order models leading to a small reconstruction error, and only small
differences have been highlighted between the three formulations. The comparison revealed that the analytical
formulation was the most accurate but its use is limited to the present system and only serves as reference. The
hybrid formulation represents an interesting alternative to the discrete approach and is particularly useful
when the discrete equation is not available. An important conclusion is that the hybrid approach (PODh)
which is usually adopted for fluid mechanics generates a response whose error is of the same order as the one
produced by the discrete approach (PODd) which is commonly used for structural mechanics. This means that
the PODh and the PODd could be employed together to build a reduced-order model for a coupled
fluid—structure system where the fluid would be reduced by the PODh and the structure by the PODd.

The second important point concerns the treatment of prescribed displacements by the hybrid POD
reduced-order model. Several methods have been compared and advantages and drawbacks have been
highlighted. Except the PM which has a surprising convergence behavior when the number of POMs in the
projection basis is increased, the other methods (LMM and CFM) behave well and the asymptotic error
remains small. The CFM is the most accurate but has several drawbacks, particularly the sensitivity to the
control function or the need for the time derivative of the excitation function. However, once a good control
function has been determined, the method is robust and converge very quickly as the number of POMs is
increased. The LMM has also proved to be efficient, but the asymptotic error of reconstruction is slightly
greater.

To conclude, the investigations conducted here show that the hybrid POD approach is reliable to construct
POD reduced-order models with a good accuracy. When non-homogeneous boundary conditions have to be
taken into account, the best formulation relies on the homogenization of the POMs by means of the control
function. However, the LMM (or in the last instance the PM) could also be used if the determination of the
control function is complicated or if problems concerning the time derivative of the excitation arise. Finally,
the results of the last paragraph show that hybrid POD is a rather robust method: the POMs obtained
from snapshots computed for a simple excitation (e.g. the response to an initial condition) seem to provide a
good basis to rebuild responses of diverse types, even if the latter are far from the response used to compute
the POMs.

This study that fits into the framework of the construction of reduced-order models for coupled
fluid—structure systems gives prominence to interesting results concerning the potential of the hybrid POD to
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build an efficient reduced-order model and is therefore encouraging us to use this formulation for future
applications, the next one being the reduction of the fluid.
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