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L’aspect topologique des recommandations

Erwan Le Merrer1, Gilles Trédan2

1Technicolor, France 2LAAS/CNRS, France

La recommandation joue un rôle central dans le e-commerce et dans l’industrie du divertissement. L’intérêt croissant
pour la transparence algorithmique nous motive dans cet article à observer les résultats de recommandations sous la
forme d’un graphe capturant les navigations proposées dans l’espace des items. Nous argumentons qu’une telle ap-
proche en � boite noire � est utile dans le cas d’une exploration limitée à un utilisateur : nous illustrons une topologie
tirée de recommandations à un utilisateur de Youtube, fournissons ses caractéristiques clés, et montrons qu’elle ren-
seigne sur la connaissance de cet utilisateur par le système.
Nous montrons ensuite que l’analyse de cette topologie d’aborder la question du biais potentiel dans ces recomman-
dations. Nous postulons que les systèmes de recommandation produisent naturellement des topologies cohérentes,
et qu’une manipulation de ces résultats par l’ajout de liens biaisés a toutes les chances de violer cette cohérence (à la
manières des liens longs d’un modèle � petit monde �). Ce postulat est supporté par l’analyse d’un modèle génératif basé
sur les kNN et par l’exploitation du crawl Youtube, en ciblant la prédiction de liens � Recommandé pour vous � (i.e.,
biaisés ou non par Youtube). †

Mots-clefs : Graphes de terrain, recommandation, modèle Watts-Strogatz, biais, transparence algorithmique.

The output of recommender systems are benchmarked by researchers and practitioners based on their
precision and recall performances on test datasets [4]. Yet, while those metrics have proven useful for
assessing the performances of recommenders, we find that the graph data-structure has not been applied
for studying and learning about the recommendations made to users (i.e., the recommenders’ outputs).
We argue that graph theory and the wide spectrum of graph algorithms available for data mining complex
networks can be as well leveraged for complementing studies about recommender results.

Some major service providers, such as Youtube, comment on the high level implementation of their
recommender, without specifying details that would allow a transparent use by the public [1]. Recently,
there is an increased demand for accountability of the services provided by those platforms, that can be
viewed as black-boxes operating remotely, and that a user interacts with by providing her profile or by
calling API operations [3]. We observe in next section the results of recommendations to a user as a graph.

1 User recommendations as a topology
On the web-page of an enjoyed item, recommendations take the simple form of a set of displayed items,

for the user to interact with. We propose to go beyond the collection of this flat item-set, by diving into each
proposed item, recursively, up to a limited depth h (for obvious practical reasons). On the canonical example
of crawling from an item web-page (e.g., video), where k other related items are recommended, and where
each item is only recommended once in total, we would obtain a balanced tree of nh

tree(k) =
kh+1−1

k−1 nodes.
We use the example of video recommendation in this paper. In the mainstream Youtube platform, we

start crawling recommended video web-pages from a given video (a popular one from Lady Gaga), with
h = 4 and noticing that 19 videos are recommended at each page (k = 19). There are two modes for viewing
videos in such a system ; case @C : a user is new to the platform, and case C : she is a returning user
(thus has a history, identified by Youtube with a cookie passed by our web-crawler). Drastic differences
occur when building the graphs for both scenario (the two crawls are separated by only few seconds) ; @C :
n4

AC
(19) = 14,121 nodes and has 36,435 edges. In case C , n4

C (19) = 8,786 nodes and has 24,731 edges.

Both graphs are displayed on Figure 1. First observation is that as n4
tree(19) = 137,561, there is a high

†. This paper is a part of the technical report available under reference [2].
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FIGURE 1: 4-hops graphs of recommendations from a Youtube video, new (left) vs returning user (right).

redundancy of recommendations, for both @C and C . Very interestingly, crawl C contains around 38% less
nodes than @C . This has to be interpreted by the recommender system “knowing” the user, and then trying
at each video access step to insist in the recommendation of what it thinks is best suited for that user to
enjoy. In case @C of a new user, the recommender presents videos related to the start one as well, but also
includes in its recommendations videos from different categories (sport, news, . . .), probably in the hope
to gain knowledge faster about the user by varying its propositions. Those phenomenons are confirmed by
analyzing graph structures : a search for main clustered components (through the modularity algorithm with
p= 5.0) indicates 7 components of size at least 1% of the graph nodes for the graph in experiment @C , versus
only 3 for case C (i.e., more precise recommendations lead to fewer clusters of interest for the returning
user). Node colors corresponds to components they belong to, on Figure 1. Another key difference is the
degree distribution, with 3 nodes having more than 100 in-neighbors for @C , versus 10 in C : well ranked
videos are consistently recommended to the returning user.

An immediate conclusion drawn from the structural analysis of both @C and C graphs, is that their topolo-
gical comparison informs about the degree of knowledge of the system about the observing user, even under
limited exploration scope. Having discussed the possibility for a user to crawl a recommender system and
analyze its outputs under the form of a a graph, we now propose an application using this representation. ‡

2 Exploitation of graphs of recommendations for bias detection
A recently discussed topic is the influence of online medias, and their capacity to shape user opinion

based on item recommendations. We now define the setup considered in our work.

Recommender Model We consider that recommenders, given an item i ∈ I (along with some other type
of information like the user profile) return a score si

R : I 7→ [0,1] typically capturing items similar to i [4]. The
output of such a recommender system R is then exploited by a service that selects the subset of best matching
items that will get recommended when a user u consults i (typically a simple sort operation). Let Ri(u)⊂ I be
this set of recommended items to u at a web-page : ∀ j ∈Ri(u), j′ ∈ I\Ri(u),si

R(u, j)≥ si
R(u, j′). By selecting

a recommended item j ∈ Ri(u), u enjoys j, but as well gets recommended items similar to j, namely R j(u).
In this context, an instance of a graph discussed in Section 1 is a directed graph Gh

R(u) = (I,ER) in which
(i, j) ∈ ER ⇔ j ∈ Ri(u). In a system that biases recommendations, the user is proposed certain items (for
economical, or legal reasons for instance) : this translates in biased edges toward items from set I.

Bias in a graph of recommendations The service officially exploits the recommender R (such as the one
advertised in [1]), that can be accessed as a graph of recommendations Gh

R(u). A service may aim at adding
recommendation bias to Gh

R for orienting u’s navigation by including some biased edges. Let EB this set of
biased edges. Resulting observable graph is Gh(u) = (I,ER∪EB). The central use case we are interested in
relies on the vision of recommendations under the form of a topology.

We now ask the following question : having access to Gh(u), can user u decide whether a given edge of
that graph is biased or not ? Hereafter, we propose a model for addressing this question, that is based on
the small-world parallel with recommendation graphs.

‡. We propose models for graphs of recommendations in [2], notably one explaining observation bias that a user might encounter.
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FIGURE 2: Distribution of graph path lengths for the experiments : model (left) and Youtube crawl (right).

2.1 Towards algorithms for tagging long biased edges
We propose to study potential bias in recommendation graphs, in relation to the locality or not of recom-

mended items. For avoiding a formal - and possibly debatable - definition of bias, we instead state two of
its most probable topological consequences on Gh :
Proposition 1 Biased edges impact graph structure : if the service bothers to bias recommendations to a
user, it is because it effectively impacts that user navigation among items. That is, users do not navigate the
same way in an unbiased graph Gh

R than in a graph Gh containing biased edges. Therefore, the existence of
biased edges must significantly change the properties of the observed graph of recommendations.
Proposition 2 Recommenders leverage item proximity, and this appears in a graph observation : most of
recommenders exploit some underlying coherence among the items. Collaborative filtering exploits corre-
lations in users’ tastes : if users enjoying a also usually enjoy b, b will be recommended from a and vice
versa. This symmetry translates into edge locality in Gh

R, captured by e.g., clustering (as appearing through
clusters on Figure 1). Biased edges might not rely on such property, and therefore are less likely to produce
locality. We also can argue that if bias actually results in the proposal of usual (i.e., local) items for a user,
she is not likely to consider those recommendations as biased.

In practice, machine learning algorithms associate to each item a d-dimensional vector of features ; a
recommender then for instance relies on k nearest neighbors (kNN) or cosine similarity on those vectors.
Recommended items are thus often close-by in the d-dimensional feature space, while we expect biased
edges to point to items that are relatively far in the feature space. Note that this observation of the effect
of biased edges on the topology may relate to services providing serendipitous recommendations [4] (for
bringing diversity to a user) ; this nevertheless arguably constitutes a form of bias w.r.t. user habits.

A small-world perspective We now propose to identify bias using a parallel to the Watts-Strogatz “small-
world” model [5]. In that model, nodes have local connectivity in a given space between them (capturing for
instance a geographical proximity), but also have so called long-range links (capturing for instance a familial
relationship, loosely related to a geographical proximity). The consequences of these long edges are well
known : they drastically impact average path length. We argue that biased links added to the recommender
output have the same impact : provided they are different enough from the recommender edges, they will
impact the graph structure. To capture this degree of difference, we propose the following model.

A biased recommendation model Our model considers two recommenders on a set of I items : one
� official � R, and one used to issue � biased � recommendations, R′. To model the fact that biased recom-
mendations may not be completely unrelated to normal recommendations, we use a tuning parameter iRR′

presented hereafter. Let R the � official � recommender be a kNN recommendation system producing kR
items per query (∀i ∈ I, |Ri(u)| = kR), based on the pi ∈ Rd feature vector : ∀i, j ∈ I2,si

R(u, j) = ||pi p j||2.
Let ER be the set of produced edges : Gh

R = (I,ER).
In addition to its pi vector, each item i ∈ I is associated with another d′ dimensional feature vector bi ∈

Rd′ , representing � hidden � features (profitability, political support) leveraged to bias recommendation.
Biased edge set ER′ is produced by a kNN recommender with kB output using bi. The observable graph for
a user is Gh = (I,ER∪ER′) in which nodes have an out-degree of k = kR + kB.

Features are generated uniformly at random : ∀i ∈ I : (pi[c])1≤c≤d ∼U(0,1) and (bi[c])1≤c≤d′ ∼U(0,1).
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FIGURE 3: Tagging feasibility : ROC curves. Model (left) and Youtube crawl (right).

However, to vary the amount of bias, the dependency between pi and bi is as following : let 0 ≤ iRR′ ≤
min(d,d′). We set ∀i ∈ I,∀1 ≤ c ≤ iRR′ ,bi[c]← pi[c]. That is, if d = d′ = iRR′ , both recommenders R and
R′ will produce exactly the same results (therefore Gh = Gh

R). On the other hand, if iRR′ = 0, pi and bi are
independent, and so are the results of R and R′.

Experiments We re-use the Youtube crawl C (Section 1), from an identified user u. In the set of Youtube
recommendations at each page, some (around 20%) are tagged with the flag “Recommended for you” (whe-
reas other simply display their number of views). For the experiment, we consider those recommendations
as part of the biased set we seek to tag (ground truth). We parameter the model for comparable results :
|I|= 8753,kR = 17,kB = 2. We set d = d′ = 5.

First, we look at the small-world parallel with introduced bias under Proposition 1 on Figure 2, where
we plot the path length distribution of G4

R(u) and G4(u) (i.e., for Youtube, we use the full crawl, and then
remove the “Recommended for you” edges). We note a clear change in the graph properties when biased
edges are present : they shortcut many paths, as known in small-world graphs, in both experiments.

Second, Proposition 2 is examined on Figure 3. For doing so, we run a symmetric edge-betweenness
centrality algorithm on G4(u) graphs, for that metric is aimed at finding topologically important edges. We
plot the ROC curves, representing the probability of biased edges actually ending-up in sorted top-result of
the centrality metric. For the model, a bias based on few feature dependencies (e.g., iRR′=1 or 2) clearly
allows for edge tagging. For Youtube, the heuristic is also way above a random tagging baseline, close to
the maximum (thMax) for a while. For both experiments, we conclude that tagging algorithms have a clear
room for providing accurate results : if one seeks the 4491 biased links of the dataset (recall@k, symbolized
by the vertical line at x = 0.19), the betweenness on Youtube directly allows to identify 52% of the set.

Conclusion There are two main conclusions to this study. First, graphs of recommendations are an in-
teresting abstraction for assessing recommender outputs : they clearly display the item locality a service
provides users with (that we illustrate through the small-world parallel). Finally, if a service aims at bia-
sing some recommendations, the effects might be witnessed on such user extracted graphs. We believe this
brings both analytical and algorithmic interest in the scope of personalization transparency studies.

Future-work includes the proposal and comparison of heuristics for tagging biased edges, and the study
of other applications of graphs of recommendations, possibly for usage by service providers themselves
(e.g., Pagerank-like computation over global graphs of recommendations [2]).
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