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1. Introduction

This paper presents a discretization technique to solve elliptic
partial differential equations. It relies on high degree shape
functions that are approximate solutions of the PDE. More
precisely one requires that the residual is of order Oðjx�cjNþ1Þ

in the neighborhood of a given center c. This permits to discretize
only the boundary conditions. These discretized equations could
be obtained by two classical ways, first Galerkin procedure with
the drawback of the integration cost, second point-collocation
that is integration-less, but can lead to numerical instabilities and
ill-conditioned matrices [7]. In this paper point-collocation
method has been chosen and associated with a least-squares
minimization to overcome the numerical instabilities, as pro-
posed by Zhang et al. [18] and used by several others [19–24]. So
the proposed method is characterised by closed-form solutions
built by Taylor series, boundary discretization and coupling
between collocation and least-squares minimization.

To our best knowledge, such a discretization principle has
never been presented in the numerical literature, but of course it
has some points in common with the many numerical methods
that are not based on low degree polynomials. It can be compared
with the p-version of finite element and one can hope that the
presented technique permits to recover more or less the same
accuracy and adaptivity as the p-version [1–3]. The differences lie
in the number of shape functions that is much smaller with the
1

present method, in the computation cost and in the discretization
principle. Our discrete problem is deduced from point-wise
equations as in many meshless methods [4–6,8,25], but the
present method does not use a priori given shape functions, they
are built from a local solving of the PDE. There are at least three
well known numerical methods that associate a family of exact
solutions and a boundary discretization: the integral equation
method [9–11], the method of fundamental solutions [12–14] and
the scaled boundary finite element method [15–17]. In these
three methods, the reference problem has to be linear with
constant coefficients while the present Taylor series method can
be extended to generic PDE’s.

The paper is organised as follows. In the second part, the
instabilities due to pure collocation are pointed out and compared
with least-squares collocation. In Part 3, a computational
technique is sketched that permits to apply Taylor series to PDE’s.
Finally in Part 4, various 2D applications are discussed to assess
the possibilities of the presented numerical method.
2. Boundary collocation versus boundary least-squares
collocation

2.1. Polynomial shape functions

Let us consider the Dirichlet problem in a 2D domain:

Du¼ 0 in O
uðxÞ ¼ udðxÞ on @O

(
ð1Þ
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The aim is to introduce high degree polynomial shape functions,
that are exact solutions of the considered partial differential
equations. In the case of the Laplace equation Du¼ 0, there are
only two such polynoms of degree n, namely Re(x+ iy)n and
Im(x+ iy)n. Next, let us introduce all the polynoms, whose degree is
lower or equal to p. The dimension of this vectorial space is
((p+1)(p+2))/2, but if one limits to the solutions of the Laplace
equation, this dimension is reduced to 2p+1. Note that the
limitation to the solutions of the PDE permits to reduce strongly
the number of shape functions, for instance 101 polynoms instead
of 1326 for a degree equal to 50. With this reduction of the
number of functions, one can hope to build a numerical method
that remains efficient with a large degree.

2.2. Boundary collocation

As for instance in the method of fundamental solutions (MFS),
exact solutions of the PDE are used. Hence it is only necessary to
discretize the boundary conditions. Hence, the cloud of colloca-
tion points is located on the boundary. The simplest technique is
to choose as many collocation points x

i
as shape functions Piðxi

Þ.
The unknown is written in the classical form as

uðxÞ ¼
X2pþ1

i ¼ 1

PiðxÞvi ð2Þ

and the discretized equations are

X2pþ1

i ¼ 1

Piðxj
Þv

i
¼ udðx

j
Þ, 1r jr2pþ1 ð3Þ

Let us apply, this simple boundary collocation to a unit disk
x2þy2r1, and with the boundary data

udðx,yÞ ¼
x�x0

ðx�x0Þ
2
þðy�y0Þ

2
ð4Þ

The exact solution is known: uexðx,yÞ ¼ ðx�x0Þ=ððx�x0Þ
2
þðy�y0Þ

2
Þ.

First, one chooses a uniformly distributed cloud (see Fig. 2). In
Fig. 1, we have plotted the error jðuðx,0Þ�uexðx,0ÞÞ=uexðx,0Þj along
the horizontal axis for three values of the degree. In this case, the
boundary collocation method converges with the order p, see
Fig. 1. For instance, for p¼32, the maximal error is about 10�3 and
the error in the center of the disk is about 10�6. The same
conclusion holds also by looking at the error anywhere in the
domain. Unfortunately, this simple collocation technique is not
robust and it does not work with an irregular cloud. For instance,
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Fig. 1. Dirichlet problem in a disk. Pure boundary collocation with a uniform

cloud, see Fig. 2. Error along the horizontal axis.
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for p¼10 and the collocation points of Fig. 3, the maximal value of
the approximated solutions by this boundary collocation
technique is about 1075, instead of 4 for the exact one. It is not
surprising that this simple collocation technique does not work.
Indeed in the present example of a disk, the boundary value of the
polynom is given by a truncated Fourier series and the coefficients
vi are identical to the Fourier coefficients. In the present
technique, one tries to identify the Fourier coefficients from
pointwise data and with about two points per period 2p=p, which
is not sufficient for a stable estimate. Theoretically, the Fourier
coefficients are given by integral formulae:

1

p
R 2p

0 uðyÞcosnydy

1

p
R 2p

0 uðyÞsinnydy

8>><
>>: ð5Þ

To avoid the numerical evaluation of these integrals (5) that
involves many integration points, we shall propose to identify
these Fourier series from a number of pointwise data that is larger
than 2p+1 (Fig. 2).

2.3. Boundary least-squares collocation

It is proposed to identify the coefficients vi of the polynom (2)
from M collocation points, M being larger than 2p+1. The Dirichlet
boundary condition will be satisfied in a least-square sense. Such
a least-square collocation method has been presented by Zhang
et al. [18] in another meshless framework and it has been widely
applied. One requires that the coefficients vi minimize the
function

JðviÞ ¼
1

2

XM
j ¼ 1

juðx
j
Þ�udðx

j
Þj2 ¼

1

2

XM
j ¼ 1

X2pþ1

i ¼ 1

Piðxj
Þvi�udðx

j
Þ

�����
�����
2

ð6Þ

After few calculations, this minimization of (6) leads to a linear
system

½K�fvg ¼ fbg ð7Þ

where

½K� ¼
XM
j ¼ 1

½Kj� with Kj
ik ¼ Piðxj

ÞPkðxj
Þ ð8aÞ
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Fig. 2. Uniform distribution of collocation points, x0¼1.2, y0¼0.3.
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Fig. 4. Dirichlet problem in a disk. Boundary least-squares collocation method

with a non-uniform cloud, see Fig. 3. Comparison of the exact solution and the

proposed one with p¼10 along the boundary.
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fbg ¼
XM
j ¼ 1

fbjg with bj
i ¼ udðx

j
ÞPiðxj

Þ ð8bÞ

This method has been applied to the same problem as in
paragraph 2.2, with the same order p¼10, and with a non-
uniform cloud of 41 collocation points, see Fig. 3. In this case and
contrarily to the simple collocation technique, the polynomial
solution is close to the exact one, see Fig. 4. There are small
oscillations in the polynomial approximation, but they can be
removed by increasing the order p. The convergence of the
method with the order is shown in Fig. 5. One sees that the error
decreases strongly more or less as in the p-version of finite
elements. For instance the error at the boundary becomes lower
than 10�6 for p larger than 30 and the maximal error is about
0.1%. In Table 1, the p-convergence of the method is presented in
the case of uniform and a non-uniform cloud. Hence the coupling
of collocation and least square permits to get the same accuracy
with the non-uniform cloud as the uniform one. The accuracy is
represented by the decimal logarithm of the maximal error
jðuðx,yÞ�uexðx,yÞÞ=uexðx,yÞj. Finally let us discuss the influence of
the number of boundary collocation points, in the discretization
error, see Table 2 in the case of a degree 18. One checks again that
the pure collocation (M¼37) leads to wrong results. From a
number of points M¼61, the error becomes constant, and in
this case p¼18, about equal to 10�1.6. This means that it is
not necessary to choose too many collocation points, M� 4p

appearing to be a good compromise.
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Fig. 5. p-convergence for the Dirichlet problem in a disk. Boundary least-squares

collocation method with a non-uniform cloud, see Fig. 3.
3. Algorithm to compute the shape functions

It is not very difficult to build some polynomial shape
functions for a given partial differential equation. In the generic
case, this construction could be done with the help of automatic
differentiation [26], as it is well known in the case of ordinary
differential equation [27]. In this paper, we limit ourselves to the
case of a linear equation with constant coefficients and a general
right hand side f(x,y):

�Duþu¼ f ðx,yÞ ð9Þ

The principle is to consider the PDE as an ordinary differential
equation with respect to y, the function and its gradient being
given on a straight line, for instance the line x¼0. The data and
−1 0 1 1.5
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Fig. 3. Non-uniform distribution of collocation points, x0 ¼ 1.2, y0 ¼ 0.3.
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the unknown are assumed to be polynoms:

uðx,yÞ ¼
X

i

X
j

uijx
iyj ð10Þ

For convenience, each polynom is split into homogeneous
polynoms. A homogeneous polynom of degree k combines k+1
monoms and it is written in a matricial form

Xk

i ¼ 0

uk�i,ix
iyk�i ¼/XkSfukg ð11Þ

where

/XkS¼/xk,xk�1y, . . . ,ykS, /ukS¼ tfukg ¼/uk,0,uk�1,1, . . . ,u0,kS

Thus all the polynoms whose degree is lower or equal to p can be
written in the form

uðx,yÞ ¼
Xp

k ¼ 0

/XkSfukg, fukgARkþ1
ð12Þ

Next, if u(x,y) is a homogeneous polynom of degree k+2, Du is also
a homogeneous polynom of degree k. Hence, there exists a matrix
[Lk] with k+1 rows and k+3 columns such that

fDukg ¼ ½Lk�fukþ2g ð13Þ



Table 1
p-convergence of the least-squares collocation technique.

Degree NDOF Number of collocation points Uniform cloud Non-uniform cloud

6 13 26 �0.4097 �0.4551

8 17 40 �0.5782 �0.6078

14 29 60 �1.4869 �1.3818

18 37 80 �1.5963 �1.6019

25 51 105 �2.4078 �2.3333

30 61 125 �2.7822 �2.7824

Laplace equation with Dirichlet data (4).

Table 2
How to choose the number of collocation points.

Degree NDOF Number of

collocation points

Maximal

error (log10)

37 3.9456

49 �0.6641

61 �1.6076

18 37 73 �1.6052

85 �1.6046

130 �1.6041

190 �1.6040

Laplace equation with Dirichlet data (4).
So, by the formula (13), one is able to compute the k+1
coefficients of the homogeneous polynom from the k+3 coeffi-
cients of the homogeneous polynom u(x,y). The matrix [Lk] is
defined in appendix (26). To establish shape functions that are
approximate solutions of (9) one assumes that uðx,0Þ ¼Pp

i ¼ 0 ui,0xi and (@u=@yÞðx,0Þ ¼
Pp�1

i ¼ 0 ui,1xi are given. If u(x,y) is a
homogeneous polynom of degree k, the function and its first
derivative along the line y¼0 is given by the two coefficients:

fvkg ¼
uk,0

uk�1,1

( )
AR2

ð14Þ

The other coefficients of the homogeneous polynom are collected
in the following vector:

fwkg ¼

uk�2,2

uk�3,3

^

u0,k

8>>>><
>>>>:

9>>>>=
>>>>;
ARk�1

ð15Þ

Of course there exist two matrices [Svk] and [Swk] such that

fukg ¼ ½Svk�fvkgþ½Swk�fwkg ð16Þ

The principle is to assume that the Taylor coefficients of
Du�uþ f are zero, up to the degree p. With account of (13), this
leads to the following equation:

½Lk�fukþ2g ¼ fukg�ff kg ð17Þ

The latter formula can be considered as a recurrence one, because
it yields {uk + 2} as a function of {uk}, of the data {fk} and of the first
two coefficients {vk + 2} of {uk +2}. Indeed by inserting (16) into
(17), we get

½Lk�½Swkþ2�fwkþ2gþ½Lk�½Svkþ2�fvkþ2g ¼ fukg�ff kg ð18Þ

One checks easily that the square matrix [Lk] [Swk + 2], that is given
in the appendix, is invertible. The latter result is consistent
because (17) comes from the solution of a second order
differential equation with the two initial data {vk}. This yields
4

2p+2 shape functions Pi(x,y) such that any polynomial solution
of (9) in an asymptotic sense can be written in the form

uðx,yÞ ¼ P0ðx,yÞþ
X2pþ1

i ¼ 1

Piðx,yÞvi ð19Þ

where the numbers vi are defined by

fvg ¼

v1

v2

^

v2pþ1

8>>>><
>>>>:

9>>>>=
>>>>;
¼

fv0g

fv1g

^

fvpg

8>>>><
>>>>:

9>>>>=
>>>>;
¼

u0,0

u1,0

u1,1

^

up,0

up,1

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;
AR2pþ1

ð20Þ

4. Numerical applications

In this part, few applications will be discussed to assess the
validity of the presented techniques of least-squares collocation
with polynomial shape functions. A first goal is to show that the
calculation of shape function presented in the previous part can
be effective. The second goal is to discuss briefly some applica-
tions with a splitting of the domain into several subdomains and a
polynomial approximation in each subdomain.
4.1. Amoeba-like domain

Let us consider the modified Helmholtz equation

�Duþu¼ excosy�ex�y in O
uðx,yÞ ¼ ex�yþexcosy in @O

(
ð21Þ

where O has the amoeba-like boundary (see Fig. 6)

ðx,yÞ ¼ RðsÞðcosðsÞ,sinðsÞÞ

RðsÞ ¼ esinðsÞsin2
ð2sÞþecosðsÞcos2ð2sÞ, 0rsr2p

(
ð22Þ

This problem has been solved, in [13], by using the method of the
fundamental solution coupled with the ‘‘quasi-Monte Carlo
method’’. In that paper, 4000 collocation points were used
inside the domain. At the boundary, 35 collocation points
corresponding to 35 equations were used in [13] to get a
maximal error of about 2�10�3. Here, 19 polynoms of degree 9
and 31 collocation points were used, to get the accuracy
presented in Fig. 7, with a maximal error o10�4. This seems
much more efficient than the method of [13]. Likely this good
behavior is due to the analytical solution inside the domain and
also to the smoothness of the sought function that can be easily
approximated by polynomials. This establishes that the
considered polynomials are able to solve very accurately a PDE
in a complex domain.
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Fig. 8. Dirichlet problem in a disk. A first splitting in two subdomains.
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Fig. 6. Amoeba-like domain and collocation points.
4.2. A first piecewise study

In this part, we consider again the Laplace equation (1) in the
unit disk with the Dirichlet data (4) and x0¼1.2, y0¼0.3. The
domain will be split into two parts, as in Fig. 8. A small subdomain
has been chosen to account for the rapid variation of the solution
close to the singularity (x0, y0). The parameters of the
discretization are the following ones:
�
 N1 (N2): degrees of the shape functions in Zone 1 (Zone 2);

�
 M1 (M2): number of collocation points at the external

boundary of Zone 1 (Zone 2);

�
 I: number of collocation points along the interface;

�
 C1 (C2): center of the Taylor expansion in Zone 1 (Zone 2).

The discretization principle is the same as in the case of a single
subdomain, with an account of the continuity condition between
5

the two polynomial approximations at the interface. The condi-
tions to be satisfied are the Dirichlet boundary conditions and the
continuity of the unknown and of its normal derivative at the
interface. More precisely, we are minimizing the following
functional J(v1, v2):

Jðv1,v2Þ ¼
1

2

XM1

j ¼ 1

P10ðxj
Þþ

X2N1þ1

i ¼ 1

P1iðxj
Þv1i�udðx

j
Þ

�����
�����
2

þ
1

2

XI

t ¼ 1

P10ðxt
Þ�P20ðxt

Þþ
X2N1þ1

i ¼ 1

P1iðxt
Þv1i�

X2N2þ1

k ¼ 1

P2kðxt
Þv2k

�����
�����
2

þ
1

2

XI

t ¼ 1

@P10

@n
ðx

t
Þ�
@P20

@n
ðx

t
Þþ

X2N1þ1

i ¼ 1

@P1i

@n
ðx

t
Þv1i�

X2N2 þ1

k ¼ 1

@P2k

@n
ðx

t
Þv2k

�����
�����
2

þ
1

2

XM2

r ¼ 1

P20ðxr
Þþ

X2N2þ1

k ¼ 1

P2kðxr
Þv2k�udðx

r
Þ

�����
�����
2

ð23Þ

The p-convergence of the problem with the two subdomains is
presented in Table 3. Clearly, the process converges and it yields
accurate solutions for degrees larger than 15. The accu-
racy obtained with a degree 25 (10�4.55) is better than with a
single polynom (10�2.33) according to Table 1. Other calculations
have been done by keeping a smaller degree N2¼6 in the larger
zone (zone 2) that is away from the singularity. In this case, the
error is never smaller than 10�1.5. This means that a good
convergence seems to require a high degree in the two sub-
domains. Two other splittings in two subdomains have been
considered, where the interface is a straight line, see Figs. 9
and 10. The p-convergence is similar as with the previous case:
the error is about 10�3 in the first case and 10�4 in the second
one. All these results establish the robustness of the method, since
the p-convergence is always rapid whatever be the choice of the
subdomains.

4.3. Helmoltz equation

Now we consider the Helmoltz equation in a rectangular
domain, �5rxr5, 0ryr4

�Duþu¼ 0 in O
uðx,0Þ ¼ uðx,4Þ ¼ 0

uð75,yÞ ¼ sin
p
4

y
� �

8>><
>>: ð24Þ

The exact solution of (24) is given by

uðx,yÞ ¼

cosh x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

p2

16

r !

cosh 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

p2

16

r ! sin
p
4

y
� �

ð25Þ



Table 3
p-convergence of least-squares collocation technique.

Degree N1–N2 NDOF Number of collocation points M1–I–M2 Error along x axis (log10)

6–6 26 20–20–20 �0.6033

10–10 42 35–20–35 �1.7639

15–15 82 45–20–45 �2.0637

25–25 102 95–40–95 �4.5566

30–30 122 105–50–105 �4.2842

Laplace equations with Dirichlet data (4). Two subdomains, see Fig. 8.
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This function varies rapidly near by the small sides x¼75: so this
problem involves boundary layers. First, we have tried to
discretize the problem with a single subdomain, with the
boundary least-squares collocation method. The numerical results
show that the algorithm does not converge with the degree N,
especially in the boundary layers. For instance the maximal error
is 10�0.28 for N¼3, 10�0.09 for N¼5 and 10�0.13 for N¼10, 20, 25,
30. Fig. 11 permits to compare the exact and the approximated
solution.

To get a better approximation, several geometrical splittings
have been considered. For instance, Fig. 12 represents a
decomposition in five subdomains. We have chosen the same
degree for all the polynoms. The accuracy of the approximate
solution is presented in Table 4. Correct approximate solutions
have been obtained especially for small degrees (N¼6). We did
not observe the same p-convergence property as with the
previous example. Apparently a small error of about 1% persists
close to the matching region between the central zone and the
other ones. Likely for the same reason, we have not been able to
improve this result by increasing the number of subdomains.
5. Conclusion

A new meshless method has been presented and evaluated
from simple examples involving second order PDE’s. The key point
is the introduction of a small number of polynomial shape
functions that are the approximate solutions of PDE. The principle
is to require that the Taylor coefficients of the equation at a given
point vanish. This leads to an algorithm to compute these
polynomials. This is a true meshless method, the discrete
equations being obtained by collocation or by a least-squares
collocation technique. Indeed the pure collocation technique is
not robust and leads sometimes to numerical instabilities.
Because the equation in the domain is solved very accurately,
the collocation points are located only on the boundary and also
on interface, if one considers several subdomains. Thus the
number of degrees of freedom does not increase too much with



Table 4
p-convergence of least-squares collocation technique.

Degree N1–N2–N3–N4– N5 NDOF Number of collocation points M1–M2–M3 Maximal error (log10)

3–3–3–3–3 35 4–4–4 �1.4570

6–6–6–6–6 65 8–8–8 �2.7181

9–9–9–9–9 95 12–12–12 �2.4173

16–16–16–16–16 165 20–20–20 �2.3726

20–20–20–20–20 205 25–25–25 �2.3726

Helmoltz equation in a rectangle (24). Five subdomains, see Fig. 12.
the degree and this permits one to use very high degrees with a
moderate cost. The results establish that the solution becomes
very accurate, as for instance with the p-version of finite element
method.

In this paper, the applications have been restricted to linear
equations with constant coefficients. Nevertheless the computa-
tion of the shape functions comes from a Taylor series analysis.
Hence it is possible to extend the present analysis to non-linear
equations or to linear ones with variable coefficients. Such
methods have been proposed recently to solve non-linear
ordinary differential equations, see [28–30].

As far as we know, the presented method seems to be
completely new. There are well known methods based on exact
solutions (BEM, MFS), but they are mainly done for linear
problems with constant coefficients, while the present method
can be extended naturally to non-linear equations. Because of the
high degree of the shape functions, it looks like the p-version of
finite elements, but it should be much less expensive because the
partial differential equation is solved analytically in an almost
exact manner. This first paper on the topics has been focused on a
basic algorithm to compute the shape functions, on the assess-
ment of a proper collocation technique and a first check of the
convergence property.
Appendix A. Discretization of the Laplace operator

In this appendix, few formulae are presented to define the
matrices that are useful to discretize the Laplace operator, see
Section 3

½Lk� ¼ ½Gkþ1
x �½Gkþ2

x �þ½Gkþ1
y �½Gkþ2

y � ð26Þ

where

½Gk
x � ¼

k 0 0 � � � 0 0

0 k�1 0 � � � 0 0

0 0 k�2 0 0

^ ^ & ^

0 0 0 1 0

2
6666664

3
7777775

½Gk
y� ¼

0 1 0 0 0

^ & ^ ^

0 0 k�2 0 0

0 0 � � � 0 k�1 0

0 0 � � � 0 0 k

2
6666664

3
7777775

ð27Þ

½Svk� ¼

1 0

0 1

0 0

^ ^

0 0

2
6666664

3
7777775
¼

I2

0k�1,2

" #
et ½Swk� ¼

0 � � � � � � 0

0 � � � � � � 0

1 0 � � � 0

0 1 & ^

^ & & 0

0 � � � 0 1

2
666666664

3
777777775
¼

02,k�1

Ik�1

" #

ð28Þ
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The matrix [Lk] [Swk + 2] is exactly the same as [Lk] where the two
first columns have been eliminated.
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