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Sufficient condition for the application of the KAM theorem to the plane planetary three-body problem

Arnold proved that the KAM theorem applies to the plane planetary three-body problem, yet Hénon gave a necessary condition emanating from the proof: the ratio of masses between the star and the planets has to be less than 10 -300 . We derive a sufficient condition based on the computation of the analyticity widths and the size of the perturbation of this system made by Castan, and applying quantitative theorem to put the Hamiltonian under a suitable form to apply the KAM theorem. We prove that there exists quasi-periodic motion for a ratio of masses close to 10 -85 . × b 0,0,n + b 2,0,n e 2 1 + b 0,2,n e 2 2 + b 1,1,n e 1 e 2 cos g + b 4,0,n e 4 1 + b 0,4,n e 4 2 + b 2,2,0,n e 2 1 e 2 2 + b 2,2,2,n e 2 1 e 2 2 cos 2 g + b 3,1,n e 3 1 e 2 cos g + b 1,3,n e 1 e 3 2 cos g + o((e 1 , e 2 ) 6 )

The stability of the solar system has fascinated physicists and mathematicians for centuries. Since the work of Newton [START_REF] Newton | The Mathematical Principles of Natural Philosophy[END_REF], the motion of the two-body problem are completely known given the initial configuration of the system. For more bodies, the difficulties of the computations led to the development of the perturbation theory. The study of the secular Hamiltonian by, among others, Lagrange [START_REF] De Lagrange | Oeuvres de Lagrange. Number v. 6 in Oeuvres de Lagrange[END_REF] and Laplace [START_REF] De | Laplace and Académie des sciences (France)[END_REF], gave an approximation on the motion of the planets, although not answering the question of stability. The crucial work of Poincaré [START_REF] Poincaré | Les méthodes nouvelles de la mécanique céleste[END_REF][START_REF] Poincaré | Les méthodes nouvelles de la mécanique céleste[END_REF][START_REF] Poincaré | Les méthodes nouvelles de la mécanique céleste. Tome III. Les Grands Classiques Gauthier-Villars[END_REF][START_REF] Poincaré | Leçons de mécanique céleste: professées à la Sorbonne[END_REF] gave a better understanding of the N-body problem, leading to the development of the chaos theory. It is Arnold in 1963 [START_REF] Arnold | Small denominators and problems of stability of motion in classical and celestial mechanics[END_REF] that gave a first positive result considering this matter, by applying Kolmogorov's theorem [START_REF] Kolmogorov | On conservation of conditionally periodic motions for a small change in Hamilton's function[END_REF] to the plane planetary three-body problem. He showed that under some smallness condition on the ratio of masses between the planets and the star, there existed quasi-periodic motion for this system. Although it was a huge step forward in the stability of stellar systems, Hénon [START_REF] Hénon | Letter to Arnold[END_REF] gave a necessary condition for the theorem to apply: the ratio of masses had to be at least 10 -300 . Since then a lot of improvements has been done: for instance, computer assisted methods, done by Celletti, Chierchia, Giorgilli, Locatelli [START_REF] Celletti | On the stability of realistic three-body problems[END_REF][START_REF] Celletti | Kam stability for a three-body problem of the solar system[END_REF][START_REF] Celletti | Rigorous estimates for a computer-assisted KAM theory[END_REF][START_REF] Locatelli | Invariant tori in the Sun-Jupiter-Saturn system[END_REF] shows that it is possible to apply Kolmogorov's theorem to problem close to the three-body problem. It was as well shown that it could be extended to the N-body problem by Herman and Féjoz [START_REF] Féjoz | Démonstration du 'théorème d'Arnold' sur la stabilité du système planétaire (d'après Herman)[END_REF], and then by Chierchia and Pinzari [START_REF] Chierchia | The planetary n-body problem: symplectic foliation, reductions and invariant tori[END_REF]. The aim of this paper is to give a quantitative sufficient condition on the ratio of masses so that the KAM theorem applies to the plane planetary three-body problem. To obtain such a condition, several elements are necessary. First, it is essential to have a bound on the norm of the perturbation on a complex neighborhood of the initial condition. This work was first done by Niederman [START_REF] Niederman | Stability over exponentially long times in the planetary problem[END_REF], and reworked by Castan [START_REF] Castan | Complex singularities in the plane planetary three-body problem[END_REF]. We will use the last paper mentioned to obtain this value. Secondly, we require a quantitative KAM theorem to give a sufficient condition, which is done by Castan in [START_REF] Castan | Quantitative KAM Theorem[END_REF]. In this paper, we put our interest in the form of the Hamiltonian, which needs to be reworked so as to verify the KAM theorem hypotheses. First we compute the secular Hamiltonian depending only in the action variables and which is non-degenerate. It is necessary to keep track of the loss of analyticity widths while computing it. Then, we focus perturbation and the description of its different components, bounding each of these terms in an explicit way to be able to verify the hypotheses of the KAM theorem. We require as well the computation of the width of analyticity of the frequency map, which is related to the torsion and the non-degeneracy of the secular Hamiltonian. With the quantities obtained, one can then aim at applying the KAM theorem to the plane planetary three body problem. We hence give our result, making explicit all the constants we use: a sufficient condition on the KAM theorem to apply is that the ratio of masses between the planets and the star is 10 -85 . To obtain this value, several choices are necessary and need to be discussed, such as the initial geometry of the system. We discuss as well the extension of this result when releasing some constraints in our work. Finally, we give clues so as to improve the scheme, and the sufficient conditions. Indeed, the result we give is not optimal, several improvements can be done, and we give the most important of them, so as to guide the reflection on an amelioration of the sufficient condition.

The secular part of the perturbation expressed in eccentricities

In this section, we compute the unperturbed Hamiltonian to which we are going to apply the KAM theorem. First, we expand the perturbation to obtain a non-degenerate Hamiltonian. Then we use a Birkhoff normal form theorem so as to obtain a secular Hamiltonian depending only in the actions.

Expression in term of the true anomaly

In Jacobi coordinates, the Hamiltonian of the plane planetary three-body problem takes the form (see [START_REF] Féjoz | Global secular dynamics in the planar three-body problem[END_REF][START_REF] Castan | Complex singularities in the plane planetary three-body problem[END_REF]):

H(P 1 , P 2 , Q 1 , P 2 ) = H Kep (P 1 , P 2 , Q 1 , P 2 ) + H pert (P 1 , P 2 , Q 1 , P 2 ) (1) 
             H Kep (P 1 , P 2 , Q 1 , P 2 ) = |P 1 | 2 2µ 1 - G grav µ 1 M 1 |Q 1 | + |P 2 | 2 2µ 2 - G grav µ 2 M 2 |Q 2 | H pert (P 1 , P 2 , Q 1 , Q 2 ) = H pert (P 1 , P 2 , Q 1 , Q 2 ) = G grav µ 1 m 2 |Q 2 | n≥2 σ n P n (cos(S)) |Q 1 | |Q 2 | n , (2) 
with σ n = σ n-1 0 + (-1) n σ n-1
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, and where P n (cos(S)) is the n th Legendre polynomial, S being the oriented angle between Q 1 and Q 2 . To compute the normal form of the secular part of the Hamiltonian, we expand the perturbation up to the order 4 in eccentricities, and we integrate it among the fast angles, which are the mean longitudes. Different classic changes of variables on the angles are necessary for this integration, see [START_REF] De Lagrange | Oeuvres de Lagrange. Number v. 6 in Oeuvres de Lagrange[END_REF][START_REF] De | Laplace and Académie des sciences (France)[END_REF]. Inspiring ourselves from the work of Laskar and Robutel [START_REF] Laskar | Stability of the planetary three-body problem. I. Expansion of the planetary Hamiltonian[END_REF], the expansion up to the order 4 in eccentricities leads to a formula of the type 

Hpert (Λ 1 , Λ 2 , e 1 , e 2 , g 1 , g 2 ) = 1 4π 2 T 2 H pert (Λ 1 , Λ 2 , λ 1 , λ 2 ,
M n = G 2 grav σ n (m 0 + m 1 ) 3n+1 (m 0 + m 1 + m 2 ) n+1 m 2n+3 2 (m 0 m 1 ) 2n-1 ,
where T = R/(2πZ). To simplify the notation, let us write c i,j = n≥2 M n

Λ 2n 1 Λ 2(n+1) 2
× b i,j,n . We have: Hpert =c 0,0 + c 2,0 e 2 1 + c 0,2 e 2 2 + c 1,1 e 1 e 2 cos g+ c 4,0 e 4 1 + c 0,4 e 4 2 + c 2,2,0 e 2 1 e 2 2 + c 2,2,2 e 2 1 e 2 2 cos 2 g + c 3,1 e 3 1 e 2 cos g + c 1,3 e 1 e 3 2 cos g + o((e 1 , e 2 ) 6 ). The exact expression of the b i,j,n is known, and are gathered in appendix D.1. Hence, the series c i,j are known, they are hypergeometric function of the Λ i . To obtain the formula in Poincaré coordinates, we need further changes of variables. Recall the formulas

ξ i = 2Λ i 1 -1 -e 2 i cos(-g i ), η i = 2Λ i 1 -1 -e 2 i
sin(-g i ).

Let

Γ i = ξ 2 i +η 2 i 2
for i = 1, 2, and Γ 0 = ξ1ξ2+η1η2

2

. The average of the perturbation takes the form 2 ), where the coefficients d i,j,k depend on the c i,j . Their expression is given in appendix D.2, as well as their expansion up to the second order in Λ 1 /Λ 2 in appendix D.3. In the case the ratio of the semi-major axes is small, the main term of each of these formulas will be a lot larger than the remainder. As well the smaller is this ratio, the smaller will be the terms involving Γ 0 , and therefore the frequency linked to g 2 -g 1 will have less impact on the motion.

Hpert (Λ 1 , Λ 2 , Γ 0 , Γ 1 , Γ 2 ) =d 0,0,0 + d 1,0,0 Γ 1 + d 0,1,0 Γ 2 + d 0,0,1 Γ 0 + d 2,0,0 Γ 2 1 + d 0,2,0 Γ 2 2 + d 0,0,2 Γ 2 0 + d 1,1,0 Γ 1 Γ 2 + d 1,0,1 Γ 1 Γ 0 + d 0,1,1 Γ 2 Γ 0 + o((Γ)

Secular Hamiltonian under normal form

In this section, we remove the dependency in Γ 0 of the averaged part of the perturbation up to the order 2 in the variables Γ i . It requires two steps: first, we perform a rotation so as to remove the linear dependency in Γ 0 ; secondly we use a Birkhoff Normal Form (BNF) theorem for the quadratic terms.

Removing the linear dependency

Call

H 2,P (ξ, η) = d 0,0,0 +d 1,0,0 Γ 1 + d 0,1,0 Γ 2 + d 0,0,1 Γ 0
We use the lemma of Arnold [START_REF] Arnold | Small denominators and problems of stability of motion in classical and celestial mechanics[END_REF]: Lemma 1. Let R ϕ be the rotation of angle -ϕ on the couple of coordinates (ξ 1 , ξ 2 ) and (η 1 , η 2 ), i.e.:

ξ 1 = ξ 1 cos ϕ + ξ 2 sin ϕ ξ 2 = -ξ 1 sin ϕ + ξ 2 cos ϕ η 1 = η 1 cos ϕ + η 2 sin ϕ η 2 = -η 1 sin ϕ + η 2 cos ϕ
This transformation is symplectic, and if ϕ satisfies the equation (d 1,0,0 -d 0,1,0 ) sin 2ϕ + d 0,0,1 cos 2ϕ = 0,then one can write H 2,D (ξ , η

) := H 2,P • R ϕ (ξ , η ) = d 0,0,0 + d 1,0,0 Γ 1 + d 0,1,0 Γ 2 , with Γ i = (ξ 2 i + η 2 i )/2 and          d 1,0,0 = d 1,0,0 + d 0,1,0 2 + d 1,0,0 -d 0,1,0 2 cos(2ϕ) - d 0,0,1 2 sin(2ϕ) d 0,1,0 = d 1,0,0 + d 0,1,0 2 - d 1,0,0 -d 0,1,0 2 cos(2ϕ) + d 0,0,1 2 sin(2ϕ) 
Proof. The proof can be found in [START_REF] Arnold | Small denominators and problems of stability of motion in classical and celestial mechanics[END_REF], and is left as an exercise for the reader.

In our case, we have

d 1,0,0 -d 0,1,0 = d 1,0,0 (1 -Λ 1 /Λ 2 )
. Under the assumption Λ 1 < Λ 2 , this difference is strictly positive; d 0,0,1 is strictly negative (recall that b 1,1,2p+1 < 0. The part of the perturbation we are interested in is the expansion in the Γ i up to the order two. Call Hpert = H Λ 4,P + o((Γ) 2 ). We have the following lemma:

Lemma 2. Under the assumption Λ 1 < Λ 2 , call υ = - d 0,1,0 -d 1,0,0 d 0,0,1 + 1 + d 0,1,0 -d 1,0,0 d 0,0,1 2 . ( 3 
)
Let ϕ and Γ i be as defined in the previous lemma 1 we have:

H Λ 4,D (ξ , η ) := H Λ 4,P • R ϕ (ξ , η ) =d 0,0,0 + d 1,0,0 Γ 1 + d 0,1,0 Γ 2 + d 2,0,0 Γ 2 1 + d 0,2,0 Γ 2 2 + (4) d 0,0,2 Γ 2 0 + d 1,1,0 Γ 1 Γ 2 + d 1,0,1 Γ 1 Γ 0 + d 0,1,1 Γ 2 Γ 0 .
where, for 0 ≤ i + j + k ≤ 2, the d i,j,k are defined as follows:

d 0,0,0 = d 0,0,0 , d 1,0,0 = 1 (1 + υ 2 ) d 1,0,0 + υ 2 d 0,1,0 -υd 0,0,1 , d 0,1,0 = 1 (1 + υ 2 ) υ 2 d 1,0,0 + d 0,1,0 + υd 0,0,1 , d 2,0,0 = 1 (1 + υ 2 ) 2 d 2,0,0 + υ 4 d 0,2,0 + υ 2 d 0,0,2 + υ 2 d 1,1,0 -υd 1,0,1 -υ 3 d 0,1,1 , d 0,2,0 = 1 (1 + υ 2 ) 2 υ 4 d 2,0,0 + d 0,2,0 + υ 2 d 0,0,2 + υ 2 d 1,1,0 + υ 3 d 1,0,1 + υd 0,1,1 , d 0,0,2 = 1 (1 + υ 2 ) 2 4υ 2 d 2,0,0 + 4υ 2 d 0,2,0 + (1 -υ 2 ) 2 d 0,0,2 -4υ 2 d 1,1,0 + 2υ(1 -υ 2 )d 1,0,1 -2υ(1 -υ 2 )d 0,1,1 , d 1,1,0 = 1 (1 + υ 2 ) 2 2υ 2 d 2,0,0 + 2υ 2 d 0,2,0 -2υ 2 d 0,0,2 + (1 + υ 4 )d 1,1,0 + υ(1 -υ 2 )d 1,0,1 -υ(1 -υ 2 )d 0,1,1 , d 1,0,1 = 1 (1 + υ 2 ) 2 4υd 2,0,0 -4υ 3 d 0,2,0 -2υ(1 -υ 2 )d 0,0,2 -2υ(1 -υ 2 )d 1,1,0 + (1 -3υ 2 )d 1,0,1 + (3υ 2 -υ 4 )d 0,1,1 , d 0,1,1 = 1 (1 + υ 2 ) 2 4υ 3 d 2,0,0 -4υd 0,2,0 + 2υ(1 -υ 2 )d 0,0,2 + 2υ(1 -υ 2 )d 1,1,0 + (3υ 2 -υ 4 )d 1,0,1 + (1 -3υ 2 )d 0,1,1 .
Proof. Using the relation of the previous lemma, one can show that tan(ϕ) = υ. One can then express the Γ i using Γ i and υ. Injecting these formulas in the expression of H Λ 4,P , one obtains the previous values for the d i,j,k . The details and computations are left to the reader.

Secular Hamiltonian under BNF

In this section, we put the Hamiltonian under normal form up to the order 5 in eccentricities. We start by stating a quantitative BNF theorem, and we then apply it to our problem.

BNF theorem Consider an analytic Hamiltonian that has a elliptic fixed point at the origin, we want to put it under normal form at some order with the help of a transformation for which every constant is explicit. There exists already lots of references about this operation, for instance see [START_REF] Siegel | Lectures on celestial mechanics[END_REF][START_REF] Kappeler | [END_REF][START_REF] Hofer | Symplectic invariants and Hamiltonian dynamics[END_REF]. We follow here the the work of Bambusi [START_REF] Bambusi | An introduction to birkhoff normal form[END_REF], making explicit the loss of analyticity to obtain the normal form. Let n ≥ 1 and a Hamiltonian H : D ⊂ R 2n → R, such that 0 ∈ D and the point (p, q) = (0, 0) is an equilibrium point of the Hamiltonian equations associated to H. The Hamiltonian can be written:

H : D ⊂ (R n × R n ) -→ R (p, q) -→ H 2 (p, q) + H 3 (p, q) + ... , (5) 
where H m represents all the terms of degree m in p and q, H 2 being for some ω i ∈ R:

H 2 (p, q) = n i=1 ω i p 2 i + q 2 i 2 (6) 
Observe that we are considering an analytic Hamiltonian defined on subsets of R n , yet the results can be extended straightforwardly to analytic Hamiltonian defined on some subset of C n . Before stating the theorem, we need to give some definitions. Let

x i = 1 √ 2 (p i + ıq i ), x i+n = 1 √ 2 (q i + ıp i )
We then have

H 2 (x) = 1 ı n i=1 ω i (x i x i+n ).
For the terms of higher order, define

A m,n = (i 1 , ...i 2n ) ∈ N 2n | i 1 + ... + i 2n = m , (7) 
B m,n = i = (i 1 , ..., i 2n ) ∈ N 2n | i ∈ A m,n , (i 1 , ..., i n ) = (i n+1 , ...i 2n ) , (8) 
and for i ∈ A m,n , we call x i = x i1 1 ...x i2n 2n . A Hamiltonian is under Birkhoff normal form of order M > 2 if and only if

H(x) = H 2 (x) + M m=3   i∈Am,n\Bm,n ω m,i x i   + m>M   i∈Am,n ω m,i x i   .

Define finally:

ω, i = n j=1 ω j (i j+n -i j ). ( 9 
) Definition 1. A vector ω ∈ R n is called non-resonant of order k ∈ N \ {0} if for every j ∈ Z n with 0 < |j| 1 = n i=1 |j i | ≤ k, we have ω, j = 0. ω is called non-resonant if it is non-resonant of order k for every k ∈ N \ {0}. Theorem 1. Let H = H 2 + H ⊥ + H P be a Hamiltonian analytic on B 0 = B(0, r 0 ), with H ⊥ (x) = ∞ m=K i∈Am,n\Bm,n ω m,i x i for K ≥ 3, and H P (x) = ∞ m=K i∈Bm,n ω m,i x i . Assume ω is non-resonant of order M with K < M < 2K -2. Let r f = r 0 - r K-1 0 1 -r 0 × C M +2n-1 M × sup K≤m≤M sup i∈Bm,n ω m,i ω, i (10) 
If r f > 0 (therefore for r 0 sufficiently small), then there exists an analytic symplectic map τ such that:

1. τ : B(0, r f ) → B(0, r 0 ), 2. H • τ is under BNF up to the order M . Proof. Let P K (x) = i∈B K,n β K,i x i , where β K,i = - ωm,i ω,i .
Using the non-resonance condition, the β K,i are well-defined, and P K is analytic on C 2n . We call X P K the Hamiltonian vector field associated to P K , and τ K its time-one map. Using the Poisson bracket, it is straightforward to see that

{P K , H 2 } = i∈B K,n ω K,i x i .
Hence, applying this map let the Hamiltonian be under normal form up to the order K. Moreover, observe that the degree of the terms {P K , {P K , H 2 }} is equal to 2K -2. Hence, applying recursively maps τ K ,...,τ 2K-3 leads to a Hamiltonian that is under BNF up to the order 2K -3. It remains to determine the loss of analyticity related to this operation. Consider the norm ||x|| = sup i∈ 1,2n |x i |, let P m be a polynomial of the previous form with K < m < 2K -2, and define the following norm associated to the vector field X Pi :

||X Pm || = inf{C > 0 : for all i ∈ (1, 2n), ∀x ∈ R 2n , |X P,i (x)| ≤ C||x|| m-1 } (11) 
Using the fact that ||X Pm || ≤ i∈Am,n |β m,i |, and the fact that Card(A m,n ) = (m+2n-1)! m!(2n-1)! , we obtain a bound on the norm of X Pm . Now define:

B R = {x ∈ R n , ||x|| < R}; t = t(R, δ) = inf x∈B R (sup {t > 0 : φ s (x) ∈ B R+δ , ∀|s| < t }) .
The latter definition is called the minimum escape time t of φ t from B R+δ relatively to B R . Lemma 3. Let P be an homogeneous polynomial of order k ≥ 1, to which we associate the vector field X P . Let φ t X = φ t be the flow associated to this vector field, i.e. dφ t dt (x) = X P (φ t (x)) and φ 0 = Id. The following inequality is verified:

t ≥ δ ||X P ||(R + δ) m-1 . ( 12 
)
Equivalently, for all |t| ≤ t, we have

||φ t (x) -x|| ≤ |t| × ||X P ||(R + δ) m-1 (13) 
The proof of this lemma can be found in [START_REF] Bambusi | An introduction to birkhoff normal form[END_REF]. At step m of the recursion, the radius of the ball on which

H • τ K • ... • τ m is called r m . Let r m+1 = r m - (m + 2n -1)! m!(2n -1)! sup i∈Bm,n ω m,i ω, i r m m .
We can use the previous lemma with δ = r m -r m+1 , and R + δ = r m . We get t ≥ 1, and therefore we can consider the time-one map τ m+1 : B(0, r m+1 ) → B(0, r m ). Using the fact that r m < r 0 , and recursively computing the value of r m , we obtain the estimate of the theorem.

Application to our Hamiltonian We now apply the previous theorem 1 to the Hamiltonian H Λ 4,D so as to put it under normal form up to the order 2 in the Γ i (or up to the order 5 in eccentricities. As in the previous paragraph, we define

(x 1 , x 2 , x 3 , x 4 ) ∈ C 4 with (p i , q i ) = (ξ i , η i ). Call f : R 4 → C 4 , (ξ 1 , η 1 , ξ 2 , η 2 ) → (x 1 , x 2 , x 3 , x 4 ).
In these variables, the expression of H Λ 4,D is

H Λ 4,D • f -1 = d 0,0,0 -ıd 1,0,0 x 1 x 3 -ıd 0,1,0 x 2 x 4 -d 2,0,0 x 2 1 x 2 3 + d 0,2,0 x 2 2 x 2 4 -(d 1,1,0 + 2d 0,0,2 )x 1 x 2 x 3 x 4 -d 0,0,2 x 2 2 x 2 3 -d 0,0,2 x 2 1 x 2 4 -d 1,0,1 x 1 x 2 x 2 3 -d 1,0,1 x 2 1 x 3 x 4 -d 0,1,1 x 2 2 x 3 x 4 -d 0,1,1 x 1 x 2 x 2 4 . ( 14 
)
The terms of the first line will constitute the BNF of our Hamiltonian, those of the second line being the one that can be removed by the transformation. We remove the wanted terms using a polynomial P of order 4 in the x i , and with coefficient d j,k,l / d 1 , i for a removable term d j,k,l . In our case, those are:

i ∈ B 4,2 d 1 , i Coefficient to remove (0, 2, 2, 0) 2(d 1,0,0 -d 0,1,0 ) d 0,0,2 (2, 0, 0, 2) -2(d 1,0,0 -d 0,1,0 ) d 0,0,2 (1, 1, 2, 0) (d 1,0,0 -d 0,1,0 ) d 1,0,1 (2, 0, 1, 1) -(d 1,0,0 -d 0,1,0 ) d 1,0,1 (0, 2, 1, 1) (d 1,0,0 -d 0,1,0 ) d 0,1,1 (1, 1, 0, 2) -(d 1,0,0 -d 0,1,0 ) d 0,1,1
To obtain the norm of the polynomial P , we can see on the table that there are only three coefficient to consider. Define

α = max 1 2 d 0,0,2 d 1,0,0 -d 0,1,0 , d 1,0,1 d 1,0,0 -d 0,1,0 , d 0,1,1 d 1,0,0 -d 0,1,0 . (15) 
To make explicit the norm of the transformation, we need the domain on which the x are define. We assume first that the variables (ξ i , η i ) are real and that for i = 1, 2, we have

|ξ i + ıη i | < ρ. Hence, for i = 1, 2, 3, 4, we have |x i | = ρ/ √ 2 and ||x|| < ρ/ √ 2.
We only apply one transformation, and we need to remove 6 terms, therefore we let

r f = ρ √ 2 1 -12ρ 2 α .
If r f > 0, then there exists an analytic transformation τ :

B(0, r f ) → B(0, ρ/ √ 2), such that H Λ 4,D • f -1
• τ is under normal form to the order 5 in the x i . To simplify the calculations, we can instead consider the assumption:

ρ ≤ 1 √ 24α . (16) 
In this case, we can take r f = ρ 2 , we will have lost half of the size of our initial set after the operation. Under this assumption, the total transformation we are interested in is f -1 • τ • f , that goes from the set of (ξ 1 , η 1 , ξ 2 , η 2 ) where |ξ i + ıη i | < ρ/2 into the set of variables (ξ 1 , η 1 , ξ 2 , η 2 ) where |ξ i + ıη i | < ρ.

Action-angle coordinates for the secular Hamiltonian

To be able to apply the KAM theorem developed in [START_REF] Castan | Quantitative KAM Theorem[END_REF], it is necessary to consider the secular Hamiltonian in action-angle variables. We use the classical polar change of coordinates to obtain such variables. In the next section, we will describe precisely the sets of definitions for each variables. As for now, only recall that this transformation is not well-defined close to zero. Let

ψ : (I 3 , I 4 , θ 3 , θ 4 ) → (ξ 1 , η 1 , ξ 2 , η 2 ) ξ i = 2I i+2 cos(θ i+2 ) η i = 2I i+2 sin(θ i+2 )
With this last function, we finally have a secular Hamiltonian in action-angle coordinates, for which we can apply the KAM theorem after computing its analyticity widths and the norm of the perturbation. This Hamiltonian is

H = H Kep + H Λ 4,D • ∆, ∆ = R ϕ • f -1 • τ • f • ψ.
2 Loss of analyticity widths related to the secular Hamiltonian

While computing the secular Hamiltonian, we needed to consider some transformations on the initial Hamiltonian. We want to determine the loss of analyticity related to these transformations. In [START_REF] Castan | Complex singularities in the plane planetary three-body problem[END_REF], Castan gives a bound on the norm of the perturbation in the plane planetary three-body problem on the set

D Λ0,r,ρ,ρ ,λ max = {( Λ1 , Λ2 , λ1 , λ2 , ξ1 , ξ2 , η1 , η2 ) ∈ C 2 × T 2 C × C 4 : for i=1,2: Λi ∈ B(Λ 0,i , r), | λi | < λ max , ∃(ξ 0,i , η 0,i ) ∈ B(0, ρ) s.t. ξi ∈ B(ξ 0,i , ρ ), ηi ∈ B(η 0,i , ρ )}, (17) 
for Λ 0 ∈ (R ++ ) 2 , 0 < r < min i=1,2 Λ 0,i , 0 < ρ < min i=1,2 ( 2(Λ 0,i -r)), λ max > 0 and 0 < ρ < min i=1,2 ( Λ 0,i -r) -ρ/ √ 2, and where T C = T × C. The aim of this section is to find a set D ⊂ C 4 × T 4

C

such that the complex extension ∆ of ∆ verifies ∆(D) ⊂ D Λ0,r,ρ,ρ ,λ max for fixed analyticity widths. Define, for 0 < m < M , the sets

B Λ0 (r 1 , s 1 ) = ( Λ, λ) ∈ C 2 × T 2 C , max j∈ 1,2 | Λj -Λ 0,j | < r 1 , max j∈ 1,2 | λj | < s 1 , (18) 
D pol = (I 3 , I 4 , θ 3 , θ 4 ) ∈ R 2 × T 2 , 0 < m < I 3 , I 4 < M , (19) 
Dpol,r2,s2 = ( Ĩ3 , Ĩ4 , θ3 , θ4 ) ∈ C 2 × T 2 C , ∃ l ∈ R, (I 3 , I 4 , θ 3 , θ 4 ) ∈ D pol : Ĩi ∈ B(I i , r), θi -θ i = ıl, |l| < s . (20) 
The second set is a real set for the action-angle coordinates related to the variables (ξ 1 , η 1 , ξ 2 , η 2 ), the other sets are complex extensions of real sets. We are looking for a set D of the form B Λ0 (r 1 , s 1 ) × Dpol,r2,s2 , for some values of r 1 , r 2 , s 1 , s 2 .

From polar coordinates to Cartesian coordinates

We are interested in the complex extension of the function ψ. In real coordinates, it is straightforward to see that ψ(D pol ) ⊂ B 2,2 (0, √ 2M ), where

B 2,2 (0, √ 2M ) = (ξ 1 , η 1 , ξ 2 , η 2 ) ∈ R 4 , for i = 1, 2, |ξ i + ıη i | < √ 2M .
Regarding the complex extension ψ of ψ, we want to characterize the image of Dpol,r2,s2 by this function, for some r 2 , s 2 > 0 with r 2 < m. Define

Dcart,ρ,ρ = (ξ 1 , η 1 , ξ 2 , η 2 ) ∈ C 4 : for i = 1, 2, ∃ ξ i,0 , η i,0 ∈ R, |ξ i,0 + ıη i,0 | < ρ, |ξ i -ξ i,0 |, |η i -η i,0 | < ρ . ( 21 
)
Lemma 4. ψ( Dpol,r2,s2 ) ⊂ Dcart,ρ,ρ , with

       ρ = √ 2M ρ = max r 2 2 √ 2m cosh s 2 + √ 2m(cosh s 2 -1), r 2 2 √ 2M cosh s 2 + √ 2M (cosh s 2 -1) (22) 
Proof. Let ( Ĩ3 , Ĩ4 , θ3 , θ4 ) ∈ Dpol,r,s , there exists

0 ≤ l 1 , l 2 < s, 0 ≤ α 3 , α 4 < r, (I 3 , I 4 , θ 3 , θ 4 ) ∈ D pol such that Ĩi = I i + α i exp(ıσ i ), and θi = θ i + ıl i . For i = 3, 4, let ξ i-2 = √ 2I i cos(θ i ) and η i-2 = √ 2I i sin(θ i ), we have: | ξi-2 -ξ i-2 | = 2I i + α i exp(ıσ i ) cos(θ i + ıl i ) -2I i cos(θ i ) ≤ 2I i + α i exp(ıσ i ) cos(θ i + ıl i ) -2I i cos(θ i + ıl i ) + 2I i cos(θ i + ıl i ) -2I i cos(θ i ) ≤ 2I i cosh l i α i exp(ıσ i ) 4I i + 2I i (cosh l i -1) < r 2 √ 2I i cosh s + 2I i (cosh s -1)
The result is the same for |η i-2 -η i-2 |, since converting the cosine to a sine does not affect the calculation.

BNF in complex coordinates

In this section, we want to determine the loss of analyticity related to the complex extension of the function

f -1 • τ • f defined in 1.2.2.
First, notice that the BNF theorem can be applied in the complex case, since the transformations we applied are real analytic. Moreover, the constants defined in theorem 1 are the same. Therefore, we can consider τ , f , f -1 the complex extensions of τ , f , f -1 . For the sake of simplicity, call κ = f -1 • τ • f . We will focus on the change of coordinates on the variables (ξ 1 , η 1 , ξ 2 , η 2 ) by first fixing the variables (Λ 1 , Λ 2 ), and then consider its lift on the whole set of variables.

Lemma 5. Let Λ 1 , Λ 2 > 0, 0 < m < M and ρ, ρ > 0. If ρ + 2ρ ≤ 2 √ 24α -1
, where α is defined in (15), then we have:

κ( Dcart,ρ,ρ ) ⊂ Dcart,3ρ+4ρ ,2ρ+5ρ . (23) 
Proof. First, the application f is clearly symplectic, and analytic on C 4 . It is straightforward to show that we have f ( Dcart,ρ,ρ ) ⊂ B(0, (ρ + 2ρ )/ √ 2) 4 . Under the assumption ρ + 2ρ ≤ 2 √ 24α -1 , we can apply the theorem 1: the transformation τ takes the set (B(0, r f )) 4 , where r f = (ρ + 2ρ )/ √ 2, and sends it into the set (B(0, r 0 )) 4 , where r 0 = √ 2(ρ + 2ρ ). From the BNF theorem, we also now that τ = Id + v, where ||v|| B(0,r0/2) < r 0 /2. In this case, the bound on v is so large that we will suffer a great loss of information. When we will apply f -1 , it is not clear what happened to the real variables ξ i,0 or η i,0 . Without being optimal, when computing f -1 , we have:

f -1 : B(0, √ 2(ρ + 2ρ )) → Dcart,3ρ+4ρ ,2ρ+5ρ .
Along the transformation κ, we lost information regarding the sets D cart . Indeed, the width ρ and ρ have been mixed up, because the norm of the transformation τ was large compared to the initial analyticity widths. Recall that the transformation τ depends on the variable Λ 1 and Λ 2 . Hence, when lifting this transformation to the whole set of variables, it induces a loss of analyticity width on these variables. We call again κ the transformation acting on all the coordinates.

Lemma 6. Let r 1 , s 1 > 0, 0 < m < M and ρ, ρ > 0. If ρ + 2ρ ≤ 2 √ 24α -1 and 6α(ρ + 2ρ ) 4 ≤ r 1 s 1 ,
where

α = sup BΛ 0 (2r1,2s1) max 1 2 d 0,0,2 d 1,0,0 -d 0,1,0 , d 1,0,1 d 1,0,0 -d 0,1,0 , d 0,1,1 d 1,0,0 -d 0,1,0 , then κ B Λ0 (r 1 , s 1 ) × Dcart,ρ,ρ ⊂ B Λ0 (2r 1 , 2s 1 ) × Dcart,3ρ+4ρ ,2ρ+5ρ . (24) 
Proof. With lemma 5, it remains to control the transformation along the coordinates (λ 1 , λ 2 ). Indeed, the polynomial generating the transformation being independent of the variables (λ 1 , λ 2 ), the transformation is the identity along the variables Λ i . The norm of the vector field generated by the polynomial (that has again 6 terms of degree 4) along the variables λ i for i = 1, 2 is

||∂ Λi P || r1,s1,ρ,ρ < 6 × sup BΛ 0 (r1,s1) max ∂ Λi 1 2 d 0,0,2 d 1,0,0 -d 0,1,0 , ∂ Λi d 1,0,1 d 1,0,0 -d 0,1,0 , ∂ Λi d 0,1,1 d 1,0,0 -d 0,1,0 (ρ + 2ρ ) 4 .
We want this value to be less than s 1 to be able to consider the time-one map associated to the flow of the vector field. Using Cauchy's inequality to estimate the derivatives while losing r 1 on the analyticity width, one finds that we require to have 6α(ρ + 2ρ ) 4 ≤ r 1 s 1 .

Rotation of the coordinates

We consider here the transformation Rϕ perform the rotation of the coordinates (ξ 1 , η 1 , ξ 2 , η 2 ), as done in the previous section. Let ϕ ∈ T:

ξ 1 = +ξ 1 cos ϕ + ξ 2 sin ϕ ξ 2 = -ξ 1 sin ϕ + ξ 2 cos ϕ η 1 = +η 1 cos ϕ + η 2 sin ϕ η 2 = -η 1 sin ϕ + η 2 cos ϕ Lemma 7. Let ρ 1 , ρ 1 > 0, and ρ 2 = √ 2ρ 1 , ρ 2 = √ 2ρ 1 . Then: ψ2 ( Dcart,ρ1,ρ 1 ) ⊂ Dcart,ρ2,ρ 2 Proof. For i = 1, 2, let (ξ 1 , η 1 , ξ 2 , η 2 ) ∈ Dcart,ρ1,ρ 1 .
There exists ξ i,0 , η i,0 ∈ R verifying ξ i,0 + ıη i,0 ∈ B(0, ρ 1 ), 0 < β i , γ i < ρ , and θ i , σ i ∈ T, such that

ξ i = ξ i,0 + β i exp(ıθ i ), η i = η i,0 + γ i exp(ıσ i )
For ϕ ∈ T, we have

ξ 1 = (ξ 1,0 cos ϕ + ξ 2,0 sin ϕ) + β 1 exp(ıθ 1 ) cos ϕ -β 2 exp(ıθ 2 ) sin ϕ = ξ 1,0 + β 1 exp(ıθ 1 ) cos ϕ -β 2 exp(ıθ 2 ) sin ϕ.
Moreover,

|ξ 1,0 + ıη 1,0 | 2 = (ξ 2 1 + η 2 1 ) cos 2 ϕ + (ξ 2 2 + η 2 2 ) sin 2 ϕ -2(ξ 1 ξ 2 + η 1 η 2 ) cos ϕ sin ϕ ≤ ρ 2 1 cos 2 ϕ + ρ 2 1 sin 2 ϕ + 2ρ 2 1 cos ϕ sin ϕ < 2ρ 2 1 = ρ 2 2 .
Now comparing the other part of ξ i :

|ξ 1 -ξ 1,0 | < ρ 1 (| cos ϕ| + | sin ϕ|) < √ 2ρ 1 = ρ 2
The rotation we made was not a classical rotation on the conjugated variables, that is why there is a loss of analyticity widths while performing it. It concerns on the two couples of coordinates (ξ 1 , ξ 2 ) and (η 1 , η 2 ). Yet, it could be possible to obtain a better estimate if we were to know precisely the value of ϕ. Gathering the loss of analyticity widths, we have shown that under the conditions of lemmas 4,5,7, the transformation ∆ was taking the set B Λ0 (r 1 , s 1 ) × Dpol,r2,s2 into the set B Λ0 (2r 1 , 2s 1 ) × Dcart,

The final Hamiltonian

In this section, we compute in an explicit way the whole Hamiltonian, and bound the perturbation. Indeed, while applying the function ∆, some new terms can appear, as well as changing the size of the perturbation. We hence compute every term and find an explicit bound on them.

Unperturbed Hamiltonian and perturbation

Our initial Hamiltonian H is composed of a Kepler problem part and of the gravitational interaction of the two planets (in Jacobi's coordinates). Decompose the gravitational interaction Hpert and Hpert , and apply the function ∆. Call H ⊥ 4 the terms of order 4 of H Λ 4,D • κ that cannot be removed using the BNF transformation. The secular Hamiltonian H 0,1 is:

H 0,1 = H Kep + H 2,D • ψ + H ⊥ 4 • ψ.
The remainder of the operation is constituted of the terms of the averaged perturbation of order at least 6 in eccentricities, as well as the new terms of order more than 6 in eccentricities created by the transformation τ :

P 1 = Hpert • ∆ -H 2,D • ψ -H ⊥ 4 • ψ.
Hence, the Hamiltonian H can be written

H • ∆ = H 0,1 + P 1 + Hpert • ∆.
The part Hpert • ∆ of the perturbation is of the size of the terms H 2,D • ψ and H ⊥ 4 • ψ. Nevertheless, it depends on the angles λ i . Hence, we can make it smaller by applying a special transformation using the fact that the term H Kep is large compared to it. The transformation ϕ X1 on the variables (Λ i , λ i ) is described in theorem 6 in appendix C, where the loss of analyticity widths associated to it is made explicit. Yet, this transformation was in dimension 2, and we need to lift it to the whole phase space. Again, we need to make one more assumption and to lose some analyticity widths on the variables (I 3 , I 4 , θ 3 , θ 4 ). We choose to halve the analyticity widths r 2 /2 and s 2 /2 along the transformation, we get the following extra assumption for ϕ X1 :

H pert • ∆ r1,s1,r2,s2 ≤ γ 2 s 2 1 r 2 s 2 10 4 . (25) 
Here, γ 2 is the Diophantine constant associated to the frequency vector (∂ Λ1 H 0,1 , ∂ Λ2 H 0,1 ), hence a frequency vector of dimension 2. We will come back later on the Diophantine hypotheses. The previous hypothesis, with all the hypotheses of 6 ensures that we have a function ϕ X1 that is well defined, and that we have:

ϕ X1 (B Λ0 (r 1 /2, s 1 /2) × Dpol,r2/2,s2/2 ) ⊂ B Λ0 (r 1 , s 1 ) × Dpol,r2,s2
In fact, we apply three transformations of this type to make the remainder small enough. The additional hypotheses to be able to perform the transformation are straightforward to obtain, and in our case are verified easily as long as the hypothesis ( 25) is true. The functions ϕ X2 and ϕ X3 are described in appendix C, and their lift halve the two analyticity widths r 2 and s 2 . Regarding the Hamiltonian, we have:

H • ∆ • ϕ X,1 = H 0,1 + P 1 • ϕ X1. + P 2 , P 2 = (H 0,1 + Hpert • ∆) • ϕ X1 -H 0,1 .
To apply the second transformation, we define P2 the integral over the fast angle of P 2 , and its remainder P2 . The averaged Hamiltonian P2 depends on the angle g, and is not under normal form. Since we do not know its form, we want to get rid of its dependence in this angle. P 2 being a part of the perturbation, we can divide it in two parts: one that is independent of the eccentricities, and another part with only even powers of the eccentricities. Calling y = (y 1 , y 2 , y 3 , y 4 ) = (ξ 1 , η 1 , ξ 2 , η 2 ), we can therefore decompose P2 in this way:

P2 (Λ, y) = P2,0 (Λ) + 1 0 ∂ y,y P2 (Λ, ty) • y 2 (1 -t)dt,
where ∂ y,y P2 (Λ, ty) is a 4 × 4 matrix representing the second derivative of P2 with respect to the y i . Considering small enough eccentricities, one can make the term under the integral as small as wanted, hence considered as part of the perturbation. Let R 2 = P2 -P2,0 , and H 0,2 = H 0,1 + P2,0 . The Hamiltonian is now:

H • ∆ • ϕ X,1 = H 0,2 + P 1 • ϕ X1 + R 2 + P2 .
Apply the transformation ϕ X2 defined in corollary 1 of appendix C to the Hamiltonian. After this operation, we have

H • ∆ • ϕ X1 • ϕ X2 = H 0,2 + P 1 • ϕ X1 • ϕ X2 + R 2 • ϕ X2 + P 3 .
In the exact same way, we reproduce the scheme we have just done. Hence, define P3 , P3 , R 3 = P3 -P3,0 , and the unperturbed Hamiltonian

H 0,3 = H 0,2 + P3,0 . Call as well ϕ X = ϕ X1 • ϕ X2 • ϕ X3 .
The Hamiltonian is now:

H • ∆ • ϕ X = H 0,3 + P 1 • ϕ X + R 2 • ϕ X2 • ϕ X3 + R 3 • ϕ X3 + P 4 . (26) 
To use the quantitative KAM theorem of Castan [START_REF] Castan | Quantitative KAM Theorem[END_REF], which is a quantitative version of Pöschel's KAM theorem [START_REF] Pöschel | A lecture on the classical KAM theorem[END_REF], we need to consider a linear Hamiltonian and its perturbation, an approach developed by Möser [START_REF] Moser | Convergent series expansions for quasi-periodic motions[END_REF]. Hence, we have to divide H 0,3 into two terms, a linear one and a non-linear one. Basically, it consists in doing a Taylor expansion at the order 2 in the actions, so as to express the unperturbed Hamiltonian as a sum of a linear part, and a remainder. The remainder, of order 2 in the actions, can be made small if we consider the set of the action close enough to zero. To this end, let p = (Λ 1 , Λ 2 , I 3 , I 4 ) be the vector of the actions, and p 0 be a specific vector in the initial set (yet to be described). We can write p = p 0 + I , with I close to 0, and expand the Hamiltonian around the vector p 0 . We have:

H 0,3 (p) = H 0,3 (p 0 ) + H 0,3 (p 0 ) • I + 1 0 (1 -t)H 0,3 (p t ) • I 2 dt,
where p t = p 0 + tI . Therefore, let H nl (I , p 0 ) = 

H • ∆ • ϕ X = H l + P tot = H l + P 1 • ϕ X + R 2 • ϕ X2 • ϕ X3 + R 3 • ϕ X3 + P 4 + H n,l (27) 

Bound on the norm of the perturbation

In this section, we bound the different terms of the perturbation that we previously derived. We recall as well the different hypotheses necessary to apply the KAM theorem [START_REF] Castan | Quantitative KAM Theorem[END_REF] and to find a bound on the initial perturbation [START_REF] Castan | Complex singularities in the plane planetary three-body problem[END_REF].

Let Λ 0 ∈ (R ++ ) 2 , 0 < r 1 < min i=1,2 Λ 0,i /2 , s 1 , s 2 > 0 and 0 < r 2 < m < M .
For the sake of simplicity, let

ρ 0 = √ 2(3ρ + 4ρ ), ρ 0 = √ 2(2ρ + 5ρ ). ( 28 
)
where ρ and ρ are defined in equation ( 22) of lemma 4. Assume that 0 < ρ 0 < min i=1,2 ( 2(Λ 0,i -2r 1 )), and

0 < ρ 0 < min i=1,2 ( Λ 0,i -2r) -ρ 0 / √ 2.
Under these assumptions, the set D 0 = D Λ0,2r1,ρ0,ρ 0 ,2s1 is welldefined. Moreover, we ask that ρ and ρ satisfy the two inequality ρ+2ρ ≤ 2 √ 24α -1 and 6α(ρ+2ρ

) 4 ≤ r 1 s 1
where α is defined in equation ( 24) of lemma 6. Thereafter, we use the norm • r1,s1,r2,s2 , which is the supremum over the set B Λ0 (r 1 , s 1 ) × Dpol,r2,s2 , and alternatively • r1,r2 when the function does not depend on the angles.

Bound on the non-secular part

First, we bound the term P 4 of the perturbation. This bound can be determined with the help of the theorem 6 and corollary 1. We use the result obtained after doing 3 transformations after 3 steps. Consider the Hamiltonian H 0,1 + Hpert • ∆, we apply the scheme to find a function ϕ X such that P 4 becomes smaller.

First, observe that Hpert • ∆ r1,s1,r2,s2

≤ Hpert

D0

. Define the following elements iteratively:

K 3 2 = γ 2r 1 H 0,1 r1,r2 , K 3 3 ≤ min 2γ r 1 H 0,1 r1,r2 , r 1 γ 16 2 , K 3 4 ≤ min 8γ r 1 H 0,1 r1,r2 , r 1 γ 2 6 2 , r 1 γ 2 7 3 , (29) 2 
= 10 10 γ 2 2 s 6 Hpert 2 D0 H 0,1 r1,r2 + 16 r 1 H 0,1 I 1,r1,r2 + 32K 2 2 exp - 2K 2 s 1 5 Hpert D0 , (30) 3 
= 2 8 .10 10 γ 2 s 6 1 2 2 H 0,1 r1,r2 + 2 6 r 1 H 0,1 I 1,r1,r2 + 2 9 r 2 1 2 + 32K 2 3 exp - K 3 s 1 5 2 , (31) 4 = 
2 16 .10 10

γ 2 s 6 1 2 3 H 0,1 r1,r2 + 2 8 r 1 H 0,1 I 1,r1,r2 + 2 11 r 2 1 ( 2 + 3 ) + 32K 2 4 exp - K 4 s 1 10 3 . ( 32 
)
Proposition 1. Under the assumption that H pert is analytic on the set D Λ0,r1,ρ0,ρ 0 ,s1 , that there exists

I 0 ∈ B(r 1 /32, s 1 /8), such that H 0,1 (I 0 ) ∈ D(γ 2 ,
2), and that the following assumptions are verified: 

2 5 K 2 2 exp(-K 2 s 1 /10) < 1, 2 5 K 2 3 exp(-K 3 s 1 /20) < 1, 2 5 K 2 4 exp(-K 4 s 1 /40) < 1, Hpert D0 ≤ min γr 1 s 3 1 4.10

Bounds on the remainders of the transitional Hamiltonian

We bound here the transitional terms

R 2 • ϕ X2 • ϕ X3 and R 3 • ϕ X3 .
Proposition 2. Under the assumptions of proposition 1 and that the Hamiltonian H pert is analytic on the set D 0 , then we have the estimates:

R 2 • ϕ X2 • ϕ X3 r1/32,s1/8,r2/8,s2/8 ≤ 4 2 ρ 0 + 2ρ 0 µ 2 , R 3 • •ϕ X3 r1/32,s1/8,r2/8,s2/8 ≤ 4 3 ρ 0 + 2ρ 0 µ 2 .
Proof. Using the definition of these variables, and Cauchy's inequality on the second derivative of P 2 and P 3 with respect to the variables y i , the proof is straightforward.

Bound on the remainder of the BNF

In this part, we are concerned by the bound of P 1 • ϕ X . Recall the definition of the polynomial P used to put the Hamiltonian under BNF:

P : C 4 → C, (x 1 , x 2 , x 3 , x 4 ) → a 1 (x 2 2 x 2 3 -x 2 1 x 2 4 ) + a 2 (x 1 x 2 x 2 3 -x 2 1 x 3 x 4 ) + a 3 (x 2 2 x 3 x 4 -x 1 x 2 x 2 4 ), with a 1 = d 0,0,2 2(d 1,0,0 -d 0,1,0 ) , a 2 = d 1,0,1 d 1,0,0 -d 0,1,0 , a 3 = d 0,1,1 d 1,0,0 -d 0,1,0 . (33) 
Define:

C 1 = 4 2 a 1 2r1,2s1 + 3 a 2 2r1,2s1 + 3 a 3 2r1,2s1 × 2 d 0,0,2 2r1,2s1 + 3 d 1,0,1 2r1,2s1 + 3 d 0,1,1 2r1,2s1 , (34) 
C 2 = 4 2 a 1 2r1,2s1 + 3 a 2 2r1,2s1 + 3 a 3 2r1,2s1 × 2 d 2,0,0 2r1,2s1 + 2 d 0,2,0 2r1,2s1 + d 1,1,0 2r1,2s1 + 2 d 0,0,2 2r1,2s1 . (35) 
We have the following result:

Proposition 3. Let r 1 , s 1 , r 2 , s 2 > 0, define ρ and ρ as in lemma 5 (with r = r 2 and s = s 2 ), and ρ 0 , ρ 0 as in equation [START_REF] Pöschel | A lecture on the classical KAM theorem[END_REF]. If H pert is analytic on the set D µ = D Λ0,2r1,ρ0,ρ 0 +µ,2s1 with µ > 0, and that it satisfies the hypothesis:

2( ∂ Λi a 1 2r1,2s1 + ∂ Λi a 2 2r1,2s1 + ∂ Λi a 3 2r1,2s1 )(ρ 0 + ρ 0 ) 4 ≤ s 1 ,
then, on the set B Λ0 (r 1 /32, s 1 /8) × Dpol,r2/8,s2/8 , the following bound holds:

P 1 • ϕ X r1/32,s1/8,r2/8,s2/8 ≤ C 1 + C 2 + 84 µ 6 H pert Dµ (ρ 0 + 2ρ 0 ) 6 .
Proof. : We consider the term P 1 on the set B Λ0 (r 1 , s 1 ) × Dpol,r2,s2 . The composition with the function ϕ X will make the estimate hold on the wanted set. The transformation τ is the flow τ t associated to the vector field X P for t = 1. Notice that each a i here depends on the variables Λ 1 , Λ 2 , we will denote by a i r1,s1 their supremum bound on the domain B Λ0 (r 1 , s 1 ). Considering as well x the supremum bound of (x 1 , x 2 , x 3 , x 4 ) on the domain of definition (that we will determine hereafter), we can bound the derivative of the polynomial with respect to the x i by:

|∂ xi P | ≤ (2 a 1 2r1,2s1 + 3 a 2 2r1,2s1 + 3 a 3 2r1,2s1 ) x 3 .
Calling H 4 the terms of degree 4 in the x i of H Λ 4,D •κ that can be removed using the BNF transformation, and H ≥6 the terms of the average Hamiltonian after the rotation R ϕ of order more than 6. Using the subscript f to consider the functions after rotation, we can write

Hpert • ψ2 • f -1 • τ =(H 2,D,f + H ⊥ 4,f + H 4,f + H ≥6,f ) • τ = H 2,D,f + {H 2,D,f , P } + 1 0 (1 -t) {{H 2,D,f , P } , P } • τ t dt + H ⊥ 4,f + 1 0 H ⊥ 4,f , P • τ t dt + H 4,f + 1 0 H 4,f , P • τ t dt + H ≥6,f • τ.
The polynomial P was constructed so as to have {H 2,D , P } = -H 4 . Thus, we get:

Hpert • ψ2 • f -1 • τ -H 2,D,f -H ⊥ 4,f = 1 0 (1 -t) {H 2,D,f , P } + H 4,f , P • τ t dt + 1 0 H ⊥ 4,f , P • τ t dt + H ≥6,f • τ
Using again the construction of P , we have:

1 0 (1 -t) {H 2,D,f , P } + H 4,f , P • τ t dt = 1 0 t H 4,f , P • τ t dt
Composing the secular part of the perturbation by f on both side, we obtain:

Hpert • ∆ -H 0,1 = 1 0 t H 4,f , P • τ t • f • ψ dt + 1 0 H ⊥ 4,f , P • τ t • f • ψ dt + H ≥6,f • τ • f • ψ.
This explicit equation gives three terms to bound:

R 1 = 1 0 t H 4,f , P • τ t • f • ψ dt, R 2 = 1 0 H ⊥ 4,f , P • τ t • f • ψ dt, R 3 = H ≥6,f • τ • f • ψ.
Given the definition of the terms H 4,f and H ⊥ 4,f in the coordinates (x 1 , x 2 , x 3 , x 4 ) in ( 14), we can bound their derivatives by:

∂ xi H 4,f ≤ 2 d 0,0,2 2r1,2s1 + 3 d 1,0,1 2r1,2s1 + 3 d 0,1,1 2r1,2s1 x 3 , ∂ xi H ⊥ 4,f ≤ 2 d 2,0,0 2r1,2s1 + 2 d 0,2,0 2r1,2s1 + d 1,1,0 2r1,2s1 + 2 d 0,0,2 2r1,2s1 x 3
With these bounds, we can calculate the bounds on R 1 and R 2 on the domain of definition:

R 1 2r1,2s1,r2,s2 ≤ 1 0 t H 4,f , P • τ t • f • ψ r1,s1,r2,s2 dt ≤ H 4,f , P r1,s1,(B(0,ρ0+2ρ 0 ) 4 ) ≤ C 1 (ρ 0 + 2ρ 0 ) 6 . (36) 
For the same reason, we have:

R 2 r1,s1,r2,s2 ≤ C 2 (ρ 0 + 2ρ 0 ) 6 . (37) 
The last term cannot be bounded in the same way. Indeed, we do not know explicitly the different terms appearing in this part of the Hamiltonian. Nevertheless, we know that they are at least of order 6 in eccentricity so we can derive a bound on its norm using the Taylor's theorem and Cauchy's inequalities for analytic function. Since the transformation ψ2 is linear, we can write:

R 3 r1,s1,r2,s2 = H ≥6,f • τ • f • ψ r1,s1,r2,s2 ≤ H ≥6 D0
We will therefore use a Taylor theorem, for a function of 4 variables (ξ 1 , ξ 2 , η 1 , η 2 ), and evaluate its remainder at the order 6. The variables ξ i and η i belong to the set D 0 , and they can be bounded by ρ 0 + ρ 0 . We have

R 3 r1,s1,r2,s2 ≤ |β|=6 sup D0 1 β! ∂ β Hpert (ρ 0 + ρ 0 ) 6 ,
where

β = (β 1 , β 2 , β 3 , β 4 ) ∈ N 4 , |β| = β 1 + β 2 + β 3 + β 4 = 6, and β! = β 1 !β 2 !β 3 !β 4 !.
Bounding the derivative using Cauchy's inequality, the terms β! then cancels, we are left with:

R 3 r1,s1,r2,s2 ≤ |β|=6 ∂ β H pert D0 (ρ 0 + ρ 0 ) 6 ≤ |β|=6 H pert Dµ ρ 0 + ρ 0 µ 6 ≤ 84 H pert Dµ ρ 0 + ρ 0 µ 6 .

Bound on the remainder of the Taylor expansion

We are interested in bounding the norm of H nl . In this aim, we will simply do a classical estimate on the remainder of a Taylor expansion, although taking into account the special form of the Hamiltonian H 0,3 .

H 0,3 = H Kep + H 2,D • ψ + H ⊥ 4 • ψ + P2,0 + P3,0 .
Moreover, the application ψ takes the four actions in the set B Λ0 (r 1 , s 1 ) × Dpol,r2,s2 into the set Dcart,Λ0,r1,ρ,ρ ,s1 . Observe that since H Kep is much larger than the perturbation, and that we need to have H Kep r 2 1 ∼ 2 , we will need to fix a smaller value for r 1 . Hence, define a new analyticity width r < min(r 1 /32, r 2 /8). We have

B Λ0 (r , s 1 ) × Dpol,r ,s2 ⊂ B Λ0 (r 1 , s 1 ) × Dpol,r2,s2 ψ B Λ0 (r , s 1 ) × Dpol,r ,s2 ⊂ Dcart,Λ0,r1,ρ,ρ ,s1 .
Proposition 4. Assume H 0,3 is defined as before, and analytic on the domain Dcart,Λ0,r1,ρ,ρ ,s1 , and that it verifies the assumptions of proposition 1. Call

D 1 = max i=1,2 sup p∈BΛ 0 (r1,s1) H Kep (p) i,i , D 2 = max 1≤i,j≤4 H 2,D + H ⊥ 4 • ψ1 i,j r1,s1,r2,s2
.

We have the inequality:

H nl r ,s1,r ,s2 ≤ 2D 1 + 8D 2 + 16 2 + 3 (min(r 1 /32, r 2 /8) -r ) 2 r 2 . ( 38 
)
Proof. The proof is straightforward: one has to compute every terms of the Hamiltonian H nl by considering the Taylor expansion of order 2 of each terms, and eventually using Cauchy's inequality. The origin of the terms is clear knowing the form of H 0,3 ; the factors 2 and 8 in front of D 1 and D 2 comes from the fact that we use the supremum norm each time.

Observe that we can work with the analyticity width r 1 until this step. It is then necessary to switch to the variable r to compute the perturbation. The KAM theorem in [START_REF] Castan | Quantitative KAM Theorem[END_REF] being isotropic in the actions, and in the frequencies, we fix r = r 2 /8, as well as s 1 = s 2 . We then have a set on which we can apply the quantitative KAM theorem to the whole perturbation, for which we computed explicitly every terms.

Condition on the frequencies and analyticity width

In this section, we put our interest on the frequency map H 0,3 (p) where p = (Λ 1 , Λ 2 , I 3 , I 4 ). In the KAM theorem we use, the frequencies are parameters, and we need assumptions regarding them. First, we require the frequency map to be a diffeomorphism, which corresponds to the non-degeneracy condition in the usual KAM statements. Secondly, we require its inverse to be analytic on some complex extension of the initial domain of frequencies. Finally, we are interested in the frequency vectors satisfying a Diophantine condition. We describe here some definitions regarding the Diophantine condition, as well as the computation of the analyticity width of the frequency map.

Diophantine condition

The set of Diophantine vectors in R n , for some γ > 0 and τ ≥ n -1 is defined as follows:

D(γ, τ ) = ω ∈ R n : ∀k ∈ Z n , |k • ω| ≥ γ |k| τ 1 ,
where |.| 1 is the l 1 -norm. To apply the KAM theorem, we require our frequency vector to verify two different Diophantine conditions. First, the subvector (∂ Λ1 H 0,1 (p), ∂ Λ2 H 0,1 (p) is required to verify some Diophantine condition for some γ (that we will discuss in the last section) and for τ = 2. Under this condition, one can apply the theorem 6 and its corollaries. The other Diophantine condition concerns the full vector, for which we fix τ = n = 4. Regarding the value of γ, which is important to compute the theorems, we introduce a definition that will be useful when trying to obtain a quantitative result. Definition 2. The Diophantine vector ω = (ω 1 , ..., ω n ) ∈ R n is called optimal in γ and τ if ω ∈ D(min i (ω i ), n). It is called optimal in γ for some fixed τ if ω ∈ D(min i (ω i ), τ ).

Upper bound of the analyticity width

Assume that the perturbation is analytic on the domain B Λ0 (r f , s f ) × Dpol,r f ,s f with r f , s f > 0. Recall that the frequency vector is defined by ω = H 0,3 (p) where (p, 0) belongs to the set B Λ0 (r f , s f ) × Dpol,r f ,s f . Let us cut the analyticity width r f in three parts: first consider the set

Ω = ω ∈ R n , ∃(p, 0) ∈ B Λ0 r f 4 , s f × Dpol,r f /4,s f such that ω = H 0,3 (p) (39) 
This set will be the initial set of frequencies. More precisely, we will consider the set of frequencies Ω γ = Ω ∩ D(γ, τ ), the frequencies in the set Ω that verify the Diophantine condition with constants γ and τ . Define the set of frequencies with the analyticity width h:

Ω h γ = ω ∈ C n , ∃ω ∈ Ω γ s.t. sup i∈ 1,4 |ω i -ω i | < h .
This set consists in the neighborhood of the frequency of the tori in Ω γ . We want to fix the value of h so that the image of this set by the function H -1 0,3 is contained in the set B Λ0 (r f /2, s f ) × Dpol,r f /2,s f . Finally, we will define a new set for the action-angle variables, close to zero, as follows:

D r f /2,s f = (I , θ) ∈ C 4 × T n C , sup i∈ 1,4 |I i | < r f 2 , sup i∈ 1,4 | θ i | < s f .
Now, we can take (ω, I , θ) ∈ Ω h γ × D r f /2,s f , it guarantees that (H -1 0,3 (ω) + I , θ) ∈ B Λ0 (r f , s f ) × Dpol,r f ,s f , with a slight abuse of notation coming from the fact that the action-angles variables are not in the right order. Considering an analyticity width r < r f for the actions I , we can be able to apply the KAM theorems using these sets if we get a bound for h. Determining a suitable value of h is done in several steps. First, let us expand the definition of Ω h :

ω ∈ Ω h γ ⇔ ∃ ω 0 ∈ Ω γ , ϑ ∈ B(0, h) ⊂ C 4 , ω = ω 0 + ϑ.
We ask that H -1 0,3 (ω) ∈ B Λ0 (r f /2, s f ) × Dpol,r f /2,s f , hence, we want the following condition to be verified:

H -1 0,3 (ω 0 + ϑ) ∈ B Λ0 (r f /2, s f ) × Dpol,r f /2,s f .
With the definition of the set Ω, and using a Taylor expansion to the first order, we require:

1 0 (H -1 0,3 ) (ω 0 + tϑ) • ϑdt < r f 4 , (40) 
where • represents the sup-norm of our complex vector. Call ϑ = (ϑ 1 , ϑ 2 , ϑ 3 , ϑ 4 ) ∈ B(0, h), for 1 ≤ i ≤ 4:

1 0 (H -1 0,3 ) (ω 0 + tϑ) • ϑdt i ≤ 1 0 1≤j≤4 (H -1 0,3 ) (ω 0 + tϑ) i,j ϑ j dt ≤ 4h × max 1≤j≤4 sup Ω h (H -1 0,3 ) i,j ≤ 4h × max 1≤j≤4 sup Ω h H -1 0,3 • H -1 0,3 i,j ≤ 4h × max 1≤i,j≤4 H -1 0,3 i,j r f /2,s f ,r f /2,s f
Thus, a condition on h so that our initial requirement holds is:

h = r f 16 max 1≤i,j≤4 H -1 0,3 i,j r f /2,s f ,r f /2,s f -1 . (41) 
In the KAM theorem, we require furthermore that the set of initial frequencies is at least at distance h from the boundary. Hence we have to define h = h/2 as the analyticity width in frequencies so that this set is non-empty. The last computation left is the determination of the value of the maximal coefficient of the inverse of the Hessian of H 0,3 . To find the value of the coefficient of this (inverse) matrix, we use the equality:

H -1 0,3 = 1 det(H 0,3 ) adj(H 0,3 ),
where the adjugate adj of a matrix is by definition the transpose of the cofactor matrix. To simplify the problem of determining a bound on the maximal coefficient, we make a further simplification (we write

|| • || r f ,s f instead of || • || r f ,s f ,r f ,s f for the sake of simplicity): max 1≤i,j≤4 H -1 0,3 i,j r f /2,s f , ≤ det(H 0,1 ) -1 r f /2,s f × max 1≤i,j≤4
adj(H 0,3 ) i,j r f /2,s f . Now let us discuss these two values, and how to bound them. First, the determinant of this 4 × 4 matrix is composed of 24 terms. Though, since the Hamiltonian is composed of the Kepler problem part, that is composed of two terms, depending only on one variable, and a small part coming from the perturbation, we can deduce that the largest term of the determinant is

f = H 0,3 1,1 H 0,3 2,2 H 0,3 3,3 H 0,3 4,4 -H 0,3 2 
3,4 . The other terms will be at most the product of one of the large terms H 0,3 1,1 or H 0,3 2,2 , and of three other small terms of the size of the perturbation. In the case the perturbation and r f are small enough (we verify it when computing the actual theorem), we have the following upper bound on the inverse of the determinant:

max 1≤i,j≤4 H -1 0,3 i,j r f /2,s f ≤ 1 2 inf BΛ 0 (r f /2,s f )× Dpol,r f /2,s f |f |
Let us now take a closer look at the adjugate matrix. By the same reasoning as previously, we can see that the largest cofactors will be those involving the two terms H 0,3 1,1 or H 0,3 2,2 . Thus, we are looking for an upper bound on the terms on the lower square of the adjugate matrix. Looking at the coefficient (3, 3), [START_REF] Bambusi | An introduction to birkhoff normal form[END_REF][START_REF] Bambusi | An introduction to birkhoff normal form[END_REF], (3,[START_REF] Bambusi | An introduction to birkhoff normal form[END_REF] of the matrix H 0,1 , the term with highest modulus is the term H 0,3 3,3 . It implies that the largest term of the adjugate matrix is in position [START_REF] Bambusi | An introduction to birkhoff normal form[END_REF][START_REF] Bambusi | An introduction to birkhoff normal form[END_REF]. As well, for small enough perturbation and analyticity width, we can derive:

max 1≤i,j≤4 adj(H 0,3 ) i,j r f /2,s f ≤ 1 2 H 0,3 1,1 r f /2,s f H 0,3 2,2 r f /2,s f H 0,3 3,3 r f /2,s f .
By this mean we can deduce the value of the analyticity width h , and apply the KAM theorem on the set

Ω h × D r f /2,s f .

Application of the KAM theorem

We can now apply the quantitative theorem [START_REF] Castan | Quantitative KAM Theorem[END_REF] to the plane planetary problem, using all the information we derived previously. Because of the definition of the different variables and the complexity of the assumptions, we use a computer to verify them. However, since the computer has a finite precision, we halve or double some constants to offset this effect when we feel it is necessary. Let us give a short formulation of the result.

Theorem 2. In the plane planetary three-body problem, if m 1 ∼ m 2 ∼ 10 -85 m 0 , there exists quasi-periodic motions depending on three frequencies in the rotating reference frame that is close to Keplerian motion.

The constraints we require will be quantified more precisely along the computation. Observe that there exists a competition between the size of the analyticity widths and the size of for which the KAM theorem is valid. For these reasons, we are interested in studying only one system, with a fixed initial geometry, with fixed masses, for which we prove the pseudo-periodic motion. Close to these initial geometric values of the system, the KAM theorem applies.

Initial conditions and size of the perturbation

We give here the different initial conditions to ensure the theorem applies for a ratio of masses 10 -85 . We give as well all the information that are necessary to understand the computation, as the analyticity widths, the size of the perturbation, the quantitative hypotheses for the KAM theorem, etc. First, let us consider the geometry of the system. Regarding the semi-major axes, we have:

a 1 = 5.2UA, a 2 = 5.2 × 10 12 UA,
where 1UA = 149597870700 m.

We will discuss the eccentricities of the system later. The masses are:

m 0 = 2 × 10 30 kg, m 1 = m 2 = 10 -85 m 0 , G grav = 6.67408 × 10 -11 .
We can then compute M 1 , M 2 , µ 1 , µ 2 , σ 0 , σ 1 , as well as H Kep . We get Λ 0,1 = 2.04 × 10 -39 = 10 -6 Λ 0,2 .

Considering the analyticity widths, we choose:

2r 1 = 1.35 × 10 -30 Λ 1 ∼ 2.75 × 10 -69 , ρ temp = 2(Λ 1 -r 1 ) × 10 -46 ∼ 6.38 × 10 -66 , r = 3 × 10 -219 .
Finding values that work depends mostly on studying the ratio between the different terms of the perturbation and the condition of the KAM theorem. Considering the analyticity width λ in the angles, it is derived implicitly using the complex Kepler equation (see [START_REF] Castan | Complex singularities in the plane planetary three-body problem[END_REF]), for an initial value of the eccentric longitude t = 2, yet we need other quantities to define it precisely; as for now remark that we have t ≥ λ . To define ρ , one had to take care of the change of variables from (ξ i , η i ) to Cartesian coordinates. In this aim, define m = ρ 2 temp /4 and M = 2m. Then, using lemma 4, we define the value of ρ temp by the formula Observe that there is only an order of magnitude between µ and √ Λ 1 . Though, with the estimates on the perturbation made in [START_REF] Castan | Complex singularities in the plane planetary three-body problem[END_REF], we are far enough from a singularity of the perturbation and this value is not alarming. The choice of m and M leads to values of real eccentricities verifying:

ρ temp = max r 2 √ 2m cosh s + √ 2m(cosh s -1), r 2 √ 2M cosh s + √ 2M (cosh s -1) ∼ 2.
e 1 ≤ 1.42 × 10 -46 , e 2 ≤ 1.42 × 10 -49 .
These values are very small compared to values in the solar system, but it is necessary to have this order of values to make the remainder of the BNF as small as the perturbation. The value of λ , using the different definitions we have done, and the values in eccentric longitude t 1 and t 2 associated to it are:

λ ∼ 1.35234, t 1 = 2, t 2 ∼ 1.35234.
With these values, we are able to determine the size of the perturbation H pert over the set D µ . To use the work of Castan [START_REF] Castan | Complex singularities in the plane planetary three-body problem[END_REF], we need to introduce some notations and functions. Call Λ 0 = min i=1,2 Λ 0,i and Λ = (Λ 0,1 , Λ 0,2 ). The following hypotheses are verified

2r 1 < Λ 0 , ρ 0 < 2(Λ 0 -2r 1 ), ρ 0 + µ < Λ 0 -2r 1 - ρ 0 √ 2 . Define                    a 1 = 1 √ Λ 0 -2r 1 b 1 = 2r 1 √ Λ 0 (Λ 0 -2r 1 ) a 2 = 1 + 3ρ 2 0 2(Λ 0 -2r 1 ) b 2 = 2(ρ 0 + µ)(Λ 0 + 2r 1 )(ρ 0 + µ + √ 2ρ 0 ) + 2r 1 (ρ 0 + √ 2(ρ 0 + µ) 2 4(Λ 0 -2r 1 ) 2 a 3 (t) = (ρ 0 + 2ρ 0 + 2µ) cosh t b 3 (t) = ρ 0 sinh t + 2(ρ 0 + µ) cosh t and e max (Λ, r, ρ, ρ ) = (ρ + √ 2ρ ) 4(Λ -r) 5 2 rρ 2 + 2ρ (Λ 0 + 2r)(ρ + √ 2ρ) + 1 + 3ρ 2 2(Λ -r) √ Λ + r Λ -r √ 2ρ ( √ 2ρ + 2ρ) + (ρ + √ 2ρ ) Λ 0 -r r √ Λ ,        x i,max (t) = sinh t + e max (Λ 0,i , 2r 1 , ρ 0 , ρ 0 + µ) y max (t) = 1 + 3(ρ 0 + µ) 2 2(Λ 0,i -2r 1 ) sinh t + 1 + sinh t 2(Λ 0,i -2r 1 ) 2 r 1 ρ 2 0 + 2(ρ 0 + µ)(Λ 0,i + 4r 1 )(ρ 0 + µ + √ 2ρ 0 )
, Call, for t 1 , t 2 > 0:

l i = 1 Λ 0,i -2r 1 1 + 3ρ 2 0 2(Λ 0,i -2r 1 ) 1 2 
(ρ 0 + 2ρ 0 + 2µ) cosh t i ,

d i,max = 1 + 2 x i,max (t i ) + y i,max (t i ) 1 -l i , d max = d 1,max × d 2,max , η = 1 2 d max + 1 d max , M = G 2 grav (m 0 + m 1 ) 2 m 1 m 3 2 m 0 + m 1 + m 2 , A = 2 (m 0 + m 1 ) 2 m 2 2 (m 0 + m 1 + m 2 )m 0 m 2 1 Λ 0,1 + r Λ 0,2 -r 2 1 + l 1 1 -l 2 1 + η 2 , B = m 1 m 0 A.
Theorem 3. On the set D µ , if the following hypotheses are true:

(1) There exists t i > 0 s.t. t i verifies

λ max = t i -(a 1,i a 2,i b 3,i (t i ) + a 2,i a 3,i (t i )b 1,i + a 1,i a 3,i (t i )b 2,i + b 1,i b 2,i b 3,i (t i )), (2) l 1 , l 2 < 1, (3) r Λ 0 ≤ 3 4 , ( 4 
) A(Λ 0,1 , Λ 0,2 , 2r 1 , ρ 0 , ρ 0 + µ, t 1 , t 2 ) < 1,
then the following inequality holds

Hpert Dµ < 3 8 M (Λ 0,2 -2r 1 ) 2 1 1 -l 2 A 2 1 -A + m 1 m 0 A 2 1 + m1 m0 A . ( 42 
)
Applying this theorem in our case, we obtain:

H pert Dµ ≤ 4.26 × 10 -163

Secular Hamiltonian and set of frequencies

We can now compute the initial secular Hamiltonian, its frequencies, and the analyticity width h in frequencies. Considering the secular part of the perturbation, we chose a very small ratio for the semi-major axes: 10 -12 . Hence, we choose to compute only the first term in the development in semi-major axes. This approximation relies on the fact that the ratio of the semi-major axes is chosen very small, and hence will have a very small impact on the determination of the frequencies (plus the fact that the precision of the machine is not infinite), and we choose to divide by two the analyticity width h to counter-balance this unknown. We compute the coefficients d i,j,k of appendix D.2 up to the first order, there is an order of magnitude of 24 when comparing the first term and the remainder of the expansion in power of the ratio of the semi-major axes. The value of the linear terms in I 3 and I 4 are:

Consider now the rotation variable υ: by definition, for x = d100-d010 d001

, we have

υ = -x + 1 + x 2 ∼ - 1 x [ |x| → +∞], ⇒ υ ∼ -d 001 d 100 -d 010 ∼ 2.5 × 10 -15 .
Hence, we will do a further approximation to derive the terms d i,j,k . We will consider υ = 0, and they will be equal to the terms d i,j,k . This approximation relies again on the initial values we have chosen, and the change of frequencies would have been of order 10 -20 times the frequencies without it.

With the coefficients d i,j,k , we can now derive the frequencies. It remains to determine the analyticity width in frequencies h . In the actual computation, one needs first to estimate the norm of the transitional Hamiltonian that is required to compute H 0,2 and H 0,3 . We keep this computation for later, though it is true that the terms involved in H 0,3 -H 0,1 are very small compared to the terms in H 0,1 (using Cauchy's inequality shows that the order of magnitude is more than 50). We hence compute the value of h , dividing several times the result by 2 to offset the approximations made. We take h ∼ 2.2 × 10 -173 .

Size of the perturbation and KAM conditions

To apply the theorem 6, we need to choose the Diophantine constant γ 2 , related to the subvector of frequencies in dimension 2. We choose this vector to be optimal in γ for τ = n, where the optimal condition is defined in 2. When using the computer, the numerical precision implies that we cannot choose our vector to be Diophantine. Though, in a small neighborhood of our initial values, where the application of the KAM theorem still works, such a vector exists. The ratio between these frequencies is 10 -18 , and hence, by changing very slightly the initial values of the semi-major axes, one can be as close as wanted to this point. In fact, we choose γ 2 = min(ω 1 , ω 2 )/2 ∼ 8.4 × 10 -27 , the factor 1/2 being there to absorb again the approximations of the frequencies. γ 2 will be used only for these steps in dimension 4 (n = 2). The size of the remainders after the different transformations are:

Now, applying the different proposition 3,2 and 4, we obtain respectively:

1. Remainder of the perturbation after 3 steps of theorem 6: Hence, we let = 2 × 10 -405 , and we have P tot r ,λ < . We can now use the KAM theorem in [START_REF] Castan | Quantitative KAM Theorem[END_REF], which is a quantitative version of Pöschel's one [START_REF] Pöschel | A lecture on the classical KAM theorem[END_REF]. Before stating the theorem, we need some definitions. Let r, s, h > 0, δ ≥ 40, σ = s/20, and K = min(A ∩ B + ), where

A = {K ∈ N : Kσ ≥ 13log 2} , (43) 
B = K ∈ N : 2K 9 σ 5 e -Kσ ≤ 1 δ , B + = {K ∈ B : ∀m ∈ N, K + m ∈ B} . (44) 
Call

C 1 = 4 5 (800C 0 + 32 + 12 × 8 5 ) 2 with C 0 = 3 3 π √ 2 × 7!. Call: = min γrσ 5 4 5 C 1 , hr δ , γr 2K 5 δ . (45) 
Define the following series:

S = ∞ i=0 2 5 3i+2-( 3 
2 ) i , T = ∞ i=0 2 (11)i-5( 3 2 ) i , (46) 
and finally

µ = exp 5 δ , ξ = exp 10C 0 0 γr 0 σ 5 0 . (47) 
The quantitative statement in the case n = 4 is the following:

Theorem 4. Let H = N + P be a Hamiltonian, such that P is real analytic on the set D r,s × O h and P r,s,h = 0 ≤ . Then there exists a Lipschitz continuous map ϕ : Ω γ,τ → Ω h0 γ , with h 0 = δ 0 r , and a

Lipschitz continuous family of real analytic torus embeddings Φ : T 4 × Ω γ,τ → B × T 4 close to Φ 0 such that for each ω ∈ Ω γ,τ , the embedded tori are Lagrangian and

X H | ϕ(ω) • Φ = Φ • X N .
Φ is real analytic on the set {θ : | θ| < s/2} for each ω, and the following inequalities on Φ and ϕ hold:

W (Φ -Φ 0 ) ≤ 24ξ log ξ, ϕ -Id ≤ 16h 0 µ log µ, (48) 
where W = diag(r -1 Id, s -1 Id). As for their Lipschitz constant, we have:

W (Φ -Φ 0 ) L ≤ 163840 C 0 γσ 5 δ T, ϕ -Id L ≤ 16Sµ log µ. (49) 
We apply it for δ = 5 × 10 6 , trying to make the three conditions of the KAM theorem of the same order. We have, for this value, K = 953. Observe besides that the first and the third terms appearing in the minimum of theorem 4 are linear with the Diophantine constant γ. Let us consider first that this constant is optimal in γ with τ = n = 4. It corresponds to saying that γ 4 = min(ω 1 , ω 2 , ω 3 , ω 4 )/2, and hence, we let γ 4 ∼ 6.31 × 10 -136 . The three minimum then have values:

γ 4 r σ ν 4 ν C 0 ∼ 6.44 × 10 -379 , h r 2δ ∼ 6.49 × 10 -399 , γ 4 r 2K ν δ ∼ 2.41 × 10 -376 .
The first observation is that with the size of the perturbation we derived, we can apply the KAM theorem.

The second observation, is that we do not need the Diophantine condition to be optimal in γ 4 . Indeed, we can let γ 4 = γ 4 × 10 -20 , and then we have:

γ 4 r σ ν 4 ν C 0 ∼ 6.44 × 10 -399 , h r 2δ ∼ 6.49 × 10 -399 , γ 4 r 2K ν δ ∼ 2.41 × 10 -396 .
The estimate on the norm of the perturbation not changing (since γ 2 is fixed), we can consider this value to be our final value for the Diophantine condition. We choose to let γ 4 have a very small value compared to γ 4 , which was the optimal Diophantine constant γ, and hence to possibly work on a larger set of Diophantine vectors.

Observe that we let five orders of magnitude between the estimate of and the minimum of the previous values. Hence, it is possible to change slightly the values of Λ 0 or of the m i and the KAM theorem will still apply.

Size of the transformation

We can also derive estimates on the size of the transformation we just applied. We are first interested on the new frequencies ω of the system. We want to quantify the difference between the frequencies ω corresponding to the quasi-periodic motion in the new variables, and the frequencies ω of the disturbed Hamiltonian.

We consider here that the initial frequencies are given by ω = H 0,1 (Λ 0 , I 3 , I 4 ), where m < I 3 , I 4 < M . This frequency vector is entirely known, since we know H 0,1 . Along the scheme, we change three times of frequencies. The first and second times occur when applying the corollary 1 to decrease the size of the perturbation, and more precisely when we added P2 and P3 to H 0,1 . Recall that we only added the part of these Hamiltonian that do not depend on the action I 3 and I 4 . The third part comes directly from the KAM theorem, and a bound on its estimate is given in theorem 4.

Observe that since the parts coming from H 0,3 -H 0,1 are independent of the third and fourth actions, a simple Cauchy's inequality gives a modification in the frequencies of order ∼ 10 -93 , which is very small compared to the values of ω 1 and ω 2 , the latter being ∼ 1.68 × 10 -26 . The estimate in the KAM theorem for the change in frequencies ϕ -Id on the set {θ : | θ| < λ /2} is given by:

v(ω) = ϕ -Id ≤ 1.6 × 10 -5 h ∼ 1.39 × 10 -177 .
Hence, the frequencies ω of the system in the new set of variables are:

       ω 1 = ω 1 ± 10 -92 ∼ 1.68 × 10 -8 ± 10 -132 ω 2 = ω 2 ± 10 -92 ∼ 1.68 × 10 -26 ± 10 -132 ω 3 = ω 3 ± 10 -176 ∼ 1.26 × 10 -129 ± 10 -180 ω 4 = ω 4 ± 10 -176 ∼ 1.26 × 10 -135 ± 10 -180
The change in frequencies is therefore very small. We can as well give the computation of the other norms appearing in the KAM theorem, so as to have an idea of the size of the transformations happening in the KAM theorem:

ϕ -Id L ≤ 2.90 × 10 9 , W Φ -Φ 0 ≤ 4.48 × 10 -23 , W Φ -Φ 0 L ≤ 1.16 × 10 167 .
6 Discussion and improvements

In this section, we discuss the result and its dependency in the initial choices. The choices we made when constructing the final Hamiltonian have a great impact on the possibility of application of the KAM theorem. We debate these choices, in order to give some clues on possible improvements.

Dependency in the initial parameters

The initial parameters suit the choices made in the computation. Yet, we can wonder what happens when trying to change them in a way or another, since all the parameters, the conditions on KAM theorem, and the size of the different parts of the perturbation are intricately linked.

Decreasing the mass of the planets: When decreasing the mass of the planets, the size of the perturbation becomes a problem. Indeed, the remainder of the BNF depends mostly on the size of the variable ρ 0 and µ, and does not decrease as fast as the other part of the perturbation. The constraints on the application of the KAM theorem on the other hand are getting more important. Without letting the eccentricities decrease, there exists some ratio between the mass of the planets and the sun at which we cannot expect the theorem to apply with our construction.

Decreasing the mass m 2 : When decreasing m 2 , again the remainder of the BNF becomes a problem.

Decreasing the ratio of the semi-major axes: When decreasing a 1 /a 2 , the problem arises from the first transformation ϕ X1 . Indeed, in this case, after applying this map, the remainder becomes bigger than the previous perturbation: || Hpert •ϕ X1 || ≥ ||H pert ||. The problem arises from the truncation of the Hamiltonian.

When the two frequencies are too far, the value of the order of truncation K becomes close to 1: indeed, recall the inequality

K ≤ γ 2 2r H 0,1 r,s 1 3 
, the fact that γ 2 / H 0,1 becomes very small becomes a problem.

Decreasing the eccentricities: When decreasing the eccentricities, we have to let as well the analyticity width r decrease at the same time. Hence, the conditions on the KAM theorem become more restrictive. Though, the estimate 4 is independent of the analyticity width r and do not decrease. Under some limit value, the conditions of the KAM theorem are not satisfied anymore because of the size of 4 . It is nevertheless possible to deal with this problem, by iterating the theorem 6 a few more times, to obtain a suitable value for the size of the perturbation.

Even though changing the initial conditions one by one makes it impossible to apply KAM theorem, if we change the initial condition together, the result can still hold. Observe as well that in a neighborhood of the initial values we considered, the KAM theorem applies.

Possible improvements of the general results

We give clues here on different possible improvements, in order to remove a bigger perturbation. Indeed, the number 10 -85 for the ratio between the masses of the planets and the star do not seem to be optimal at all. As well, the constraints on the semi-major axes and on the eccentricities need to be discussed. We try to express the improvements in an intelligible way, although this discussion is made tougher because a lot of them are intricate. Besides, there exists two different kinds of limits on our scheme: some are technical, as for example the value of the ratio of the semi-major axes, on which we rely to perform some approximations, and some are theoretical, and comes from the theorems we are using.

Technical Improvements: We focus on the improvements that can be done with more computation in the formulas.

• Limit on the semi-major axes: The choice of ratio of the semi-major axes exists mainly for convenience. Indeed, using the formulas of the expansion of the secular Hamiltonian in power of the semi-major axes can become quickly cumbersome without any approximation. That is why we decided to approximate them by their first order. We also chose to let υ ∼ 0. These two approximations would not be possible in the case of close values of semi-major axes. Besides, the computation of the inverse map of the frequencies require a lot more computation in this case. Though, removing this assumption could lead to better results. Indeed, as we noticed in the previous discussion, having closer frequencies allows us to obtain a better result when applying the theorem 6, as well as in the KAM theorem. If the ratio of the semi-major axes was close to one, we would have ω 1 ∼ ω 2 and ω 3 ∼ ω 4 , which would lead to smaller values of 2 , 3 and 4 . Yet, observe that the ratio ω 1 /ω 3 would still be very large. A possible solution would be a computational estimate on the torsion, as made by Robutel in [START_REF] Robutel | Stability of the planetary three-body problem. II. KAM theory and existence of quasiperiodic motions[END_REF].

• Limit on the eccentricities: The limit on the eccentricities comes mostly from the order of the BNF. We chose to put the secular Hamiltonian under BNF up to the order 4, and to consider every higher order as part of the perturbation. This choice requires to let the eccentricities be very small. It is possible to compute the BNF at a higher order, which would lead to the possibility of considering much larger eccentricities. Besides, instead of considering a Diophantine condition, it could be more optimal to consider a non-resonance condition of some order, so as to avoid the presence of the Diophantine constants. Observe that in our scheme, we let the values ρ 0 and ρ 0 be of the same order. With very small value of the eccentricities, it is not worthwhile to separate these values. Though, when considering larger eccentricities, it becomes essential to consider a smaller value of ρ 0 , so as to have r as small as necessary.

These remarks justify the fact that these restrictive constraints on the eccentricities and the ratio of the semi-major axes are not intrinsic in the plane planetary three-body problem. With more computation, it is always possible to weaken those assumptions.

Theoretical Improvements: We now consider the improvements that can be done in the different theorems, and in the general scheme we apply. We try to list the possible improvements by order of importance.

• Several KAM step by hand for the final Hamiltonian: The largest improvement might be the possibility of doing one or several steps of theorem 6 with the final Hamiltonian in dimension 4. Indeed, the conditions of the KAM theorem require that the size of the perturbation is less than γ 4 rσ ν /c, where c ∼ 10 18 . In the corollary, this constant is c ∼ 10 8 in dimension 4. Hence, it would be quite straightforward to gain a factor 10 10 for the ratio of the masses.

• A more suitable KAM theorem: Our choice of quantitative KAM theorem [START_REF] Castan | Quantitative KAM Theorem[END_REF] under the form that Pöschel stated in [START_REF] Pöschel | A lecture on the classical KAM theorem[END_REF] is for convenience. Yet, it requires to add the non-linear terms to the perturbation. This requirement is, with the initial values, the most restrictive one concerning the value of r . This theorem might not be the most suitable for an application to the plane planetary three-body problem.

Loosely speaking, the initial Hamiltonian is H Kep + H pert , and after some transformation, we look at

H Kep + Hpert + 2 H 2 .
Asking that (H Kep + Hpert ) • r 2 is of the size of 2 H 2 requires that r is of the size of the perturbation, and hence no more related to the actual size of Λ 1 or the eccentricities. This implies a large artificial loss of analyticity. Quantitatively, the value of r has two origins, the initial analyticity width related to the Λ i , and the initial analyticity width coming from the value of ρ and ρ (that are given by the size of the perturbation). In our case, the initial analyticity width related to the semi-major axes was r 1 ∼ 10 -69 ).

To let the non-linear part of the unperturbed Hamiltonian be of the size of the perturbation, we have to choose r = 3 × 10 -219 . Yet, it is difficult to give an order of how much one could gain with another theorem.

• Generally speaking, a KAM theorem adapted slow and fast angles: When performing a KAM step, we use the theorem of Rüssmann 5, that is optimal for a generic Hamiltonian. Though, as we previously observed, our Hamiltonian is specific in the way that its frequencies are not homogeneous, we have ω 1 , ω 2 ω 3 , ω 4 . And even more, in the case of a large ratio of Λ 1 and Λ 2 : we have ω 1 ω 2 and ω 3 ω 4 . In this case, for a small value of K, and a vector k

= (k 1 , k 2 , k 3 , k 4 ) ∈ Z 4 such that |k| 1 < K, we have ω • k ∼ k 1 ω 1 γ 4 /|k| τ 1 .
Hence, it is possible to improve the estimate of Rüssmann, by considering that the analyticity loss only takes place for high values of K, when the Fourier coefficient are getting extremely small. Such a theorem would require some precise study and estimates on the ratio between the frequencies, and also a more precise Diophantine condition. One could precisely analyze the transformation for small K, and then, when K becomes large enough and that the k i ω i starts to be of the same order, estimate as usual the size of the Hamiltonian generating the transformation. With such a theorem, one could improve the estimates on the size of the transformation we need to use, and therefore on the constants appearing in the KAM step.

• More than 3 steps of the theorem 6: For several reasons, this could improve the general result.

Indeed, 4 was close to in the application of the KAM theorem. It is responsible of the fact that we cannot let, for instance, the eccentricities go to zero. If we judge that the loss of analyticity widths, while performing another iteration, is small, then one could iterate the corollary several more times.

The fact that we have a large Kepler problem Hamiltonian implies that this transformation works well at first (if the frequencies ω 1 and ω 2 are of the same order). One could then increase the ratio of the masses, and consider more terms in the perturbation. It implies a loss in the analyticity widths r 1 and s 1 = λ , as well as a loss in the analyticity width in the frequencies.

• BNF for the transitional Hamiltonian: The transitional P 2 , P 3 Hamiltonian appearing when performing a KAM step to the initial perturbation depend on the angle g = g 1 -g 2 . Hence we chose to consider that the part depending on this angle is part of the perturbation. In the case we want to consider a larger perturbation, and that we need to apply more KAM steps,we might have to keep the parts depending on the angle g. In this case, it is possible to put the Hamiltonian H 0,i + Pi+1 under normal form, so as to remove the dependency in the angle g of the unperturbed Hamiltonian H 0,i+1 . A normal form up to some order n would lead to an estimate of these terms of the size P i (ρ 0 + ρ 0 ) n /µ n .

• Computing the first Legendre polynomials: We mentioned before some possible improvements on the estimate of the perturbation. The largest improvement regarding the computation of the size of the perturbation is to calculate the first terms of the Legendre polynomials, in order to have a better estimate when computing its analytic continuation. One can expect to gain a factor close to 3 by doing such a computation.

• General optimization of the theorems: Broadly speaking, trying further to improve any constant in the theorems we used could lead to a gain in the result. Improving any constant, trying to be as optimal as we can in every possible steps is an effort that could be rewarded by some orders of magnitude in the ratio of mass we are considering, and therefore will not be a vain effort.

A Remainder of the truncated Fourier series

Let A s be the set of functions defined on T n that are bounded and analytic on the set

T n s = {θ ∈ T n C , | θ| < s}. Let f ∈ A s , for θ ∈ T n s , we can write f (θ) = k∈Z n f k e ık • θ . For all k ∈ Z n , we have |f k | ≤ |f | s e -|k|s .
Indeed, this result is straightforward using the fact that f is 2π-periodic in each variable, and analytic and bounded on its set of definition.

Let us consider the truncation of order K ∈ N of f :

T K f (θ) = k≤K f k e ık • θ . Lemma 8. Let s > 0 and σ < s. If f ∈ A s , and Kσ ≥ n -1 then |f -T K f | s-σ ≤ 4 n n!K n e -Kσ |f | s , 0 ≤ σ ≤ s
Proof. We have:

|f -T K f | s-σ ≤ k∈Z n ,|k|1>K |f k | exp(|k| 1 (s -σ)) ≤ |f | s k∈Z n ,|k|1>K exp(-|k|σ) ≤ 4 n |f | s l∈N,l>K l n-1 exp(-lσ),
where we used the fact that the number of k ∈ Z n such that |k| 1 = l is less than 4 n l n-1 . As for the last sum, since the general term is strictly decreasing, it can be bounded by the incomplete gamma function:

l∈N,l>K l n-1 exp(-lσ) ≤ ∞ K x n-1 exp(-xσ)dx ≤ 1 σ n ∞ Kσ x n-1 exp(-x)dx ≤ (n -1)! σ n exp(-Kσ) n-1 k=0 (Kσ) k k! ≤ (n -1)! σ n exp(-Kσ)n × (Kσ) n-1 ≤ n! K n-1 σ exp(-Kσ) ≤ n!K n exp(-Kσ).

B Rüssmann estimates on linear partial differential equations

We recall the result of Rüssmann in its paper [START_REF] Rüssmann | On optimal estimates for the solutions of linear partial differential equations of first order with constant coefficients on the torus[END_REF], which gives an optimal estimate on the norm of the solution of linear partial differential equations of first order with constant coefficients on the torus. Consider the set of functions of n angles that are analytic on some domain of width s, and of zero mean. Define: 

T n s = {θ ∈ T n C , ∀i ∈ 1, n : | θ i | < s} A s = {f : T n s → C, f C -analytic} A s 0 = {f ∈ A s , s.t.

C Secular Hamiltonian, and remainder of the perturbation

We consider here a perturbed analytic Hamiltonian, and we perform a transformation to make the perturbation smaller (see [START_REF] Arnold | Mathematical methods of classical mechanics[END_REF]3] for further insight on the theory). The ideas behind it are the one of the KAM step see [START_REF] Pöschel | A lecture on the classical KAM theorem[END_REF] for instance), although we do not put much interest on the frequencies. We prove the following theorem.

Theorem 6. Let H : R 2 × T 2 → R be a Hamiltonian of the form H(I, θ) = H 0 (I) + H 1 (I, θ). Assume that it is analytic on the set B(r, s) with r, s > 0. Let K ∈ N , and H 0,1 = H 0 + 1/(2π) n T n H 1 . Assume that there exists I 0 ∈ B(r/2, s/2) such that ω(I 0 ) ≡ H 0,1 (I 0 ) ∈ D(γ, 2). Under the assumptions K ≤ γ 2r H 0,1 r,s Proof. Call H1 = H 1 -1/(2π) 2 T 2 H 1 , expand it in Fourier series and define its truncation at order K: 

≤ 4C 0 γσ 2 H 1 r,s (55) 
where C 0 < 25. Define X the Hamiltonian vector field associated to G, and ϕ X its time-one map. Using Cauchy's inequalities, we have

||X|| I r,s-3σ ≤ 4C 0 γσ 3 ||H 1 || r,s , ||X|| θ r-ρ,s-2σ ≤ 4C 0 γρσ 2 ||H 1 || r,s . (56) 
Computing the transformation on the Hamiltonian H, we have:

H • ϕ X = H 0,1 • ϕ X + HK 1 • ϕ X + R K • ϕ X = H 0,1 + R f + R K • ϕ X R f (x, ) = 1 0 t (H 0,1 • X) • X • ϕ t X (x)dt.
The term under the integral is

(H 0,1 • X) • X) = H 0,1 • X 2 + H 0,1 • X • X.
We will show below that the transformation ϕ X : B(r/2, s/2) → B(r/2 + ρ, s + σ), using this we have:

R f (x, t) r/2,s/2 ≤ 0 t (H 0,1 • X) • X) • ϕ t X (x) r/2,s/2 dt ≤ 1 0 t (H 0,1 • X 2 ) + (H 0,1 • X • X) r/2+ρ,s/2+σ dt ≤ 1 2 H 0,1 • X 2 r/2+ρ,s/2+σ + H 0,1 • X • X r/2+ρ,s/2+σ . (57) 
The term H 0,1 depends only in the action, therefore its derivative only has partial derivative for the first n variables. The second derivative has only non zero terms in the first square of size n × n of its matrix of size 2n × 2n. This implies: 

H 0,1
With these values, the theorem is proved. It remains to prove the hypothesis on the transformation ϕ X . To consider the time-one map of the vector field X, and verify that ϕ X (B(r/2, s/2)) ⊂ B(r/2 + ρ, s + σ), it is enough to verify that ||X|| I r/2+ρ,s/2+σ ≤ ρ, ||X|| θ r/2+ρ,s/2+σ , ≤ σ. This is straightforward using the bounds on the vector field and the second hypothesis of the theorem.

This scheme can be iterated in order to obtain a perturbation small enough. We give the hypotheses that need to be verified to apply the scheme two more times. Let H 0,2 = H 0,1 + H2 , which expression is not known. Losing some more analyticity width, we can handle the change of frequencies to be able to iterate the scheme. We have the following corollary: Corollary 1. Let H : R 2 × T 2 → R be a Hamiltonian of the form H(I, θ) = H 0,1 (I) + H 2 (I, θ) with H 2 obtained by the theorem 6. Assume that it is analytic on the set B(r/2, s/2) with r, s > 0. Let K ∈ N , and H 0,2 = H 0,1 + /(2π) n

T n H 2 . Assume that there exists I 0 ∈ B(r/8, s/4) such that H 0,1 (I 0 ) ∈ D(γ, 2). Under the assumptions The division by 4 of the analyticity width among the action corresponds to the necessity of using Cauchy's inequality to H 2 so as to control the frequency and obtain a non-resonance condition for H 0,2 in the wanted set. The assumptions for a third iteration are the following: 

K 3 ≤
K 3 ≤ min 8γ r H 0,

1 0 ( 1

 11 -t)H 0,3 (p t ) • I 2 dt, and H l (I , p 0 ) = H 0,3 (p 0 ) + H 0,3 (p 0 ) • I . The Hamiltonian we consider, takes the final form:

  50 × 10 -65 , using s = t ≥ λ . Now we can define ρ 0 ∼ 2.55 × 10 -63 , ρ 0 ∼ 1.56 × 10 -63 , µ ∼ 3.83 × 10 -21 < Λ 1 ∼ 4.51 × 10 -20 .

4 ≤ 5 . 2 .

 452 39 × 10 -406 , Remainder of the BNF: ≤ 3.49 × 10 -406 , 3. Remainder of the part of the transitional Hamiltonian depending on the eccentricities: ≤ 1.24 × 10 -436 , 4. Non-linear remainder: ≤ 2.23 × 10 -406 .

6 n 2 √

 62 Writing |f | s = sup T n s |f |, we have the following theorem:Theorem 5(Rüssmann). Let ω ∈ D γ,τ a Diophantine vector, and g ∈ A s 0 . Then the equation∂ ω f = g (50)has a unique solution f in 0<σ<s A s-σ 0 , and we have the following bound on the norm of f for 0 < σ < s:|f | s-σ ≤ C 0 γσ τ |g| s ,where C 0 = 3π 2

  Define the following norms and balls forx = (I, θ) ∈ C n × T n C , ||x|| I = max i∈ 1,n |I i |, ||x|| θ = max i∈ n+1,2n | x i | = max i∈ 1,n | θ i |, ||x|| ∞ = max(||x|| I , ||x|| θ ), B(r, s) = x ∈ C n × T n C , ||x|| I ≤ r, ||x|| θ ≤ s , f r,s = f B(r,s) = sup x∈B(r,s) |f (x)| .

HK 1 (2|k| 2 1 .γσ 2 HK 1 r

 1121 I, θ) = k∈Z 2 \{0},|k|1≤K h k (I) exp(ık • θ), R K = H1 -HK 1 (I, θ).(51)Let r = 4ρ and s = 10σ. By lemma 8 of appendix A, and the third hypothesis of the theorem, these terms are bounded by||R K || r,s-4σ ≤ 32K 2 exp(-4Kσ)||H 1 || r,s ,(52)|| HK 1 || r,s-σ ≤ (1 + 32K 2 exp(-Kσ))||H 1 || r,s ≤ 2||H 1 || r,s .(53)Regarding the frequencies, we have for I ∈ B(r):ω(I) • k r ≥ | ω(I 0 ) • k r -ω(I) • k -ω(I 0 ) • k r |We know that ω(I 0 ) verify a Diophantine condition. As for the other term:ω(I) • k -ω(I 0 ) • k r = (ω(I) -ω(I 0 )) • k r = n i=1 (∂ Ii H 0,1 (x) -∂ Ii H 0,1 (x 0 ))k i r ≤ 2rK H 0,1 r ,where ||H 0,1 || r is the supremum norm over the set B(r). With the first hypothesis of the theorem, it shows that ω(I) verifies a non-resonance condition of order K, and more precisely that||ω(I) • k|| r ≥ ||ω(I 0 ) • k|| r -||ω(I) • k -ω(I 0 ) • k|| r ≥ γNow we can define G a Hamiltonian as follows:G(I, θ) = ı k∈Z 2 , 0<|k|1≤K h k (I) ω(I) • k exp(ık • θ).(54)This Hamiltonian solves the cohomological equation {H 0,1 , G} = -HK 1 . Hence, using the estimate 5 of Rüssman in appendix B, we have the following bound on G: G r,s-2σ ≤ 2C 0 ,s-σ

  there exists a symplectic map ϕ X : B(r 1 /32, s 1 /8) × Dpol,r2/8,s2/8 → B(r 1 , s 1 ) × Dpol,r2,s2 , and the following bounds hold:

	5 ,	γr 2 s 2 1 s 2 10 4	,	2 ≤ min	γr 1 s 3 1 2 8 .10 5 ,	γr 2 s 2 1 s 2 2 5 .10 4 ,	3 ≤ min	γr 1 s 3 1 2 14 .10 5 ,	γr 2 s 2 1 s 2 2 10 .10 4 ,
	P 2 r1/2,s1/2,r2/2,s2/2 ≤ 2 ,		P 3 r1/8,s1/4,r2/4,s2/4 ≤ 3 ,	P 4 r1/32,s1/8,r2/8,s2/8 ≤ 4 .

  • X 2 r/2+ρ,s/2+σ ≤ H 0,1 r/2+ρ,s/2+σ X With our previous notations, we also haveH 0,1 • X • X r/2+ρ,s/2+σ ≤ H 0,1Computing using Cauchy's inequality, we obtain H 0,1 • X • X r/2+ρ,s/2+σ ≤ H 0,1

	I 1,r/2+ρ,s/2+σ X • X	I r/2+ρ,s/2+σ .
	I 1,r,s	64C 2 0 γ 2 ρσ 6 H 1	2 r,s .
		I	
		r/2+ρ,s/2+σ

2

, where we defined ||H 0,1 || r/2+ρ,s/2+σ = sup B( r

2 +ρ, s 2 +σ) (i,j)∈ 1,n 2 ∂ Ii,Ij H 0,1 . We deduce: H 0,1 • X 2 r/2+ρ,s/2+σ ≤ 16C 2 0 γ 2 σ 6 H 0,1 r,s H 1 2 r,s .

(58)

  We then have our symplectic application ϕ 3 : B(r/32, s/8) → B(r/8, s/4), and the bound on H 4 :

		1 r,s	,	rγ 2 6 H 2 r/2,s/2	,	rγ 2 7 H 3 r/8,s/4	, H 3 r/8,s/4 ≤	γrs 3 2 14 .10 5 , 32K 2 exp	-Ks 40	≤ 1.
	H 4 r/32,s/8 ≤	2 16 .10 10 γ 2 s 6	H 3	2 r/8,s/4 ×		H 0,1 r,s +	2 8 r	H 0,1	I 1,r,s +	2 11 r 2

H 2 r/2,s/2 + H 3 r/8,s/4 + 32K 2 exp -Ks 10 H 3 r/2,s/2 .

√ 2(3ρ+4ρ ), √ 2(2ρ+5ρ ) .

d 100 ∼ 1.26 × 10 -129 , d 010 ∼ 1.26 × 10 -135 , d 001 ∼ -3.16 × 10 -144 .

≤ 2.62 × 10 -200 ,

≤ 6.52 × 10 -270 ,

≤

[START_REF] Castan | Complex singularities in the plane planetary three-body problem[END_REF].39 × 10 -406 .

D First terms of the series expansion in power of eccentricities

D.1 Terms of the expansion in semi-major axes

Call L p = 1 2 4p 2p p 2 , after integration, for p ≥ 1, these coefficients are:

D.2 Formula in Poincaré coordinates

Calling

the average of the Hamiltonian over the fast angle is:

D.3 Expansion at the second order in

The expansion of the coefficient d i,j at the second order in the ratio of the Λ i can be written as follows (we forget to write o Λ1 Λ2 8 for convenience):