
HAL Id: hal-01517872
https://hal.science/hal-01517872v1

Submitted on 3 May 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Calcul de paramètres minimaux dans les graphes
dynamiques.

Arnaud Casteigts, Ralf Klasing, Yessin M. Neggaz, Joseph G Peters

To cite this version:
Arnaud Casteigts, Ralf Klasing, Yessin M. Neggaz, Joseph G Peters. Calcul de paramètres minimaux
dans les graphes dynamiques.. ALGOTEL 2017 - 19èmes Rencontres Francophones sur les Aspects
Algorithmiques des Télécommunications, May 2017, Quiberon, France. �hal-01517872�

https://hal.science/hal-01517872v1
https://hal.archives-ouvertes.fr

Calcul de paramètres minimaux dans les graphes
dynamiques. †

Arnaud Casteigts1, Ralf Klasing1, Yessin M. Neggaz1 et Joseph G. Peters2

1LaBRI, CNRS, Université de Bordeaux, France
2School of Computing Science, Simon Fraser University, Burnaby, BC, Canada

Dans un travail précédent [2], nous avons présenté un algorithme permettant de calculer un paramètre appelé T -interval connec-
tivity dans les graphes dynamiques qui se présentent sous forme d’une suite de graphes G1,G2, ...,Gδ. Cet algorithme considère
les graphes de la suite comme des atomes et les manipule via deux opérations élémentaires : une opération de composition (de
deux graphes) et une opération de test (sur un graphe). Cet algorithme est optimal dans le sens où il n’utilise que O(δ) opérations
de ce type. Dans cet article, nous généralisons cette approche, en montrant notamment qu’il suffit de définir différemment les
opérations de composition et de test pour résoudre immédiatement d’autres problèmes. Nous illustrons cela par l’étude de trois
problèmes de minimisation, à savoir BOUNDED-REALIZATION-OF-THE-FOOTPRINT, TEMPORAL-DIAMETER, et ROUND-
TRIP-TEMPORAL-DIAMETER, chacun faisant référence à une propriété temporelle importante dans les réseaux dynamiques.

Keywords: Réseaux dynamiques, Test de propriétés, Généricité, Connexité temporelle.

1 Introduction
Over the last decade, research has highlighted the importance of characterizing and testing properties in dy-
namic networks, studying patterns, and analyzing their dynamics. These networks can be modelled in vari-
ous ways. When time is discrete, a common model is to represent the network as a sequence of static graphs
G = {G1,G2, ...,Gδ}, where each Gt = (V,Et) represents the state of the network at a time t (a.k.a. untimed evolv-
ing graphs). In [2], we presented an optimal solution to the problem of computing a stability parameter called
T -interval connectivity, i.e. the largest T such that all graphs in every consecutive subsequence of length T share
a common connected spanning subgraph. The algorithm operates at a high level, manipulating the graphs in the
sequence as atomic elements with two types of operations: a composition operation and a test operation. Using in-
tersection of two graphs as the composition operation and connectivity of a graph as the test operation, a hierarchy
of intersection graphs is built such that the whole sequence is T -interval connected if and only if all the composed
graphs in row T of the hierarchy are connected (see Figure 1a for an illustration). The algorithm “walks” within
this hierarchy building the required graphs on demand. The walk strategy is optimal in that the algorithm computes
the maximum value of T using only O(δ) intersections and connectivity tests.

In this paper, we generalize this framework to use various composition and test operations, which yields solutions
to other problems using the same strategy that we used for T -interval connectivity. We formulate a minimization
version of the strategy (T -interval connectivity is a maximization problem) and illustrate it with three pairs of com-
position and test operations. These operations make it possible to compute three parameters that relate to specific
properties of dynamic networks discussed in [1]. They are (1) BOUNDED-REALIZATION-OF-THE-FOOTPRINT,
where the goal is to find the smallest duration d such that if any edge is present in some Gi (with i ≤ δ−d), then
it must be present again in some Gi′ with i′ ≤ i+ d; (2) TEMPORAL-DIAMETER, where the goal is to find the
smallest duration d such that a temporal path (journey) exists between every pair of nodes in every window of size
d (see e.g. [3]); and (3) ROUND-TRIP-TEMPORAL-DIAMETER, which asks the same question for back and forth
journeys (which is not the same as solving the second problem twice).

By using the proposed general framework, we can reuse most of the high-level logic of the algorithm and focus
instead on the specific aspects of each problem through the composition and testing operations. This approach is

†This work has been supported by ANR projects ESTATE (ANR-16-CE25-0009-03) and by “the Investments for the future” Programme
IdEx Bordeaux CPU (ANR-10-IDEX-03-02).

Arnaud Casteigts, Ralf Klasing, Yessin M. Neggaz et Joseph G. Peters

G1

G2

G3

G4

G(1,1) G(2,2) G(3,3) G(4,4) G(5,5) G(6,6) G(7,7) G(8,8)

G(1,2) G(2,3) G(3,4) G(4,5) G(5,6) G(6,7) G(7,8)

G(1,3) G(2,4) G(3,5) G(4,6) G(5,7) G(6,8)

G(1,4) G(2,5) G(3,6) G(4,7) G(5,8)

(a)

G1
G2
..
.

××
× ××

××

(b)

Figure 1: (a) Example of partial hierarchy from [2] using intersection as the composition operation. (b) Example
of execution of a minimization algorithm (not related to (a) which corresponds to a maximization problem).

especially relevant when the changes between two consecutive graphs are arbitrary. If that is not the case, or if the
graphs are sparse, then using low level dedicated data structure might be a more relevant approach.

2 Overview and main definitions
Let G be a graph sequence {G1,G2, ...,Gδ} and let P be a boolean predicate (hereafter called property) defined
on a consecutive subsequence {Gi,Gi+1, ...,G j} ⊆ G . The minimization (resp. maximization) problem on G with
respect to P is the problem of finding the smallest (largest) k such that ∀i ∈ [1,δ− k+ 1], {Gi,Gi+1, ...,Gi+k−1}
has property P (in other words, any subsequence of G of length k satisfies P). We present here a general strat-
egy that relies on a virtual hierarchy of graphs which is computed on demand. The hierarchy consists of rows
G1,G2, . . . ,Gδ where G k = {G(1,k),G(2,k+1), . . . ,G(δ−k+1,δ)}. We use G k[i] to denote the i th graph of row G k, that
is the graph G(i,i+k−1). The first row G1 of the hierarchy corresponds to the graphs of the sequence G (or to simple
transformations of these graphs); that is, G(i,i) corresponds to Gi. Then, the hierarchy is defined by applying some
composition operation ◦ that computes a graph in a higher row from two graphs in lower rows. By doing this,
the graph G(i, j) is the (iterated) composition of the graphs in the original subsequence {Gi,Gi+1, . . . ,G j−1,G j}.
Observe that the graphs in row G k are the (iterated) composition of subsequences of length k in the original se-
quence. An example of the hierarchy based on the intersection operation from [2] is shown in Figure 1a. Finally,
in addition to the composition operation, we consider a test operation which maps any graph of the hierarchy into
{true, f alse}. For example, in [2] this operation tests whether the given graph is connected.

The general framework that we propose makes it possible to solve minimization or maximization problems
by focusing only on the composition and test operations, while the high-level logic of the algorithm remains the
same. More precisely, there is one high-level algorithm for minimization problems, and another for maximization
problems. Due to space limitation, we describe only the minimization version here, and refer the reader to [2] for
an example of a maximization algorithm, albeit described in a less general way, and to Chapter 4 of [4] for further
details (e.g. proofs) about the minimization version.

For a minimization problem relative to some property P to be solvable within our framework, the follow-
ing conditions must hold on the composition operation ◦ and the test operation test: (1) test(G(i, j)) = true⇔
{Gi,Gi+1, . . . ,G j−1,G j} satisfies P; (2) operation ◦ is associative, that is (G(i, j) ◦G(i′, j′)) ◦G(i′′, j′′) = G(i, j) ◦
(G(i′, j′) ◦G(i′′, j′′)); and (3) it holds that [G(i, j′) = G(i, j) ◦G(i′, j′) ∧ (test(G(i, j)) = true ∨ test(G(i′, j′)) = true)]
⇒ test(G(i, j′)) = true. Then the problem amounts to finding the lowest row in which all graphs satisfy the test.

3 High-level Strategy for Minimization Problems
We propose a strategy based on the generic composition and test operations defined above. The algorithm is then
instantiated in Section 4 to solve three specific minimization problems by plugging in the appropriate operations.
We describe the algorithm with reference to Figure 1b that shows an example of execution. The algorithm starts
by computing the first graph G1[1] and then traverses the hierarchy from left to right by computing a new adjacent
graph at each step: the next graph in the same row or the graph with the same index in the row above, depending
on the result of the test operation on the current graph. We call this traversal process a walk. The walk goes up in
the hierarchy if the test is negative, otherwise it moves forward in the same row. If the walk hits the right side of

Calcul de paramètres minimaux dans les graphes dynamiques.

the hierarchy and the last visited graph G k[δ− k+ 1] in the row G k satisfies the test operation, then it terminates
and outputs k. Otherwise, it terminates and outputs k+1. If the walk reaches G1[δ] and the test is negative, then
the algorithm outputs 0 indicating that the dynamic graph G does not have the property.

Graphs computation: Intermediate graphs called ladders (in grey in Figure 1b) are computed by composing
incrementally a graph G(i, j) with the adjacent bottom graph G(i−1,i−1) (left ladder) or G(j+1, j+1) (right ladder),
providing useful shortcuts in the construction. Then, the graphs resulting from the walk (red/dark graphs in Figure
1b) are computed as follows: When the walk moves one step forward in the same row, the next graph is computed
from the right and the left ladders (e.g. G4[6] = G2[6] ◦G2[8]) or from the ladder to which it belongs and an
adjacent bottom graph (e.g. G4[4] = G1[4]◦G3[5]). If the walk climbs a step (moves up) in the hierarchy, then the
next graph is computed from the preceding graph in the walk and the next graph in G1 (instead of using ladders).
Although this computation does not require the use of ladders, the process continues to build a right ladder as the
walk goes up for later use (if the walk later moves forward on the same row).

As it turns out, this general algorithm for minimization problems has the following convenient property which
is crucial for correctness of two of the problems described in Section 4.

Lemma 1 (Disjoint sequences property). If the algorithm performs a composition of two graphs G(i, j) and G(i′, j′),
then the corresponding sequences {Gi,Gi+1, . . . ,G j} and {G′i,Gi′+1, . . . ,G j′} are disjoint and consecutive. That
is, in any execution, G(i, j′) = G(i, j) ◦G(i′, j′)⇒ j = i′−1.

Theorem 1. This minimization algorithm has a cost of Θ(δ) composition operations and test operations (see [2]
for proof).

4 Illustration of the Framework
We illustrate the general framework by solving three minimization problems: BOUNDED-REALIZATION-OF-
THE-FOOTPRINT, TEMPORAL-DIAMETER, and ROUND-TRIP-TEMPORAL-DIAMETER. We define each problem
within the framework and provide the corresponding operations for composition and test. The reader is referred to
Chapter 4 of [4] for more details.

4.1 Bounded Realization of the Footprint
The footprint G of a dynamic graph G is the graph that contains all the edges that appear at least once, that is
∪{G1,G2, ...,Gδ}. We consider the problem of finding the smallest duration b such that in any window of length
b, all edges of G have appeared at least once (BOUNDED-REALIZATION-OF-THE-FOOTPRINT).
Composition and test operations: Finding these operations is straightforward. By taking the union of two graphs
as composition operation (starting with {G(i,i)}= {Gi}), it follows that the lowest row G k such that all graphs equal
the footprint indicate, by definition, the answer k. So, the composition operation is union and the test operation is
equality to footprint (with labelled nodes, not to be mistaken with isomorphism).

4.2 Temporal Diameter
A dynamic graph might never be connected at one time, and yet offer a form of connectivity over time and space
based on journeys (or temporal paths). A journey is a sequence of adjacent edges which are available at increasing
dates (with possible intermediate pauses). This concept has different definitions depending on the model. In a
sequence of graphs, one may consider that at most one hop can be performed in each Gi for each journey. Other
definitions are possible, but we consider this one here. Then, the temporal diameter of G at time t is the smallest
duration d such that for all nodes u and v, u can reach v through a journey before time t + d. We consider the
problem of finding the smallest duration d such that the temporal diameter of G is less or equal to d at any time
t < δ−d (problem TEMPORAL-DIAMETER). In other words, any subsequence of length d is temporally connected.
Several solutions exist to this or similar problems (e.g. [3, 5]), which operate at a lower level of abstraction. Here,
we show how the problem fits elegantly within the proposed framework.

The hierarchy built here is one of transitive closures of journeys. Therefore, each G(i, j) is a directed graph such
that an edge (u,v) exists if and only if u can reach v in G by starting after (or at) i and arriving before (or at) j. As
a special case, G(i,i) is the directed (symmetric) version of Gi. Then, the answer is the smallest k such that every
graph in row G k is a complete graph (i.e. every subsequence of length k is temporally connected).

Arnaud Casteigts, Ralf Klasing, Yessin M. Neggaz et Joseph G. Peters

cat

G(i, j) G(i′, j′)

=

G(i, j)∪G(i′, j′)

∪
G(i, j)→(i′, j′)

=

Figure 2: Example of concatenation of transitive closures. Edges in G(i, j)→(i′, j′) are added after the union.

Composition and test operations: The hierarchy is built through a concatenation of transitive closures,
cat(G(i, j),G(i′, j′)), with the restriction that i′ = j+1 (Lemma 1), defined as follows. First make the union of both
graphs, then add an additional edge (u,v) if there exists a node w such that (u,w)∈E(G(i, j)) and (w,v)∈E(G(i′, j′)).
See Figure 2 for an example. Then, the test operation consists of verifying if the graph is complete.

4.3 Round-trip Temporal Diameter
We address here the more complex property of round-trip temporal connectivity defined by the existence of a
back-and-forth journey from any node to all other nodes. The round-trip temporal diameter of a graph G at time
t is the smallest duration d such that, between time t and t + d, there is a journey J (u,v) from any node u in the
graph to any other node v and a journey J ′(v,u) from v to u which starts after the arrival of the journey J (u,v).
We consider the problem ROUND-TRIP-TEMPORAL-DIAMETER of finding the smallest d such that the round-trip
temporal diameter of G is less or equal to d at any time t ≤ δ−d.

Composition operation: The composition operation in our case is the concatenation of round trip transitive
closures rtcat(G(i, j),G(i′, j′)) with the restriction that i′ = j + 1 (Lemma 1), that computes the round trip tran-
sitive closure of journeys G(i, j′) i.e. (u,v) ∈ G(i, j′) iff at least one journey from u to v exists in the sequence
{Gi,Gi+1, ...,G j′}, and edges {(u,v) ∈ E(G(i, j′))} are labelled with two dates: departure(u,v,G(i, j′)) the latest
departure of any journey in the sequence, and arrival(u,v,G(i, j′)) the earliest arrival of any journey in the se-
quence. Note that labels on the same edge may or may not be departure and arrival of the same journey and that
departure(u,v,G(i,i)) = i and arrival(u,v,G(i,i)) = i.

The composition is as follows. First, compute the graph G∪	 = G(i, j) ∪	 G(i′, j′) which is the union graph
G(i, j)∪G(i′, j′) with arrival(u,v,G∪) = min(arrival(u,v,G(i, j)),arrival(u,v,G(i′, j′))) and departure(u,v,G∪) =
max(departure(u,v,G(i, j)),departure(u,v,G(i′, j′)) if (u,v) ∈ G(i, j) ∩G(i′, j′). Otherwise, the edge is added with
the initial dates. A graph of extra-edges G(i, j)→(i′, j′) is then computed as follows: (u,v) ∈ G(i, j)→(i′, j′) iff a set
of nodes extra = {w : (u,w) ∈ E(G(i, j)) and (w,v) ∈ E(G(i′, j′))} exists (not empty). arrival(u,v,G(i, j)→(i′, j′)) =
min{arrival(w,v,G(i, j))} and departure(u,v,G(i, j)→(i′, j′)) = max{departure(u,w,G(i, j))} : w ∈ extra. Finally, the
round trip transitive closure rtcat(G(i, j),G(i′, j′)) = G∪	∪	 G(i, j)→(i′, j′) (see Figure 3).

Test operation: The test operation used for this problem is the round trip completeness test, that is, test if the
graph is complete and if, for all edges {(u,v)} in the graph, arrival(u,v,G(i, j))≤ departure(v,u,G(i, j)).

rtcat

G(1,5)

3,
5

2,4

2,4

G(6,7)

7,6

7,
7 6,

7

6,6

6
,7

7,
7 =

G(1,5)∪	 G(6,7)

7,6
2,4

7,
7 3,

7

6,6

2
,7

7,
7 ∪	

G(1,5)→(6,7)

6,
2

6,5

6,4

7
,4

6,
5 =

G(1,7)

7,6
2,4

6,
7

3,
7

2
,7

7,
7

6,6
6,5

6,4

7,4

6,
5

Figure 3: Example of round trip transitive closures concatenation. Labels arr and dep on an edge u
arr, dep−→ v

(shifted toward the tip) represent respectively arrival(u,v,G(i, j)) and departure(u,v,G(i, j)).

References
[1] A. Casteigts, P. Flocchini, W. Quattrociocchi, N. Santoro. Time-varying graphs and dynamic networks. IJPEDS,

27(5):387–408, 2012.
[2] A. Casteigts, R. Klasing, Y. M. Neggaz, J. G. Peters. Tester efficacement la T-intervalle connexité dans les graphes

dynamiques. CIAC 2015 (English) and ALGOTEL 2015 (French).
[3] C. Huyghues-Despointes, B.-M. Bui-Xuan, C. Magnien. Forte ∆-connexité dans les flots de liens. ALGOTEL 2016.
[4] Y. M. Neggaz. Automatic Classification of Dynamic Graphs. Ph.D. Thesis, University of Bordeaux, October 2016.
[5] J. Whitbeck, M. Dias de Amorim, V. Conan, J.-L. Guillaume. Temporal reachability graphs. MOBICOM 2012.

