G Le Caër 
email: gerard.le-caer@univ-rennes1.fr
  
Circumspheres of sets of 1 n  random points in the d -dimensional Euclidean unit ball (1 nd  )

Keywords: unit ball, uniform distribution, circumsphere, circumradius, Dirichlet distribution, beta distribution, geometric mean, geometric probability

   

Circumspheres of sets of n+1 random points in the d-dimensional Euclidean unit ball (1≤n≤d)

I. INTRODUCTION

L (for clarity the segment ' OO is chosen to be "vertical" without loss of generality). The pdf's of the distance between two points randomly distributed in the inside of spheres or of ellipsoids find numerous applications. For instance, they were shown to simplify the calculation of self-energies of spherically symmetric matter distributions interacting by means of radially symmetric two-body potentials [48][START_REF] Parry | Probability distribution of distance in a uniform ellipsoid: theory and applications to physics[END_REF]. These calculations were extended to ellipsoids as a first step towards convex bodies whose shapes deviate from spherical. García-Pelayo [START_REF] García-Pelayo | Distribution of distance in the spheroid[END_REF] derived the distance pdf in ellipsoids as an integral he applied to a study of the shape of the earth. Other physical applications of distance pdf's include in particular the use of double electron-electron resonance to study spherical aggregates with shell structure [START_REF] Katnig | Analytical distance distributions in systems of spherical symmetry with applications to double electron-electron resonance[END_REF] and the field of wireless networks whose properties are strongly influenced by distances between nodes [START_REF] Miller | Distribution of link distances in a wireless network[END_REF][START_REF] Moltchanov | Distance distributions in random networks[END_REF][START_REF] Srinivasa | Distance distributions in finite uniformly random networks: theory and applications[END_REF]. Finally, it is worth mentioning the connection between distance pdf's and pdf's of random chord length in convex bodies, which depends on the considered secant randomness (see for instance [START_REF] Coleman | Random paths through convex bodies[END_REF]). The chord length pdf's apply for instance in the fields of neutronics and of reactor physics [19, 26, 35, 37, 41-42, 52, 57, 63]. Extensions of the previous problem include for instance the determination of the mean distance between a reference point and its n th neighbour among a collection of N points uniformly distributed in a hypersphere or in a hypercube of unit volumes in a d -dimensional Euclidean space [8]. Applying the results of the latter authors, Kowalski [START_REF] Kowalski | Horn-Silver distributions in D-dimensional Euclidean spaces[END_REF] gave a geometrical interpretation to a generalization of a distribution used to represent pion distribution in hadronic production models. Circumcircles and circumspheres play an important role in computational geometry. Domains of all kinds are meshed with Delaunay triangulations and Voronoi tessellations are constructed from them. Direct applications of circumspheres are much less common than the previous ones. An example is the analysis of protein-induced distortions in [4Fe-4S] atom clusters [START_REF] Fee | The circumsphere as a tool to assess distortion in [4Fe-4S] atom clusters[END_REF].

The method we shall use to derive the joint distribution of  and  for circumspheres of () n d C is based: 1) on affine equivalence: Kingman [START_REF] Kingman | Random secants of a convex body[END_REF] 2) on the results of Affentranger [START_REF] Affentranger | Random circles in the d-dimensional unit ball[END_REF][START_REF] Affentranger | Random spheres in a convex body[END_REF] which imply that the triplet   ,, Fourth, we shall briefly discuss the asymptotic behaviour of the latter variables when d  for a fixed n . Last, we shall report on results of a Monte-Carlo study of the tail behavior of the circumradius pdf, where all circumspheres are this time considered, irrespective of the fact whether or not they are entirely contained in the unit ball.

II. SOME DEFINITIONS AND NOTATIONS

A n -simplex is the convex hull of 1 n  affinely independent points. The vertices of the standard or unit n -simplex, n  , embedded in a hyperplane of 1 n , are the 1 n  points:

        1 1 2 1 
: 1,0,..,0 , 0,1,..,0 ,.., 0,0,..,1 1

n n n v v v           
A n -simplex is regular if the intervertex distances are all equal, say to 0 a , with 0 a  2 for the unit simplex. The circumradius of a regular n -simplex is obtained from a general relation satisfied by it [START_REF] Bentin | 15 Regular simplicial distances[END_REF]. Let a general point be at distance k a from vertex k ,   

  q  by         1 2 1 2 1 2 
, B q q q q q q      , where the parameters [START_REF] Cai | Distributions of angles in random packing of spheres[END_REF] , qq are here real and positive. The Pochhammer symbol   s a , where s is a non-negative integer, is expressed as       (section 6.6 of [START_REF] Abramowitz | Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables[END_REF]). It is formulated in terms of the Gauss hypergeometric function in the right-hand side of eq. 3.

Upper-case letters are used to denote random variables and lower-case letters for the values they take. The notation AB means that random variables A and B have the same distribution. Independent and identically distributed rv's are abbreviated as i. 

X given Y is denoted as usual     n d p x Y y  .
Besides the Gaussian distribution used in Monte-Carlo simulations (appendix A), the classical distributions considered in the present work are, the gamma distribution of shape parameter 0 q  and scale parameter 0   ,   , Xq  , the beta distribution of shape parameters 1 0 q  and 2 0 q  ,  

12 , X Be q q and the Dirichlet distribution,

  k k Dir Lq .
Here X and k L are respectively a random variable and a k -dimensional random vector while stands for "is distributed as". The Dirichlet distribution depends on a k -dimensional vector of positive parameters k q . Further, it is defined on the unit 1 k  simplex (eq. 1). The previous distributions, which are linked together, are discussed further in appendix B. The distribution of the product of two independent beta random variables is discussed in appendix C. It is used to derive stochastic representations of  and of  (appendices C and D).

Probability density functions and probabilities (table 1 for 2 n  , appendix A) were estimated for circumspheres of the () n d C family for various values of n and of space dimensions d from results of Monte-Carlo simulations, most often of 8 2.10 circumspheres, with a method described in appendix A. Extreme value pdf's, which are determined by circumspheres of the () n d E family, were estimated too for 2 9 nd    (section VIII). The value 2 n  (circumcircles) was selected for plots of some estimated pdf's shown in figures 2 to 6 and in figure 8. In these figures, points are placed at the midpoints of bins of size 0.001 and solid lines are drawn through them. The differences between simulated and calculated results are of the order of line thicknesses. Dotted vertical lines in figures 3b, 4, 5 and 6b are the asymptotic limits of the means of the variables (section VII) whose pdf's are shown in them.

III. THE CASE OF TWO POINTS:

1 n 

The circumsphere   10 of appendix E). The distance  and the circumradius  are respectively 1 Y and 2 Y , where the condition 01     is obviously obeyed. We define thus

  1 1 2 2 Y U U  and   2 1 2 2 Y U U  with   12 , 1 2 p y y  ,   12 1,1 yy    and   12 1,1 yy    (figure
1 T     . The joint pdf     1 1 , p is therefore:     1 1 ,2 p   1           , , 0,1 4 

   

The latter distribution is uniform over the standard 2-simplex. It is a Dirichlet distribution (appendix B)

  YY and  . The common marginal distribution of  and  is derived either directly as described in appendix E or from the Dirichlet distribution

    1 1 
, p  (eq. 89):

                1 1 1 1 21 , 0,1 5 21 p p           
in agreement with pdf's given in the next subsection by eq. 11 for

1 d  as     21 2
1,1 2;2;1 2 1

F     (eq. 7.
3.1.125 of [START_REF] Prudnikov | Integral and Series, Volume 3: More special functions[END_REF]).

B.

d 

We consider more particularly line segments L provided that 0 R  [37]. Given the line 1

L and thus

Rr  , the coordinates of the points 1

A and 2

A on this secant, respectively 1 X and 2 X , are then scaled in such a way that they range from 0 to 1. Kingman [START_REF] Kingman | Random secants of a convex body[END_REF] (see also [START_REF] Santaló | Integral geometry and Geometric Probability[END_REF], p.

201, eq. 12.23) derived then the bivariate pdf of 1 X and 2 X ,   12 , p x x (eq. 6), which results from a Blaschke-Petkantschin type formula (section 7.2 of [START_REF] Schneider | Stochastic and integral geometry[END_REF], see too section IVA below) applied to the case 1 n  . The volume of the simplex, whose vertices are just 1

A and 2

A , reduces simply to 12 xx  . It is raised to the power 1 d  in the previous formula, that is:

        1 2 1 2 1 2 1 1 , , 0,1 6 2 d dd p x x x x x x       We define two new random variables 1 2 1 U X X    and 2 1 Z X X  whose joint pdf is:                     1 1 1 0, min 1 ,1 4 , , 1,1 7 1 max 1 , 1 ,0 4 d d dd z z u u q u z u z dd z z u u                                
The joint pdf of

r rU     and of r rZ     is then   4,
rr q  (first line of eq. 

          1 1 , 1 1 , , 0,1 8 d r r r r r r r r r d f d d                 The latter pdf is that of a Dirichlet distribution   1, ,1 Dir d of the triplet   ,, r r r
T  in agreement with eq. 20. As the pdf of R will be shown to be           

    1 , d p is obtained from     1 , rr d f  :             11 3 2 2 1 11 11 , 2 1 
9 dd d d dd dr p w r r r dr r                 Finally:                     2 1 2 -1 1 2 2 2 , 1 , , 0,1 10 12 d d d d dd p d                     The derivation of the marginal distribution     1 d p  from     1 , d p 
will not be reproduced here as the calculation of

    n d p  from     , n d
p  is detailed in section VC for any 1 d  and is valid for any 1 nd

. The pdf     1 d p 
obtained from eq. 41 for 1 n  (middle member of eq. 11) can then be rewritten in terms of the regularized incomplete beta function (eq. 3): 

               
                                    11 
The right-hand side of eq. 11 is, as expected, identical with the density of the half length [START_REF] Cai | Distributions of angles in random packing of spheres[END_REF] 2 AA  given for instance by Hammersley [START_REF] Hammersley | The distribution of distance in a hypersphere[END_REF] and Lord [START_REF] Lord | The distribution of distance in a hypersphere[END_REF]. 

  1 1 2 2 2 VV  OC = U U and   1 1 2 2 2 -V V  1 A C = U U are identical because   1,2 k k k
 UU and because the rv's  

1 2 1 2
, VV , ,U U are mutually independent. Thus, spherical symmetry imposes that the marginal distribution of the length 11).

C OC  is identical with that of  for 1 n  , C  (eq.
We note finally that the probability that the orthogonal projection 

    1 1 2 1 2 1 1 1 ' 0 12 22 2 , , 1 
d d p O c p X X p X X                       

IV. PRELIMINARIES FOR THE GENERAL CASE

A. Joint distribution of r  and of r 

We choose the case of three points 1 2 3 ,,

A A A in d   2 n 
as detailed in [START_REF] Affentranger | Random circles in the d-dimensional unit ball[END_REF] to exemplify the type of calculation performed in the general case by Affentranger [START_REF] Affentranger | Random spheres in a convex body[END_REF]. The three points determine a unique 2-flat 2 [START_REF] Raynaud | Sur l'enveloppe convexe des nuages de points aléatoires dans R n[END_REF]) describe the common features of 'Blaschke-Petkantschin type' transformations which enables us to explain the structure of eq. 13. In their words, "the starting point of a transformation of 'Blaschke-Petkantschin type' is an integration over a product (possibly with one factor only) of measure spaces of geometric objects (points or flats as a rule), mostly homogeneous spaces with their invariant measures. Almost everywhere, the integration variable, which is a tuple of geometric objects, determines a new geometric object (for example, by span or intersection). We call this new object the 'pivot'. The initial integration is then decomposed into an outer and an inner integration. The outer integration space is the space of all possible pivots, with a natural measure; often it is a homogeneous space. For a given pivot, the inner integration space consists of the tuples of the initial integration space which determine precisely this pivot; as a rule, it is a product of homogeneous spaces.".

In the present case , the "pivot" is the 2-flat , where 2 dL is the density of 2-planes which is invariant under the group of rigid motions in d , and the inner integration is performed in the 2-flat by using a "circumdisk representation" (pp 93-96 of [START_REF] Miles | On the homogeneous planar Poisson point process[END_REF]). Following Affentranger [START_REF] Affentranger | Random circles in the d-dimensional unit ball[END_REF], the area elements of 2 L at points ' ' '

1 2 3 ,, A A A are respectively ' ' ' 1 2 3 
,, dA dA dA and T is the area of the triangle ' ' ' 1 2 3

A A A contained in 2 L . Polar coordinates with respect to the center C of the circumcircle of these three points, of radius  , are then used to express ' ' ' 1 2 3 dA dA dA . It comes (p. 409 of [2], pp 93-96 of [43], p. 17 of [54] (1976): ,, dS dS dS are arc elements of the circumcircle at ' ' ' 1 2 3 ,, A A A . Eqs 13 and 14 give then: for a n -flat) while an integration over the angular factor yields a constant. The density 2 dL can be represented as (eq. 9 of [START_REF] Affentranger | Random circles in the d-dimensional unit ball[END_REF]): 

  ' ' ' 2 ' ' ' 1 2 3 1 2 3
  1 2 1 ' ' ' 1 2 3 1 2 3 2
    1 3* 2 1 0 2 0 16 d d dL h dhdL dL            where h     0,1 h denotes the distance from O to 2 L ( ' H OO  , figure 
        2 2 1 3
, , , , 17

dd d p h g h h        The intersection   1 1 2 d S L   is a circle of radius 2 1
rh (figure 1a). To obtain the pdf     

          1 2 2 1 3 2
, , 1 18 

d d d r r r r r r d p h d d dh g d d h h dh                        where   rr g   is equal to 1 if   0,1 r r r      
      1 2 32 1 d d d p h h h       
0,1 h in full agreement with eq. 21 [START_REF] Lord | The distribution of distance in a hypersphere[END_REF] for 2 n  . Eq. 18 yields finally  

1 r r r       :           2 21 , 4 1 1 , , 0,1 19 
d r r r r r r r r r r d f d d                 
The joint distribution given by eq. 19 is thus a Dirichlet distribution   2 for 2 n  ). The latter pdf was derived for 1 nd  by Raynaud [51]. As noted by Miles [44],

                2 1 1 2 2 1 21 2,1 1 2 dn nd n d p h h h B d n n d             0,1 h (figure
2 ZH  has a beta distribution,       2,1 1 2 Z Be d n n d    . The intersection of n L with the unit hypersphere   1 1 d S  is a hypersphere   1 n R S  whose center is '
O and whose radius is 1a). It comes from eq. 21: 15

2 '1 R O D H    (figure
                  22 11 2 2 1- 22 2,1 1 2 dn nd n d w r r r B d n n d          0,1 r  , i.e. 2 1 RZ  is beta distributed,       2 1 1 2, 2 R Be n d d n    .
V. CIRCUMSPHERES   n d c OF 1 n  POINTS CHOSEN AT RANDOM IN A UNIT d -BALL   1 nd 
We derive below the joint distribution of the length  and of the circumradius  , the marginal pdf's of  , of  and that of their sum  as well as stochastic representations of 2  and 2  . The mathematical form of the joint distribution of the length C OC  and of  is obtained but not its explicit normalization constant. Finally, we calculate the probability

    ' n d p O c  that ' O is outside any circumsphere of   n d C .

A. Joint distribution of  and 

As discussed in section IVA, the joint distribution of the triplet  

,, r r r T  is a Dirichlet distribution  
, ,1 Dir n nd (eq. 20). The marginal beta distributions of ,, 

  ,1 r Be n nd  ,   ,1 r Be nd n   ,     1, 1 r T Be n d  and thus     1 ,1 r Be n d  (fig. 3 for 2 n  ). The conditional distribution of r  given a circumradius r  is obtained directly from the Dirichlet distribution which implies that     1 ,1 rr Be n   . Thus:           1 0,1 23 
1 n r r r r r n r n d n f           
Eq. 23 has a simple interpretation: given a circum radius r  , the center of the circumsphere     [START_REF] Fang | Symmetric Multivariate and Related Distributions[END_REF], where r can take any value between

    , n rr d f      0,1 rr   (eq. 20) is transformed into           2 , 1 , n n d d p r r f r r        0 1 r      . The latter distribution, once weighted by     n d wr (eq.
  and 1 for d        and d       
, yields finally the desired pdf: 

                      2 1 2 2 11 1 11 , , , 2 
                                  - 2 11 2 , , , 1 , , 0,1 25 1 1 2 1 2 2 2 22 dn n nd n nd n d d n dn p K n d n d K n nd d n                                        for 1 nd and 1 d  .
         2 2 2 1 2 1 1 d r r r d f d d         and          2 2 21 2 1 2 1 1 d r r r d f d d d              , 0,1 rr 
, are compared with those estimated from the results of Monte-Carlo simulations in the conditions described at the end of section II. The pdf

    , n d
p  is a polynomial in  and in  either when nd  or when dn  is even. It reduces to a constant for 1 nd  (eq. 4, section IIIA). If nd  , the joint distribution of   

              2 11 2 1 , , , 0,1 26 
  2 ' ' 1 2 27 C OO O D r r         where   , , 0,1 C r  
. The maximum value of

C   is reached for 12 C r    , 0   . The mathematical form of the bivariate distribution     , n C d p  is discussed in the next section.

B. Joint distribution of

C

 and 

The starting pdf, valid for any 2 n  and any dn  , generalizes the one given by eq.17 for 2 n  :

        1 1 1
, , , , 28

n n nd d n d p h g h h            Eq. 28, with   , , 0,1 h  
, holds for circumspheres which belong to the family

  n d C , where   ,, gh  is therefore equal to 1 if 2 1 h   
    and 0 otherwise. It is readily verified that eq. 28 yields, as expected,

    11 , n n nd r r r r d f       (eq. 20) and         12 12 1 nd n dn d p h h h    (eq. 21). As 22 C h   , the pdf     ,, n C d ph  writes:             22 1 2 2 1
, , , , 29

n n nd d n C C C C d p h g h h h                , , 0,1 C h  , where   ,, C gh  is equal to 1 if 2 2 2 1 C h h     
 and 0 otherwise. We define 2 YH  so that eq. 29 becomes:

              22 22 12
, , , , 30 22 1 C   for a solution to exist. The latter condition implies that 2 C  (eq. 27). It can be obtained from a triangle like OCB (figure 1a) whose angle at the vertex

n dn n nd C C C C d p y g y y y             The equation 2 1 C xx       , with   2 0, C x   , is first transformed into 2 2 2 2 1 C C x         . It requires that
C is   with   0, 2   . It comes then, 2 2 2 2 C OC CB     2 cos 1 cos 1 22 CC OB         
. The sought-after solution x is: 

        2 2 2 2 2 2 2 2 = 1 , 1 4 31 C C C x            However, the condition 2 C x   does not guarantee that 0 x  . Indeed, the numerator of 2 1   is equal to      1 1 1 1 C C C C                 .
                              1 / 2 1 / 2 1 11 , 11 , 22 2 , 1 32 = 
, 1 , , 0,1 2 2 2 2 : 1 1- ,= C C dn n nn d nd CC dd n d nd C d C C CC C p K z z dz d n n d n n K B I                                                          2 22 1 1 4 C C S                         where   n d K is a
              2 2 1 1 , 1 0 1 1 33 d n d n n n nd d d n p K d                    
and from:

              2 2 11 , 1 0 1 1 34 d n d n n nd n d d n p K d                   
Both pdf's are first calculated from the following integral (eq. 3.197.8 of [START_REF] Gradshteyn | Table of Integrals,Series,and Products[END_REF]): p  which will be used in section VI to derive stochastic representations of  and of  . In the former case, it gives:

        1 1 1 21 0 = , -, ; ;- , >0 35 
u u x x u x dx u B F                             then a standard transformation is used (relation 15.3.5 of [1]):       2 1 2 1 , ; ; 1 , ; ; 36 1 b z F a b c z z F c a b c z         A first representation of the marginal pdf of  is obtained in that way: 20                             , 2 1 , 2 2 
                                            with   0,1   . A convenient
        1 2 1 2 1 1 ,1 ; ; 1 , ; ; 4 1 38 22 c c a c a F a a c z z F c z z           
          2 , 2 1 2 12 21 1 , ; 1;1 39 2 2 2 n d d n n nd d n n nd nd n d d n p D F nd                      
The very same method is now applied to  to give the two representations: 21

                            , 2 1 , 2 2 
                                         where   0,1   and:           2 , 2 1 2 12 21 1 , ; 1;1 41 2 2 2 n d d n nd dn nd n d d n p W F                 The densities     n d p  and     n d p  (fig.
The bivariate distribution of:

  42 Y             is deduced from     , n d
p  (eq. 25) to be:

                - 11 2 2 , , 1 0,1 , 
,

dn n nd n d d n p y Z y y y                                      , 11 43 
1 1 2 1 2 1 2 21 dn nd n d n d Z n nd d n                        Integral 3.196.3 of [28]:           1 1 1 = , , >0 44 b a x a b x dx b a B                 is then used to calculate the marginal pdf     n d p  by integrating     , n d py  over y between   ,   :                 2 2 1 2 1 45 1 2,1 2 n d dn n nd p B n d d n           
The distribution of  , the sum   , is noteworthy as its square is simply a beta distribution, 

      2 1 2,1 2 Be n d d n     . When nd  , the pdf     d d p  simplifies into        
    22 1- 46 r CC Y Z Z      where 2 ZH  has a beta distribution,       2,1 1 2 Z Be d n n d   
(section III and Miles (1971)) and is

independent of   ,1 r
Be n nd  (section IVA). We derive now an expression of the marginal distribution

    n C d p  not directly from the bivariate distribution     , n C d
p  (eq. 32) but from an application of the so-called "random variable transformation theorem" [START_REF] Roy Frieden | Another proof of the random variable transformation theorem[END_REF] to eq. 46. It writes: (figure 1a) calculated from eq. 37 and b) of the circumradius  calculated from eq. 40 are compared with the pdf's estimated from the results of Monte- Carlo simulations in the conditions described at the end of section II. 

                1 
                              22 12 1 2 2 12 2 , 12 , 0 1 1 1 48 2 2, 1 2 1 , 1 C dn dn n nd n C C C C d d n dn dn x x x p E dx x E B d n n d B n nd                                 where   0,1 C  



The moments of  and of  are calculated from the following integral which combines eq. 2.21.1.4 and eq. 7. 24

                1 1 1 21 1 0 1 ,1 ; ; =2 50 2 2 1 2 b c b c bc x x x F a a c dx a b c a b c                        We obtain:                 , 1 2 1 1 2 2 2 51 1 2 1 1 2 2 kk dn n d n d nk E n n d k n d k                                                 and                 , 1 2 1 1 2 2 2 52 1 2 1 1 2 2 kk dn n d n d nd k E nd n d k n d k                                                
The ratio of these moments is then:

          , , 53 
k dn k k k dn E nd n E        The duplication formula         2 4 2 1 2 p ppp m m m 
is used to express the even moments of  and of  ,   

        2 , 1 22 54 1 1 1 2 22 pp p dn p p nn E n d n d                                 and:         2 , 1 22 55 1 1 1 2 2 2 pp p dn p p nd nd E n d n d                                
In addition, the moments of    are obtained from eq. 45:

            , 1 2 1 2 2 56 1 2 1 2 2 k dn n d n d k E n d k n d                                         
The following integral (eq. 3.211 of [START_REF] Gradshteyn | Table of Integrals,Series,and Products[END_REF]):

            1 1 1 1 0 1 1 1 = , , , ; ; , , >0 57 x x ux vx dx B F u v                       ,where   1 , , ; ; , F u v     
 is an Appell hypergeometric function, yields the moments of C  from eq. 48 as:

          21 1 2 ( , ) 1 0 1 1 1 1 1, ; 1;1 58 , 1 2 2 2 nd k n C dn n d d n k E x x F x dx B n nd                     
Explicit expressions might be obtained for even moments from eq. 58 as 2 k  is then a negative integer but they become rapidly complicated as shown by the first two even moments which write: 

                            2 2 ( , ) 3 
                                      59 14 d           The moment 2 ( , ) C dn E   
can be equally calculated from Pythagoras' theorem in the right-angled triangle ' OO C (figure 1a): Be n nd  (section IVA) are independent. Then:

2 2 2 ( , ) ( , ) ( , ) C d n d n d n E E E H                 with           2 ( , ) 1 
                  2 2 2 1 1 2 1 1 1 = 1 60 1 1 2 k k k k rr C k k nd E E Z E E dn                                with :           21 1 0 1 1 = 1 1 61 ,1 k nd k k n r E x x x dx B n nd           



From eq. 57, we obtain finally the following explicit expression:

                    21 2 1 1 2 1 1 , ; 1 1; 1 62 1 1 1 2 k C kn n k nd nd E F k n n d k nd k dn                  E. The probability     ' n d p O c  that ' O is not contained in   n d c
The n -flat n L contains almost never the center O of the unit ball for any d and 11 nd    so that we focus on its orthogonal projection '

O onto n L while for nd  ,     ' dd dd p O c p O c                . For circumcircles, the probability   2 ' d p O c       14 d d 
was obtained by Affentranger [START_REF] Affentranger | Random circles in the d-dimensional unit ball[END_REF]. The affine equivalence of n -flats [START_REF] Kingman | Random secants of a convex body[END_REF] 

  63 r r r rrr Y            
From the previous Dirichlet distribution, we get: . From eq. 35, we obtain that: , the latter integral becomes:

                  1 1 1 , 0 ,1 , , 64 1 2 
                       The marginal distribution    
                          1 1 0 1 1 0 1 1 1 1, 0 1 65 1 1 1 0,1 1 nd nd k k dn k r r r k n k r d n nd k n k dn k r r r k k nd J y y y nn py n J y y y nd nd                                  Then, the probability     ' n d p O c  is calculated by integrating    
                 2 1 2 1 1 11 1 0 1 1 ! 2 1 ,1; 1; 1 ,1; 1; 1 66 1 2! nd n nd dn nd n nd nd J x F n nd x dx F n nd nd x n nd               
where the right-hand side of eq. 66 is obtained first from integral 7.512.9 of [START_REF] Gradshteyn | Table of Integrals,Series,and Products[END_REF] and then from the classical transformation

  2 1 2 1 1 , ; ; 2 , ; ; 1 2 FF                . It comes:                       21 1 1 1 0 0 0 11 ! 1 ,1; 1; 1 67 1 1 ! 1 ! k n n n k k k kk kk n n k nd F n nd n nd nd nd k n k                        
Finally, eqs 66 and 67 yield:

          1 11 0 11 1 ' 68 2 n n d nd k nd p O c k              The probability     ' n d
p O c  (eq. 68), considered as a function of n , is equal to 12 for 1 d  and any 1 n  . Indeed,

2 1 1 '0 2 1 2 1 ' nn k n k nn k n k                   11 22 ' 0 0 2 1 2 1 2 1' nn n kk nn n k k                  



. The latter result cannot be interpreted in term of the event

  1 ' n Oc 
except for 1 n  . An unrelated explanation exists however. Indeed, the form seen in eq. 68 is found in different contexts. An example, given by Wendel [START_REF] Wendel | A problem in geometric probability[END_REF], is fair coin tossing where the probability of at most 1 n  heads in 1 N  throws is given by eq. 68 in which   1 nd is replaced with N . The probability of at most 1 n  heads, or that of at least n tails (and vice versa), in 21 n  throws is thus 1/2 for any 1 n  . More relevant to the present problem might be a distribution-independent result on convex hulls of N i.i.d. random points in n ,   1 ,.., N conv XX [START_REF] Schneider | Handbook of Discrete and Computational geometry, Second Edition[END_REF]. If the distribution of these points is symmetric with respect to the origin '' O and assigns measure zero to every hyperplane through '' O , then the probability that  

1 ,.., N O'' conv  XX
is given by eq. 68 in which   1 nd is replaced with N (eq. 1 of [START_REF] Wendel | A problem in geometric probability[END_REF] and eq. 12.1.1 of [START_REF] Schneider | Handbook of Discrete and Computational geometry, Second Edition[END_REF]). We failed to establish an explicit relation between this problem and the present one. The former suggests nevertheless that a simpler proof of eq. 68 might exist. 

                                                   4 69 25 384 32 d dn d            The probability   1 ' d p O c    
is derived by a simple method in section III (eq. 12). The probability   agree with those given by eq. 69. For any 

1 n  ,     ' n d p O c  is a polynomial of degree 1 n  in d divided
          21 1 2 2 1 , 21 1 , ; 1;1 70 2 2 2 n nd d n n n d d n nd nd n d d n p x D x x F nd x                   with   0,1 x  and:           21 1 2 2 1 , 2 1 2 1 , ; ;1 71 2 2 2 nd dn nd n d d n n d d n p y W y y F y               with   0,1 y 
. The pdf's given by eqs 70 and 71 can be both looked at as the pdf's of products of two independent beta random variables (appendix C). Two stochastic representations both for 2

 and for 2  , whose parameters are calculated from eq. 92, arise from the existence of two solutions to eq. 91 as a Gauss hypergeometric function  

21

, ; ; F a b c x remains unchanged by a permutation of a and b . They are respectively: 

      1 1 2 2 12 2 1 2 21 : , , , 2 2 2 2 72 1 1 1 : , , , 2 2 2 2 n nd n d n nd R X Be X Be XX n nd n nd n d R X Be X Be                                          and:       1 1 2 2 12 2 1 2 1 1 1 : , , , 2 
                                   
In other words, both  and  can be considered as geometric means of two independent beta random variables: [START_REF] Miller | Distribution of link distances in a wireless network[END_REF].

  12 12 74 XX YY        We remind that X      where       1 2,1 2 X Be n d d n    (eq.
The even moments   p  is given by eq. 25.

Finally, the stochastic representations of  for 1 n  are discussed in more detail in appendix D.

VII. ASYMPTOTIC BEHAVIOR

We discuss briefly below the asymptotic behaviour for d  while n is kept fixed. When d , most of the volume of a high-dimensional unit ball concentrates in a narrow annular region at its surface (see for instance [START_REF] Lévy | Leçons d'Analyse fonctionnelle[END_REF]). Further, all high-dimensional random vectors are almost always nearly orthogonal to each other [START_REF] Cai | Distributions of angles in random packing of spheres[END_REF]. Therefore, all pairwise distances ij AA   , 1,.., 1, 2,.., 1 i j i j j n      are approximately equal and all pairwise angles are approximately equal to 2  when d becomes large [29]. In other words, the lengths i OA tend to 1 and the i A 's are expected to form a standard n - simplex with an intervertex distance of 2 when d . We notice that this holds independently of the nature of the circumsphere of the i A 's.

When

x , an asymptotic formula (eq. 6.1.47 of [START_REF] Abramowitz | Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables[END_REF]), namely

             2 1 1 2 1 ab x a x b x a b a b x O x          
, can be applied to get the asymptotic moments of  and of  when d for a fixed value of n .

      2 1 75 1 1 n d n d k k k k EO d n E O nd                              
Eq. 75 shows that the center

C of   n d c tends to '
O when d . As distributions with bounded supports are uniquely determined by their moments of integer order k , eq. 75 indicates that the pdf of  transforms progressively into a narrower and narrower pdf with a peak at a position closer and closer to     12 1 nn  when d increases. This agrees with the circumradius of a standard n -simplex whose intervertex distance is 2 (eq. 2). The latter conclusion is consistent with the trend shown by figure 4b  

2 n  . Figure 6b   2 n  exhibits a similar trend for circumspheres of   n d D and   n d E .
In addition, the following limits are consistently obtained to be:

      fixed fixed 2 2 lim 1 76 lim 1 n d n d k d n k d n k k n E n n E n                          The probability   n d P   1 nd
 that a circumsphere belongs to the () n d C family has been derived by Affentranger [3] (   1 1 d P  for any d ). Its asymptotic value is (eq. 5.3 of [3]): This probability decreases rather rapidly with n , being less than 0.002 for 8 n  . The high-dimensional properties of unit balls ensure that the asymptotic limits of  and of  for n fixed and d have to be similar for the three families of circumspheres, a trend seen both in figure 5 and in figure 6 from Monte-Carlo simulations performed for 2 n  . 

             

VIII. TAIL BEHAVIOUR OF THE CIRCUMRADIUS PDF OF ALL CIRCUMSPHERES

The circumradius pdf

    n d
 of all circumspheres, and not exclusively those which belong to

  n d C , was studied by

Monte-Carlo simulations to investigate its tail behaviour. We focused more particularly on the tail behaviour of

    n d
 for d ranging from 2 to 9 and primarily for nd  for a number of circumspheres N most often equal to 8 2.10 . Figure 7a shows the variation with d of the probabilities that a circumsphere belongs to 

  d d C ,   d d D or   d d E which are denoted respectively as   Pd,   Qdand   Rd.
    1 1 1 d n n r M L S S     with '1 OC   (   n d E ), '1 O M r , CM   , write 1 1 rr              . Thus, the tail behavior of     n d
 is identical with that of      for  , an assumption that we considered further by studying the extreme value statistics of  . As  is a positive and unbounded random variable, the relevant extreme value distribution function is the Fréchet distribution,

        exp a F x x m s    
, which depends on three parameters  

,, a m s . The associated pdf reads: 

N   8 2.10  of simulated circumspheres for 2 nd .       1 exp 78 aa a x m x m f x x m s s s                               It is unimodal with a mode at     1 1 a m s a a 
. It should be found for instance if the tail of the pdf of a rv 0 X  is   1 a p x aA x  ( x ) (see for instance [START_REF] Bouchaud | Théorie des risques financiers[END_REF]).

We consider a set of k i.i.d. circumradii , 1,.., j jk  and we define 

    1 max ,.., k k     . A limit distribution is found if there exists sequences of constants 0 k s  and k m such that     Pr kk k m s x F x                xm  as k  ([14] p.
            1 exp 79 kk k kk M k kk kk d k k k k aa a mm am f s s s s                                                        , M k k m  
k m . If     2 2
 is assumed to have a power-law tail with an exponent of 2, then k s should vary linearly with k (eq. 1.37 of [10]). As k m is small as compared to k s , the pdf mode is then expected to be equal to 2 k s (here 0.099k ) (eq. 78 and below). The simulated mode varies indeed linearly with k , with a slope of 0.101 0.003  For a given d , the above results lead to assume finally that

    2 1 d d    
for   and thus that

    2 1 d d    
for  . Power-law tails agree also with simulation results for dn  , with

      1 n d n d a     for   and an exponent   n d
a larger than 2 which tends to increase with dn  . However, we are presently unable to guess a reliable variation of it with d and n .

IX. CONCLUSION

We considered circumspheres which are determined almost surely by sets of n -flat determined by the 1 n  random points, and the circumradius  . Simple closed- form expressions of the pdf of this pair are obtained for circumspheres contained in the unit ball. Their derivation is based on previous literature results of Kingman [37], Miles [START_REF] Miles | Isotropic random simplices[END_REF] and Affentranger [START_REF] Affentranger | Random circles in the d-dimensional unit ball[END_REF][START_REF] Affentranger | Random spheres in a convex body[END_REF] 

 

, ,1 Dir n nd , plays an essential role in the calculation. Marginal pdf's of  and of  , which are both products of powers and of a Gauss hypergeometric function, yield simple stochastic representations. Indeed, both random variables are distributed as geometric means of two independent beta random variables. Two pairs of different beta rv's are found both for  and for  .

The mathematical form of the probability

    ' n d p O c  in which   1 nd is replaced with
N , is found also in fair coin tossing where it represents the probability of at most 1 n  heads in 1 N  throws or it is too the probability that the origin '' O is outside the convex hull of N i.i.d. random points in n provided that the distribution of these points is symmetric with respect to '' O and assigns measure zero to every hyperplane through '' O [56, 62].

The probability that a circumsphere cuts the unit sphere is most often larger to much larger than the probability that it does not. The problem we considered for the circumspheres of The method we used to generate a point A uniformly distributed over the unit ball (see for instance p. 73 of [START_REF] Fang | Symmetric Multivariate and Related Distributions[END_REF]). Second, a number 1 n  of independent random variables k U uniformly distributed on (0,1) are generated. Last, each unit vector k u is multiplied by    is readily obtained [START_REF] Ericson | Minimum bounding circle (sphere) for a triangle (tetrahedron) realtimecollisiondetection.net/blog/?p=20[END_REF]: The absolute error is of the order of some 10 -5 . It increases steadily when 5 d  but the agreement between simulated and calculated histograms remains very good. These conclusions hold for all studied values of n and d . 

                                                    
  1 1 1 1 1 1 1 1 , 1,.., = (83) 
          2 1 12 1 1 1 0,1 84 , B q q xx p x x B q q    
The moments of X are simply given by:

          1 12 1 2 1 2 , 85 , k k k q B q k q X B q q q q   
The Dirichlet distribution is a multivariate generalization of the beta distribution. It is of common use in simplices and is applied for instance in ecology [START_REF] Huillet | Sampling from Dirichlet partitions: estimating the number of species[END_REF], to model fragmentation, compositional data [START_REF] Aitchison | The Statistical Analysis of Compositional Data[END_REF] and even in the analysis of new classifications of Proceedings of the National Academy of Science papers aiming to encapsulate the interdisciplinary nature of modern science [START_REF] Airoldi | Reconceptualizing the classification of PNAS articles[END_REF].

The beta and the Dirichlet distributions can be simply obtained from gamma random variables. The pdf   G px of a gamma random variable,

 

, Xq  , is given by:

          1 exp 0 86 G q q xx p x x q      
where 0 q  is the shape parameter, 0   the scale parameter [32]. The characteristic function of

X is     11 q itX X t e i t      . A sum k S of k independent gamma random variables,     , 1,.., i q i k   , with
identical scale parameters and a priori different shape parameters, is itself a gamma random variable 1 ,

k i i q q        as deduced from     1 11 j k k k q itS S j t e it           .
As the scale parameter is irrelevant in the present context, its value is fixed at 1 from now on.

Dir q can be defined as follows [22]:

-First, consider a set of 1 km  independent gamma random variables, 12 , ,..,

    ,1 1,..., ii X q i k   -Second, define 1 k j j k SX    and   1,.., j j k L X S j k 
k k q q q  q . The support of the Dirichlet distribution   k Dir q is the unit   1 k  simplex (eq. 1)
. The form of the pdf of the Dirichlet distribution respects the equivalence of the components of k L (p. 17 of [START_REF] Fang | Symmetric Multivariate and Related Distributions[END_REF]): 

      1 1 1 1 ,.., 1 , 0,1 , 1,.., 87 k m D m k k i i i i i q i p l l K l l l l i k              with     1 k ki i K q q         and 1 k i i qq    . The moment   1 k i i r i k Ml    r ,   1 ,..., k k rr  r , is readily obtained to be:         1 1 88 k i i i i k r r i i r k q Ml q     

 

,

i i i L Be q q  :           1 1 1 1 0,1 , 89 , i ii k i i i j L ji i q q i i i ll p l l q q B q q           

APPENDIX C: PRODUCT OF TWO INDEPENDENT BETA RANDOM VARIABLES

A random variable X is the product of two independent random variables 1 X and 2 X which are distributed according to beta distributions, respectively

  1 1 1 , X Be  and   2 2 2
, X Be  . Then the pdf of X is given by [START_REF] Tang | On the distribution of the product of independent beta random variables[END_REF]:

              12 2 1 1 1 2 2 1 2 1 1 2 2 12 1 1 1 , 1- , ; ;1 90 ,, X B p x x x F x BB                         0,1 x  , where   21 
, ; ; F a b c x is a Gauss hypergeometric function. By symmetry, the parameters [START_REF] Dufresne | The beta product distribution with complex parameters[END_REF]. A converse problem, namely the determination of the parameters of two independent beta laws from a pdf given by:

      2 1 2 1 , ; ; 1- , ; ; F x x F x                [ 
        21 1 1 1- , ; ;1 91 X c s p x x x F a b c x    has two solutions if , , , 0 a b c s  , ca  , cb  , c s a b    , ab  . Indeed, the identity,     2 1 2 1 
, ; ; , ; ; F a b c x F b a c x  , yields stochastic representations of as a product of two independent beta rv's, on the one hand 

              11 1 2 1 2 22 , , 92 , , X Be s c b Y Be s c a X X X X Y Y X Be c s a b b Y Be c s a b a              
The conditions on , , , a b c s given above ensure that the parameters of the beta distributions of eq. 92 are all positive. From eq. 91, the distribution of ZX  is: 

        21 1 2 1 2 2
        21 21 2 21 1 2 , 1 2; 2 ;1 2 1 , 2 94 1 a a F a a a z Z Be s a zz                  
Eq. 94 yields then the following stochastic representations of Z (eq. 92):

    1 1 1 2 1 2 2 2 1 , , 2 95 1 , 11 , 2 22 
X Be s a Y Be s a Z X X Z Y Y Y Be s a X Be s a                            
Eq. 95 with 1   holds for the distributions of  and of  with nd  (section IV A). Eqs 70 and 93 give indeed 

  2 2 2 2, 1 2, 1, 2 a d b d c d s d       ,   2 , 2 1 Z Be s a  i.e.
  2 2, 1 2, 1, 2 a d b d c d s d       , that is   2 ,1 Be d d   .
The beta rv Z (eq. 95) is thus the geometric mean of two independent beta rv's. Two pairs of different beta rv's are found in general for a given 

                                  
Lord [START_REF] Lord | The distribution of distance in a hypersphere[END_REF] derived the distribution     . We deduce from eq. 98 that the two independent rv's To calculate the distribution of the half-length of the chord linking two points independently and uniformly distributed on the unit sphere   V , we take it as the basis vector (1,0,..,0) by an appropriate orthogonal transformation which depends only on V . The resulting distribution of U remains invariant by this transformation and is independent of V .

Therefore, the square of the sought-after half-length p  (eq. 98) which writes: , a pdf which agrees with eq. 13 of [START_REF] Sidiropoulos | N-sphere chord length distribution[END_REF].

                          1 1 1 1
                  
The stochastic representation   1 S of eq. 96 is thus, 2 where the modified notation used in eq. 102 specifies the space dimensions as well as   S and  

V for a uniform distribution respectively on the surface of a unit sphere and in the interior of a unit ball. As expected, the distribution of

  V d
 is retrieved from eq. 102 to be (see eq. 

of 1 n  points   1 ,.., 1 iFigure 1 :

 1111 Figure 1: O is the origin of the unit ball

   chosen at random within a convex body d KR  and the associated n  flat, n L . As K is here spherical, the sets n KL  are affinely equivalent for 1 n  and for different n L provided that the "volume" of n KL  is non-zero.Thus, the random geometrical characteristics we investigate are first rescaled as follows. The intersection of Rr  (figures 1a and 1d) is chosen to become equal to 1 once rescaled. We define thus rescaled random variables r r

  has a Dirichlet distribution (section IVA).

  an integration over r , with weights given by     n d pr , of the conditional distribution of  and  given Rr  (sections III and IV).

First, we shall

  derive the joint distribution of the length ' OC  and of the circumradius  for any 1 d  and any 1 nd , as well as the mathematical form of the joint distribution of the length C OC  and of  . Second, we shall obtain the marginal distributions of  , C and  , their moments and simple stochastic representations of  and  .Third, we shall calculate the probability not contained in the interior of a circumsphere   n d c .

  is defined from the incomplete beta function by:

p

  abbreviated as i.i.d..The joint probability density function of the continuous random variables ,  and the pdf's of X ,

  [START_REF] Fang | Symmetric Multivariate and Related Distributions[END_REF], section IVB), the bivariate distribution

W

  between a point uniformly distributed over the unit ball d B



  is then integrated over entire circumcircles because only circumcircles which are totally in the interior of the unit ball are considered[START_REF] Affentranger | Random circles in the d-dimensional unit ball[END_REF]. The latter integral simplifies then to   21 d d   (eq. 6 of[2]). It remains then to express dC and 2 dL . Polar coordinates, with an origin at '

   is introduced.



  vary both between 0 and 1:

Figure 2 2 dc

 22 Figure 2: Circumcircles   2 d c in d for 37 d : the pdf's of the distance ' H OO  (figures 1a and 1d) are calculated



  , are obtained from the amalgamation property of the Dirichlet distribution (end of appendix B). They are respectively

p

  , we come back to the initial distance scale, namely

p

  is finally written as:

Figure 3

 3 Figure 3: Circumcircles   2 d c in d for 28 d : the rescaled distance

C

  All factors are non-negative except the last for 1 finally, for any 2 n  and any dn  :

  with 12 z  as z takes here only real values. It yields other representations of     n d p  and of     n d

  4 with 2 n  ) are both products of powers and of a Gauss hypergeometric function. The densities given respectively by eqs 37 and 40 become polynomials when   2 dn  is either zero or a negative integer, i.e. when nd  or when dn  is even. Examples of pdf's     n d p  are given for circles   2, 2 8 nd    and for spheres   3, 3 5 nd    in appendix F.

2 d

 2  and 11 nd    , the square C Y of C  , the length OC , is simply expressed from Pythagoras' theorem applied to the right-angled triangle ' OO C (figure 1a) as:

Figure 4

 4 Figure 4: Circumcircles   2 d c in d for 28 d : the pdf's a) of the distance ' OC 

  delta function. From eq. 47, we obtain the marginal pdf of C  (fig. 5 for 2 n  ):

, 2 d 2 dc

 22 Figure 5: Circumcircles   2 d c in d for 29 d : the pdf's of the distance

  between 0 and 1. Expressing the sum in eq. 65 as a hypergeometric function and defining

Figure 6 : 2 n

 62 Figure 6: Circumcircles   2 n  in d   27 d  which cut the unit sphere: the pdf's a) of  and b) of  are estimated from Monte-Carlo simulations in the conditions described at the end of section 2.



  whose associated n -flats are about to degenerate into   1 n  -flats, for instance, three points   2 n  which determine a plane are on the point of becoming collinear (see below). Side inequalities in any triangle ' O CM , where

2  increases from 2

 22 indeed by Monte-Carlo simulations.Monte-Carlo simulations were first performed for 2 nd  to follow how moments , 1,..,12 mean  remains typically of the order of some units for any N while

Figure 7 :E

 7 Figure 7: a) Probabilities,   Pd (empty squares),   Qd (empty circles) and   Rd (solid circles) that a circumsphere



  Figure 8: a) pdf's of the maximum   k  of groups of k i.i.d. circumradii of circles   2 nd  as estimated as a function

Figure 8 m

 8 Figure 8 shows the pdf's of the maximum   k  of groups of k i.i.d. circumradii of circles   2 nd  which are

Figure 9 a

 9 Figure 9 shows results obtained for k fixed and equal to 100,

Figure 9 :

 9 Figure 9: a) pdf's of the maximum   100 

1 n

 1  independent random points uniformly distributed in the interior of a unit ball of center O in the d -dimensional Euclidean space d for any 1 d  and any 1 nd . The focus was put on the pair   ,  , i.e. the distance  between the centre C of a circumsphere and ' O , the orthogonal projection of O onto the

 2 , , 1

 21 . The   ,  pdf is simply a Dirichlet distribution  Dir d d for nd  . More generally, an unnoticed Dirichlet distribution,

d B is based on the stochastic representation R

 representation Au where u is a unit vector uniformly distributed on the surface of the unit sphere   75 of[START_REF] Fang | Symmetric Multivariate and Related Distributions[END_REF]). First,1 n  independent d -dimensional Gaussian random vectors   1,.., 1 k kn G, whose components are independent standard Gaussian random variables, are generated with the classical Box-Müller method[START_REF] Box | A note on the generation of random normal variates[END_REF]. Each Gaussian vector is then normalized to yield a unit vector k

  unit ball d B of center O (p. 75 of[22]). Taking arbitrarily 1 A as the origin of a coordinate system, we use then the Gram-Schmidt orthogonalization process to obtain an orthonormal set  

2 .

 2 Determination of the circumsphere characteristics ( 2 nd ) Barycentric coordinates of the center C of the circumsphere of the ' i As are used to write: C = A C A C = ..= A C A C = A C A C . From these conditions, a set of n linear equations in the ' k s

.

  O is the orthogonal projection of O onto the n -flat obtained from the ' i As (figure1). The condition for a circumsphere to be entirely contained in the inside of d because circumspheres are almost never tangent to the unit sphere. For 1 n  , the circumcenter is the middle of the segment 12 AA , histograms of 1000 bins are progressively constructed for various circumsphere characteristics.As a quantitative test of the method described above, we compared theoretical probabilities Results are shown in table I for d ranging from 2 to 9.

  is equal to 1, the associated k -dimensional distribution is degenerate. Therefore, the Dirichlet distribution of the random vector   12 , ,.., kk L L L  L depends only on m components, an arbitrary component being left aside. The pdf of the Dirichlet distribution, from the previous definition depends on k parameters collected in the vector  

  are generally taken as equal to zero). For 2 k  , the Dirichlet distribution reduces to the beta distribution (eq. 84).The Dirichlet distribution has a notable amalgamation property[START_REF] Fang | Symmetric Multivariate and Related Distributions[END_REF]. If thek components of  k k Dir Lq are grouped and added up into p components 1 ,.., corresponding to the components of the initial vector k L which add up to i  . The amalgamation property is more simply understood by redefining the Dirichlet distribution   * pDir q from the independent gamma rv's associated with each of the above-defined p components. The latter gamma rv's, with scale parameters   of the starting independent gamma rv's. The marginal distribution of any component

1 dpFrom

 1  , as obtained from eq. 11, from the uniform distribution in the interior of the unit ball d B of the orthogonal projections on d of points uniformly distributed over the surface of a unit sphere of a   2 d  - dimensional Euclidean space. We profit from the pdf of the product of two independent beta rv's (eq. 90) to give a derivation of the latter property.The spherical coordinates of a random unit vector U 37 of[START_REF] Fang | Symmetric Multivariate and Related Distributions[END_REF],[START_REF] Goldman | Detection in the presence of spherically symmetric random vectors[END_REF]). The distribution of U is spherically symmetric as is the distribution of its projection OA in d[START_REF] Lord | The distribution of distance in a hypersphere[END_REF]. To characterize the latter distribution, it suffices then to consider the two first coordinates of U :OA are the remaining components of U in number d . The pdf's of 1  and 2  are respectively (p.37 of[START_REF] Fang | Symmetric Multivariate and Related Distributions[END_REF],[START_REF] Goldman | Detection in the presence of spherically symmetric random vectors[END_REF]): Pythagoras' theorem, the square of the length of OA is

  [START_REF] Deltheil | Sur la théorie des probabilités géométriques[END_REF].1.8 of[START_REF] Abramowitz | Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables[END_REF]). Finally, the pdf of RY  OA is e. the point A is uniformly distributed over the unit ball d B .

  of U . The distribution of the latter random unit vectors is invariant under any orthogonal transformation of the orthogonal group   O d +2 (p. 27 of [22]). Conditioning first on

Z

  is obtained from the pdf   1 1

,

  the squareZ of the half-distance 2 d  has a beta distribution, in agreement with theorem 3 of Miles[START_REF] Miles | Isotropic random simplices[END_REF], and the pdf 2

. 1 S

 1 The latter rv is simply the distance between the center of a unit ball d B and a point uniformly distributed in its interior. It may equivalently be written can equally be expressed as:

1 U and 2 U 12 YY

 1212 In section III.A, two i.i.d. random variables, , uniformly distributed over (-1,+1) . Then the joint distribution of  12 ,YY is uniform over the square ABCD of figure10a: . The common marginal distribution of 1 Y and 2 Y , which is just the distribution of the sum of two i.i.d. rv's uniformly distributed over (-1/2,+1/2), is very simply calculated from the square n 

  .

  The line segments

	d BL  are affinely equivalent for 1
	different 1

  normalization constant which has not been found explicitly in the general case,

	0 x  . The presence of  and	 in the denominator of 2  (eq. 31) has no consequence as both variables are strictly
					C					
	positive as soon as	1   . A Dirichlet distribution C	 Dir d d , ,1  2	is recovered from eq. 32 for	nd  . Indeed, the
	sole condition which is then satisfied by circumspheres of the	  n C family is	1   because	   (section VA).
								d			C	C
	The conditional distribution	   d n p   varies as C 	C d   for 1	C   (eq. 32): the center 1	C is then uniformly
	distributed in a ball of	d of radius 1   . This conclusion does not hold for		C	 1 , 1   			2		. Monte-Carlo
	simulations confirmed that conditional distributions	   d n p   which are estimated for C 	2 n  and	d 	3,..,6
	agree with those calculated with Maple from eq. 32. To conclude, a full expression of	   d n p  has not been obtained C  ,
	but the latter pdf can be calculated numerically from eq. 32.				
											  , C I   	, 22 d n n    	is a
	regularized incomplete beta function (eq. 3) while  					Sx for
							19			

Sx is a step function, i.e.   0 Sx for 0 x  and   1 C. Marginal distributions of  ,  ,  and C  For 1 d  and 1 nd , the marginal distributions of  and of  are derived respectively from:

  quadratic transformation of the Gauss hypergeometric function

	 F a a c z 21 ,1 ; ; 		(eq. 15.3.32 of [1]) writes:

  ,

	n			n		nd		
	p	y	J	y	y		y	
		r r	r	r	r	r	r	r	r r
	d		dn					
		nd					
	J							
	dn	nd n						
			B n nd					

  Carlo simulations of separate values of  and  . Unconnected values of  and  are indeed obtained in that way as the associated pair  

			2 E   p 	, dn	and	2 E   p 	  , dn	, given respectively by eqs 54 and 55, are easily deduced from the
	corresponding stochastic representations of eqs 72 and 73 and the associated moments of beta distributions (eq. 85). We
	recall that		 Be d d ,1  2  ,		 Be d d 2 ,1   (section IV.A) for	nd  . These results are fully consistent with eqs 72
	and 73 as shown at the end of appendix C. The stochastic representations	i S 	i 	1, 2		(eqs 73 and 74) are convenient for
	Monte-,  is not distributed as should be a pair   ,  whose pdf	,     n d

   , constructed from all circumradii, irrespective of the fact whether or not they are entirely contained in the unit ball, were studied by Monte-Carlo simulations. The results obtained for

	Some pdf's	n     d								
													nd  lead to assume that the tail
	behaviour of	    d d  , is a power law,	d     d  		1		2	for  .
				P d	n	1 dd 21 n n	n	1 BB n nd ,, 1 d 2 2 2 1 2 2 d n nd , B	nd 2	1	d	d 2 2	1	n	80
													  n C seems much simpler than it is for circumspheres of
													d
	  n D and	  n E (eq. 15 and below).						
	d		d									

Table I :

 I Comparison between exact probabilities

										   2 theor.		calculated from eq. 80 (Affentranger [3]) for
	circumscribed circles 	 n  and probabilities 2	    2 est.	estimated from the Monte-Carlo simulations described above for
	29 d .										
	d	d	   2 d P	theor.		    2 est. d P	d	d		   2 d P	theor.		    2 est. d P
		2			2 5=0.4		0.40003		6		11 20 =0.55	0.55002
		3	2 12 245 		0.48340		7		2 7840 138567 	0.55845
				 0.4834091..							0.5584136..	
		4	14 27			0.51851		8		494 875	0.56462
				 0.5185185..							 0.5645714..
		5	2 600 11011 	0.53780		9		2 105840 1834963 	0.56938
				 0.5378042..							0.5692752..	

d P d P

  [START_REF] Abramowitz | Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables[END_REF] 

		 and 1  may be
	replaced respectively by	2  and

2

 in eq. 90. This amounts simply to apply the Euler relation

  , the stochastic representations of the square of the half-distance between two points chosen at random in a

	independent beta rv's,	X	k	Be		    , k n	n		,	0,., 1 kn  :	1 0 ZX n k    1 k   	n	[47]. The latter property applies,
	for	1   , to the left part of eq. 95 with	2 n  ,	2 , sa 2 1     .
	APPENDIX D. STOCHASTIC REPRESENTATIONS OF	2  FOR	n 	1
	For	1 n  d -
	ball (	2 d  ) (eq. 73) become:								
							2	12 YY	    1 2 S Y Be 1 1 : : S Y Be	2 Y 2 2 2 ,1 , d 2 , d d	,	2 Be Y	d Be 2	11 d , 2 1 2 2 d ,	1	  96
						Z . More generally, a beta rv,	  , Z Be  is distributed as the geometric mean of n
														44

1

,0 qq , is defined by the following probability density function[START_REF] Johnson | Distributions in Statistics Continuous Univariate Distributions[END_REF]:
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APPENDIX A: MONTE-CARLO SIMULATIONS

The main goal of Monte Carlo simulations is to estimate accurately all kinds of pdf's as shown in figures 2 to 9.

Computations were performed with a Fortran computer code running on a standard desktop computer, valid a priori for any 2 d  and any 1 nd . The rapid increase with d of some exponents which appear in the expressions of pdf's (eqs 37 and 40) limits in practice the value of d to 10 . Thus, simulations were carried out for d ranging from 2 to 9 and a number of circumspheres N of and the distribution of  

Y is then obtained by folding the previous distribution (figure 10b):

. The joint pdf of the distance  and the circumradius  , which are respectively equal to 1 Y and 2 Y , is a Dirichlet distribution  

1,1,1 Dir (eq. 4, section IIIA) which yields eq. 5 identical with eq. 105.

APPENDIX F: EXAMPLES OF CIRCUMRADIUS PDF's OF CIRCLES  

2 n  , OF SPHERES  