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1 Introduction

Let Q c R” be a bounded simply connected domain and u : Q — S! a con-
tinuous (resp. C*, k = 1) function. It is a well-known fact that there exists a
continuous (resp. C*) real-valued function ¢ such that u = ¢?. In other words,
u has a continuous (resp. C*) lifting.

The analogous problem when u belongs to the fr ctsional Sobolev space W7,
$>0, 1< p <oo, received an complete answer in [Z]. Let us briefly recall the
results:

1. when n =1, u has a lifting in W52 for all s >0 and all p €[1,00),

2. when n =2 and 0 <s <1, u has a lifting in W%? if and only if sp <1 or
sp =n,

3. when n =2 and s =1, u has a lifting in W%? if and only if sp = 2.

. . ethuelchiron,nguyenphase,mirone:
Further developments in the Sobolev context can be found in [T, 28, 24, 261.

In the present paper, we address the corresponding question in the frame-
work of Besov spaces. More specifically, given s,p,q in suitable ranges de-
fined later, we ask whether a map u € B;,q(Q;Sl) can be lifted as u = e'?, with
¢ € B}, ,((;R). We say that Bj, | has the lifting property if and only if the

answer is positive.
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When dealing with circle-valued functions and their phases, it is natural
to consider only maps in Llloc. This is why we assume that s > 0,! and we take
the exponents p and ¢ in the classical range p € [1,00), ¢ € [1,00].2

Since Besov spaces are microscopic modifications of Sobolev (or Slobodeskii)
spaces, one expects a global picture similar to the one described before for
Sobolev spaces. The analysis in Besov spaces is indeed partly similar to the
one in Sobolev spaces, as far as the results and the techniques are concerned.
However, several difficulties occur and some cases still remain open. Thus,
the analysis of the lifting problem leads us to prove several new properties for
Besov spaces (in connection with restriction or absence of restriction proper-
ties, sums of integer valued functions which are constant, products of func-
tions in Besov spaces, disintegration properties for the Jacobian), which are
interesting in their own right. We also provide detailed arguments for clas-
sical properties (some embeddings, Poincaré inequalities) which could not be
precisely located in the literature.

Let us now describe more precisely our results and methods. When sp >
n, functions in B}, , are icontinuous, which readily implies that B}, , has the
lifting property (Case E‘)’

In the case Wkuegl?r $P 5 1, we rely on a characterization of Bg’q in terms
of the l{-Iaar basis [3; Theoreme 5], to prove that B, , has the lifting property
(Case 2).

Assume now that 0 <s <1, sp =n and g <oo. Let u € B, (Q; s!) and
let F(x,€) := u * p,, where p is a standard mollifier. Since BS — VMO,
for all ¢ sufficiently small and all x € Q we have 1/2 < |[F(x,¢)| < 1 Writing
F(x,e)/ |F(x,¢e)| = e'¥Ve, where . is C*, and relying on a slight E%(s)giigcatmn of
the trace theory for weighted Sobolev spaces developed in r;[2‘7']_We conclude,
letting etend to 0, that u = e'¥9, wher Vo = lim. oy, € BS
Bj, ; still has the lifting property (Case )

P.q> and therefore

Consider now the case where s > 1 and sp = 2. Arguing as in »[li_SSection 31,
it is easily seen that the lifting property for Bj, , will follow from the following
property: given u € B;,q(Q;§1), if F:=u AVu € LP(Q;R"), then (x) curl F = 0.
The pr %fs' of (%) is much more involved than the corresponding one for W?*?
spaces [4, Section 3]. It relies on a disintegration argument for the Jacobians,
more generally applicable in WYP-P_ This argument, in turn, relies on the fact
that curl ¥ = 0 when © € VMO and n =2, and a slicing argument. In particular,
we need a restriction property for Besov spaces, namely the fact that, for s > 0,
1 <p<ooandl< 9= D, for all f € By, ,, the partial maps of f still belong to

» (see Lemma—%‘? below). Thus, we obtain that, when s>1and 1 < p <oo,

1 Howeyer, we will discuss an appropriate version of the lifting problem when s < 0; see
Remark and Case 10 below.
2 We d1scard the unlnteresﬁ% ng case where p = co. In that case, maps in B{_, are con-

00,
tinuous. Arguing as in Case elow, we obtain the existence of a B, , phase for every
u EBgo,q(Q;Sl).



positive

By, ; does have the lifting property when [1 < g <oo, n =2, and sp = 2], or
[1<g<p,n=3,and sp =2], or[ISqSoo,nzﬁg;%ndsp>2].

One can improve the conclusion of Lemma as follows. For s >0, 1 <
p < oo and 54 =P for all f € B}, ., the partial maps of f belong to Bj, ,
(Proposition 6:10). We emphasize the fact that this type of property holds only
under the crucial assumption g < p. More precisely, if ¢ > p and s > 0, then we
exhibit a compactly supported functio (IRZz) such that, for almost every
x€(0,1), f(x,") ¢ B}, o(R) (Propos1t10nr%_1‘1') This phenomenon, which has not
been noticed before, shows a picture strikingly differ ngrtit;%%%the one for WP,
and even more generally for Triebel-Lizorkin spaces &35_5_‘0, ection 2.5.13].

Let us return to the case when 0 <s <1, 1< p <oo and n = 2. Assume
now that [1<g<ooand 1 <sp <n], or [g =00 and 1 <sp <n]. In this case,
we show that BS does not have the lifting property. The argument uses
embedding theorems and the following fact, for which we provide a proof: let
§;>0,1<p;<oo,and[s;p;=1and 1<qgj<ool,or[s;jp;>1and 1=<gq;=<oo],
i =1,2. Then, if f; € B;’ii,(Zi and f1 + fo only takes integer values, then the
function f; + f2 is constant.

Assume finally that 0 <s <00, 1< p<oo,n=2and[1<qg<ooand 1<
sp <2]or[g=o00and 1=<sp=2]. In this case, B}, , does not have the lifting
property either. We provide a counterexample of topologlcal nature, inspired

by L[ﬁ,‘Sectmn 4]: namely, the function u(x) = (x1,%2) 2 belongs to B, , but

(a7 +23)
has no lifting in B, ,

Contrary to the case of Sobolev spaces, some cases remain open. A first
case occurs when s >1, 1< p<oo, p<qg<oo, n=3, and sp =2. In this
situation, since the restriction property for Bj , does not hold, the argument
sketched before does not work any longer and we do not know if B},  has the
lifting property.

The case where s=1, 1<p<oo,n=3,and [l1<g<oocand 2<p <n]or
[q =00 and 2 < p < n] is also open (except when s =1 and p = g = 2, since in
this case, B% 9= W12 has the lifting property). This is related to the fact that

it is not known whether the map ¢ — e'¥ maps B p,q 10tO itself

When 1< p <00, s=1/p and g = oo, we do not know if B - has the lifting
property. In particular, it is unclear whether the Haar system prov1des a basis
of Bpf,o. The case where ¢ =00, n < p <00, n =3 and s = n/p is also open.
Indeed, Bj, , is not embedded into VMO in this case, and the argument briefly
described above is not applicable any more.

Let us summarize the main results of this paper concerning the lifting
problem. We start with positive cases.

1.1 Theorem. Let s >0, 1 < p <oo, 1 < g <oo. The lifting problem has a
positive answer in the following cases:

1. s>0,1<g<o0,and sp >n,



2. 0<s<l,l<sg<oo,andsp<1,
3. 0<s=<1,1<g<oo,and sp =n,

4. (a) s>1,1<g<oo,n=2,and sp =2,
(b) s>1,1<g<p,n=3,and sp =2,

(c) s>1,1<g<oo,n=2,and sp > 2.
The negative cases are as follows:

1.2 Theorem. Let s >0, 1 < p <00, 1 < g <oo. The lifting problem has a
negative answer in the following cases:

1. (a) 0<s<1l,1<g<oo,n=2,and1<sp<n,

(b) 0<s<1l,g=00,n=2,and 1<sp<n,

2. (a) 0<s<oo,1<g<oo,n=2,and1<sp<2,

(b) 0<s<oo,l1<p<oo,g=o00,n=2,and 1 <sp <2.

f
The paper is organized as follows. In Section E,Ewe briefly recall the stan-
dard definition of Besov spaces and some classical characterizagisons of these
spaces (b OIs,iltttllggvood—Paley theory and wavelets). In Section B°%e establish
Theorem 1.1, namely the cases where B; q does have the lifting prg&erty, while
i mne K > negative . ope .
Section h_lgs devoted to negative cases (Theorem 12). I Section 5, we discuss
the remaining cases, which are widely open. The final section gathers state-

ments ani gg(l)gfg of; Vaa}criigéls results on Besov spaces needed in the proofs of
Theorems T.Tand 1.2.
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Notation, framework

1. Most of our results are stated in a smooth bounded domain Q c R”.

2. In few cases, proofs are simpler if we consider Z"-periodic maps u :
(0,1)® — S'. In this case, we denote the corresponding function spaces
B;,q(T”;§1), and the question is whether a map u € B;’q(T”;§1) has



a lifting ¢ € B;,q((O,l)n;R). [Of course, ¢ need not be, in general, Z"-
periodic.] If such a ¢ exists for every u € B;,Q(T”;gl), then Bz,q(Tn;Sl)
has the lifting property.

However, in these results it is not crucial to work in T". An inspection of
the proofs shows that, with some extra work, we could take any smooth
bounded domain.

3. In the same vein, it is sometimes easier to work in Q = (0,1)" (with no
periodicity assumption).

4. Partial derivatives are denoted d;, 0;0;, and so on, or 0“.

5. A denotes vector product of complex numbers: a Ab :=a1bg—agbi. Sim-
ilarly, u A Vv :=u1Vvg —usVu;.

6. Ifu:Q — Candif @is a k-form on Q (with & € [0,n—1]), then @A(uAVu)
denotes the (k + 1)-form ® A (u1dug —uaduq).

7. We let R* denote the open set R*~! x (0,00).
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2 Crash course on Besov spaces

We briefly recall here the basic properties of the Besov spaces in R”, with
special focus on the properties which will be %?féﬁ‘éf&ffﬁt&ltﬁ‘{‘éb%% purposes.

For a complete treatment of these spaces, see BSTIS, 36, 301.

2.1 Preliminaries

In the sequel, #(R") is the usual Schwartz space of rapidly decreasing C*°
functions. Let Z(R"™) denote the subspace of .#(R") consisting of functions
¢ € L(R") such that 0%¢p(0) = 0 for every multi-index tgil}all’;élljet Z'(R™) stand
for the topological dual of Z(R"). It is well-known EB_S*, ection 5.1.2] that
Z'(R™) can be identified with the quotient space .#'(R")/Z2?(R"), where Z2(R")

denotes the space of all polynomials in R”.
We denote by & the Fourier transform.
For all sequence (f;);>0 of measurable functions on R", we set

q/p 1/q
”(fj)”lq(LP)::(Z(/ |fj(x)|pdx) ) ,
=0 Ugn

with the usual modification when p = oco and/or g = co. If (f;) is labelled by Z,

then ||( f j)|| laLr) is defined analogously with } ;- replaced by }_jc7.

Finally, we fix some notation for finite order differences. Let Q2 c R" be a
domain and let f : 2 — R. For all integers M =0, all £ >0 and all x,h € R", set

M (M
(-DM- L f(x+1h), ifx,x+h,...,x+MheQ
A f ) = ,;0(1) ! :
0, otherwise

(2.1

ial



2.2 Definitions of Besov spaces

We first focus on inhomogeneous Besov spaces. Fix a sequence of functions
(¢;)j=0 € L(R™) such that:

1. supp @o < B(0,2) and supp ¢, < B(0,2 ")\ B(0,2/7?) for all j = 1.

2. For all multi-index a € N", there exists ¢, > 0 such that |D%p;(x)| <
ce27/1¥ for all x e R" and all j = 0.

3. For all x e R", it holds }_;>¢ ¢;(x) = 1.

2.1 Definition (Definition of inhomogeneous Besov spaces). Let s e R, 1 <
p <oco and 1 < g < oo. Define B}, ,(R") as the space of tempered distributions
f € #'(R") such that

— sig=1(,. .
”f”B;,q(Rn) T 0 (2 F ((pjgf( ))) 19(LP) <o
triebel?2 .
Recall ection 2.3.2, Proposition 1, p. 46] that Bj  (R") is a Banach

space Whlch does not depend on the choice of the sequence (¢;)j=0, in the
sense that two different choices for the sequence (¢;);>o give rise to equiva-
lent norms. Once the ¢;’s are fixed, we refer to the equality f =3 ; f; in ¥’ as
the Littlewood-Paley decomposition of f.

Let us now turn to the definition of homogeneous Besov spaces. Let (¢;) ez
be a sequence of functions satisfying:

1. supp ¢, < B(0,2"1)\ B(0,2771) for all j€ Z,

2. For all multi-index a € N*, there exists ¢, > 0 such that|D“<pJ(x)|
ce27/1 for all xeR” and all j € Z.

3. For all x e R" \ {0}, it holds } ;7 ¢ ;(x) = 1.

2.2 Definition (Definition of homogeneous Besov spaces). Let se R, 1 < p < oo
and 1 < g <o0. Define B;yq([Rn) as the space of f € Z'(R") such that

If B3 ,@n) = H (28]9_1 (‘Pjgf('))) sy =%
Note that this definition makes sense since, for all polynomial P and all f €
Z'(R"), we have Iles SR = =|f +P|Bs SR’

Again, B R is a BaIBch space which does not depend on the choice of
the sequence ((p i)jez }3‘5_%_I:ec ion 5.1.5, Theorem, e 240%3
% 1(I)Irl‘saclslls > 9 andall 1 <p <o0o,1<q <00, we have LBG‘%Wmn 2.3.3, Theorem],

ection 2.6.2, Proposition 3]

B; ,®R") =LPR")NB; ;R and [Ifllps o ~ I f o+ 1f gy @) (2.2)

Besov spaces on domains of R” are defined as follows.
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2.3 Definition (Besov spaces on domains). Let (2 cR” be an open set. Then

1. B} ,(Q):={f € 2'(Q); there exists g € B, ,(R") such that f = gla},
equipped with the norm

£33, 1= inf{lIglgy @y gla=F}.

2. B, ,(Q):={f € 2'(Q)); there exists g € B;  (R") such that f = glo},
equipped with the semi-norm

1£ 135 = inf{lglsy @n3 &la=F}.

Local Besov spaces are defined in the usual way: f € B} , near a point x
if for some cutoff ¢ which equals 1 near x we have ¢f € Bz,q. If £ belongs to
B;’q near each point, then we write f € (BZ,q)loc.

The following is straightforward.

ka3| 2.4 Lemma. Let f: Q — R. If, for each x € Q, fe Bz,q(B(x,r) N Q) for some
r=r(x)>0, then f EBZ’q

2.3 Besov spaces on T"

Let ¢o € 2(R") be such that

3
@o(x)=1for all |x| <1 and ¢o(x) =0 for all |x| = 3

For all £ =1 and all x € R”?, define

Pr(x) := o277 x) — (277 1x),

periodicbesov‘ 2.5 Definition. Let s € R, 1 < p <oo and 1< q <oo. Define B, ,(T") as the
space of distributions f € 2'(T") whose Fourier coefficients (a,; ),z satisfy

q 1/q
) <o

LP(T™)

2irm-x

x— Y am@j@rm)e

meZn

1l comy = (2 275

j=0

(with the usual modification when ¢ = co0). Again, the choice of the system
(¢;)j=0 isirrelevant, and the equality f =Y f;, with f; := %, am<pj(2nm)e2’”m x
is the Littlewood-Paley decomposition of f.

Alternatively, we have f € B}, (T") if and only if f can be identified with a
sc}uﬁ)erlodlc distribution in R”, stlll denoted f, which belongs to (B )loc(IR )
ection 3.5.4, pp. 167-169].
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2.4 Characterization by differences

A@ong ‘the V-arious ch%ﬁggﬁéﬁzg‘cions of %ﬁggﬁ'ﬁ&?&es’ we rec tllli%gleoghe
ones involving differences [35, Section 5.2.3], [30, Theorem, p. 41], [37, Section
1.11.9, Theorem 1.118, p. 74].

Proposition 2.6. Let s>0,1<p<ooand 1<q <oco. Let M > s be an integer.
Then, with the usual modification when g = oco:

1. In the space Bfo,q(IR”) we have the equivalence of semi-norms

1/q
. - —sq M q dh
|f|Bp)q([Rﬂ) (/Rn |h| ‘Ah f LP(RM) |h|n) (2 3)
i (/ inse A r]? dh)l/q '
i=ilr heit lLe@ |hl

2. The full B;,q norm satisfies, for all § >0,

AN

q dh \Va
LP(R™) |h|”)

||f||3§77q(|]qgn) ~ ||f||Lp(|Rgn)+ (/ |h| %9

|h|<6
2.5 Characterization by harmonic extensions

In Section B%t will be convenient to work with extensions of maps in Bz,q.
The connection between regularity of maps and the properties of their suit-
able extensions is a classical topic in the theory of function spaces. Here is a
typical' res;clllii el e&lﬁg gge'ction. It characterizes B}, , by means of .the harr.non%c
extension »[‘341@[‘35%%, , Section 2.12.2, Theorem, p. 184]. More specifically, if f is
measurable in R” and s € (0,1), then we have

0 OP,f
~ (1-s)q t o,
1l o)~ W+ | 2077 | T

where P; stands for the Poisson semigroup generated by —A, so that (x,¢) —
P,f(x), t >0, x € R, is the harmonic extension of f to the upper-half space.
Since when p > 1 we have

oP.f
ot

one also has, for 1 < p <ooand 1<q < oo,

q g
dt) ; (2.4)

LP(R") t

_ H(_Ax)l/thfH ~ VP f o @nys

LP(R™)

LP(R™)

[e 9] 1 dt l/q
1£ s oy ~ 1 oam + ( / J1-9g ||vptf<-)||§p(w)7) (2.5)
’ 0

(with the usual modification when g = c0).
The results in_the literature are not suited to our context. V\ﬁeh will need
. esovnQrmpis . . characext
some variants of (5‘5‘)_1# , which will be stated and proved in Section 6.5 below.

9
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2.6 Lizorkin type characterizations

Such characterizations invoblve restrictions of the Fou ieﬁ"mtransform on
. t schmelsser

cubes or corridors; see e.g. »B?S@tmn 254 . PD. & 85-86] or TE‘BTSWtTon 3.5.3,

pp. 166-167]. The following special case LESI_S@tTon 3.5.3, Theorem, p. 167]

will be useful later.

Proposition 2.7. Let se R, 1 < p <ooand 1< g <oo. Set K :={0} c Z" and,
for j=1,1let K;:={m e 7" 2771 < |m| < 2/}.3 Let f € 2'(T") have the Fourier
series expansion f =Y ,,czn ame?™™*. We set fi= ZmeKjamez”””'x. Then we
have the norm equivalence

oo 1/q
171183, cam) ~ (ZOZJ“’ IIijIqun>)
J:

(with the usual modification when g = c0).

2.7 Characterization by the Haar system
at7

Besov spaces can also be described via the size of their wavelet coefficients.
To illustrate this, we start with low smoothness Besov spaces, which can be de-
scribed using the Haar basis. (The next section is devo ed to smoother spa es

rdaud
and bases. L Fog { e results of thl% sle%tlon see e.g. H}())T'%%l'ary 5.3], =

Section 7], eorem 1.58] eorem 2.21].
Let
1, if0<x<1/2
vp(x):=4 -1, if1/2<x<1, and yr(x):= |1//M(x)| . (2.6)
0, if x ¢ [0,1]

When jeN, we let

G/ = . 2.7 1
{{F,M}”\{(F,F,...,F)}, if >0 2.7)

For all m € Z", all x € R" and all G € {F,M}", define

P8 (x):= [ we, (@, —m,). (2.8)
r=1

Finally, for all m € 7", all jeN, all G € G/ and all x € R?, let

: WG (x) ifj=0
WiGgy.=4 " moh : (2.9) [qa3
( sz/Z\Pg(QJx), ifj=>1 )

3 Here, |m| :=max?:1 |myl.

10
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Recall thaht th% f%%ﬂy (‘I’J > ), called the Haar system, is an orthonormal bES]iSe bel10

of L2(R™) roposition 1.53]. Moreover, we have the following result
Theorem 2.21].

Proposition 2.8. Let s >0, 1 < p <00, and 1 < g < oo be such that sp < 1.
Let f € #'(R"). Then f € B, ,(R") if and only if there exists a sequence

(” m ) j=0, GG/, mezn such that
o q/p
> X (Z Gp) <o (2.10)
j=0 GeqJ \mezr

(obvious modification when q = co) and

F=3 Y Y piloritnpg-nigiG) (2.11)
j=0 GeGJmez®

dec of
Here, the series in (b.e;l‘%)l%nverges unconditionally in Bj, ,(R") when ¢ <

o0o. Moreover,
a/p\ V4
GP ) ) (2.12)

115 @) ~ (f 2. ( 2

7j=0 GegJ \mez"
(obvious modification when q = 00).

Equivalently, Proposition E%lcan be reformulated as follows. Consider the
partition of R” into standard dyadic cubes @ of side 27/. 4 For all x € R*, denote
by & j(x) the unique dyadic cube of side 27/ containing x. If f € L1 (R"), define
E(f)x):=f, ., f for all j=0. We also set E_1(f):=0. We have the following
results (see E‘%—‘I%@rem 5 with m = 0] in R"; see also h_Appendlx Al in the
framework of Sobolev spaces on T").

Proposition 2.9. Let s>0,1<p <00, and 1<q <oo be such that sp < 1. Let
f €L} (R™). Then

1F1Gs qny ~ 2 2VNEH(F) ~Eja(Pf,
: 720
(obvious modification when g = c0).

Similar results hold when R” is replaced by (0,1)" or T"; it suffices to
consider only dyadic cubes contained in [0,1)".

Corollary 2.10. Let s >0, 1< p <00, and 1 < g < oo be such that sp < 1. Let
feLj, (R"). Then

1F1Gs qny ~ 2 270F = EHPIL,
Jj=0

(obvious modification when q = 00).
Similar results hold when R” is replaced by (0,1)" or T".

4 Thus the @’s are of the form @ =27/ [T;_,[mg,mp + 1), with mj, € Z.

11
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Corollary 2.11. Let s >0, 1< p <00, and 1 < g < oo be such that sp < 1. Let
(¢;)j=0 be a sequence of functions on (0,1)" such that: for any j, ¢; is constant
on each dyadic cube @ of size 27/. Assume that } ;-1 2%|¢; - (pj_lllgp < oo.

Then (¢;) converges in L? to some ¢ € B, ,, and we have

o]

1/q
B0 S | 2279~ 9 1||Lp)

Jj=0

(with the convention ¢_; := 0 and with the usual modification when g = c0).

In the framework of SObM Corollaries EQIO and Ep‘l'l are e gf
consequences of Proposition See Appen ix A, Theorem A.1] and
Appendix A, Corollary A.1]. The arguments in hTapply with no changes to
Besov spaces. Details are left to the reader.

2.8 Characterization via smooth wavelets

t1
Proposition E‘S‘]has a counterpart when sp = 1; this requires smoother “mother
wavelet” ulM and “father wavelet” yr. Given yr and vt two real functions,
triel
define w]m as in (E“?‘) (E‘g) Then %apter 6], ﬁ%gs%ﬁon 1.7.3] for every
integer & > 0 we may find some yr € C¥(R) and vy € C*(R) such that the
following result holds.

Proposition 2.12. Let s >0, 1 < p <oo, and 1 < g < oo be such that s < k.
Let f € #'(R"). Then f € B, ,(R") if and only if there exists a sequence

(” m ) j=0, GG/, mezn such that
o q/p
)N (Z Gp) <00 (2.13)
j=0 GegJ \mez"

(obvious modification when q = oco) and
O G o—j 1200.G
Z DD A R Thel (2.14)
Jj=0 GeGJmezZ"

. . |decompof . .
Here, the series in (&TI')L. converges unconditionally in B},  (R") when g <
oo. Moreover,

Iflss, @) ~ (f > ( 2

Jj=0 GeGJ \mezZ"

(obvious modification when q = 00).
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For further use, let us note that, if f € B;,q(R”) for some s >0, 1 <p <oo
and 1 < g < oo, then we have

i = i 8p) = 27 [ p () wiC () dx, (2.16)
[Rn

bl
This immediately leads to the following consequence of Proposition Bﬂ,
the proof of which is left to the reader.

Corollary 2.13. Let s>0,1<p<ooand 1<gq <oobe such tha <k As-
sume that f € LP(R") is such that the coefficients ,um given by (B‘l’t‘)‘) satisfy

o . q/p
> (Z u;’;sz) = o0 2.17)

J=0 GeGJ \mezZ"

(obvious modification when g =oc0). Then f ¢ B}, /(R").

2.9 Nikolskii type decompositions

In practice, we often do not know the Littlewood-Paley decomposition of
some given [, but only a Nikolskii representation (or decomposition) of f.
More specifically, set €, := B(0,2/*2), with j € N. Let f/ € #' satisfy

suppFf/ c6j, VjeN, and f =) f/ in #; (2.18)
J

the decomposition f =3 ; f7 is a Nikolskii decomposition of /. Note that the
Littlewood-Paley decomposition is a special Nikolskii decomposition.
We have the following result.

230501
Proposition 2.14. Let s >0, 1< p <00, 1 < g <oo. Assume that (571’87%01ds.
Then we have

s
BP,q

1/q
I, <|zzeir ||,‘{,,) , (2.19)
J J

with the usual modification when g = oco.

ok
The above was proved in ﬁg Lemma 1] (see also %‘]a‘)zi_nlthe framework of
Triebel-Lizorkin spaces F'$ _; the proof applies with no change to Besov spaces

p.q’
and W111 b? é)mltted here. For related esnmlts in the framework of Besov spaces,
see »f3‘5_bS_tec ion 2.5.2, pp. 79-80] and nk?l_%_t“_ec ion 2.3.2, Theorem, p. 105].
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3 Positive cases

We start with the trivial case.

Case 1. Range. s>0,1<p<o00,1<q <00, and sp >n.
Conclusion. Bz,q(Q;Sl) does have the lifting property.

Proof. Since Bj, ,(Q) — C%Q) (Lemma %%), we may write u = e'?, with ¢
continuous. Locally, we have ¢ = —i1lnu, for some smooth_determin ‘%ign In of
the complex logarithm aTélen ¢ belongs to Bj, , locally in Q (Lemma%?@, and
thus globally (Lemma %.7{). O

Case 2. Range. 0<s<1,1<p<oo,1<qg<o00,and sp <1.
Conclusion. B;,q(Q;Sl) does have the lifting property.

1
Proof. The argument being essentially the one in HTSSection 1], we will be
sketchy. Assume for simplicity that Q = (0,1)". Let u € Bz,q(Q;Sl). For all
J €N, consider the function U; defined by

E;j(w)@)V|E j(w)x)|, if E(u)(x)#0

Uj(x):= .
i) {1, if E j(u)(x) = 0

Since E j(u) — u a.e., we find that U; — u a.e. on Q). By induction on j, for all
J € N we construct a phase ¢; of U, constant on each dyadic cube of size 27/,
and satisfying the inequality

lpj—@;_1l<nU;-Uj—1] onQ,Vj=15 (3.1)

Asin %f‘]% (%‘c.lll') implies

lpj—@i-1l Slu—E;w)+u—-E;j_1(u)l,

and thus, e.g. when g < oo, we have

Y 2= p;-1llg, £ Y 2w - E @,
j=1 j=0

2 1
Applying Corollaries EQTO and gl.)‘ﬂ, we obtain that ¢; — ¢ in LP to some ¢ €
By, 4(€;R). Since ¢; is a phase of U; and U; — u a.e., we find that ¢ is a phase
of u. In addition, we have the control lolis , < lellgs, - O

Case 3. Range. 0<s<1,1<p<oo,1<g<o0,and sp =n.
Conclusion. B;,q(Q;Sl) does have the lifting property.

5 Thus @; is the phase of U; closest to ¢;_1.
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Proof. Here, it will be convenient to work with 2 = T". Let | | denote the sup
norm in R"”. Let p € C* be a mollifier supported in {|x| < 1} and set F(x,eg o
u*pg(x), xeT", €>0. Since sp = n, we have u € VMO(T"), by Lemma %‘5_

Let ug recall ,tha’% if Y€ VMO(T"?;S1) then, for some & > 0 (depending on u) we
rezisnirenper
have %E_R—k_gg‘, emark 3, p. 207]

1
5 <IFx,e) <1forallxe T" and all € € (0,5).5 (3.2)
Define
F
w(x,€):= (,€) for all x € T” and all € € (0,6).

|F(x,€)|

Pick up a function ¢ € C*°(T" x (0,0);R) such that w = e_“”.EVe note that for all
jb%tﬂnldsnv]] we have Vy = —1wVw, and 9,|F| = IFI'l(FajF +F0;F)/2. Therefore,

(%T?jwzlds
|Vy| = Vw| S IVF]. (3.3)

bl 1 bl
In view of (%%%d estimate (%%Il) in Lemma %.‘I& we find that

q > ° q-sq q de > ° qg-sq q de
luly e V), -~/ ¢ VY, el - (3.4) |kab
0 0

(SZ,P(-U—n) ~

ka5 bl
Combining (%%r) with the conclusion of Lemma %718, we obtain that the phase

¥ has, on T", a trace ¢ € B;,q, in the sensictﬁhat the limit ¢ := lim._oy(:,¢)

exists in BY, .. In particular (using Lemma 6.4), we have that y(-,e;) — ¢ a.e.
along some sequence ¢; — 0; this leads to w(-,&;) = eWED) s o g e. Since, on
the other hand, we have lim._.qw(-,€) = u a.e., we find that ¢ is a B;’q phase
of u. O

X
The next case is somewhat similar to Case %, so that our argument is less
detailed.

Case 4. Range. s=1,p=n,1<q <oo.
Conclusion. B,ll,q(Q;Sl) does have the lifting property.

. . % ablaw .
Proof. We consider 6, w and y as in Case 8. The analog of (373)15 the estimate

10,0,y + IVy|? < 10,0, F| + |VF 2, (3.5)
which is a straightforward consequence of the identities
Vy = —iwVw and 0,0,y = —1wd ;0w + szajwakw.

boundsv surveypetru
6 For an explicit calculation leading to (%TZ‘),sTe.g. %%T%S‘]_
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Combining (%TCS) with the second part of Lemma %TIS), we obtain

1) n d
'”'Ziqz/o eq( Y ||ajakw(-,s)||§n+||a£a£u/(-,a)||gn+||w(-,g)||i‘gn ?8 (3.6)

Jk=1

kgl kb2
By (%.EG%and the first part of Lemma %.‘IQ, we find that ¢ has a trace ¢ :=try €
B,ll’q(T"). Clearly, g is a B,ll’q phase of u. O

Case 5. Range. s>1,1<p<o00,1<qg<oo,n=2,and sp =2.
Ors>1,1<p<oo,l1<qg<p,n=3,and sp =2.
Or:s>1,1<p<oo,1<qg<oo,n=2,and sp > 2.

Conclusion. Bz,q(Q;Sl) does have the lifting property.

Note that, in the critical case where sp = 2, our result is weaker in dimen-
sion n = 3 (when we ask 1 < g < p) than in dimension 2 (when we merely ask
1<g<o0).

1
Proof. The general strategy is the sam .as in H?Section 3, Proof of Theorem
31,7 but the key argument (validity of (879) below) is much more involved in
our case.

It will be convenient to work in Q = T". Let u € B;’q('l]'”;Sl). Assume
first that we do may write u = e, with ¢ € BS _((0,1)*;R). Then u,p € W1P
kc . . P4 . .

(Lemma %.‘4). We are thus in position to apply chain’s rule and infer that
Vu =1uVe, and therefore

1
Vo=—Vu=F, with F:=u AVu e LP(T";R"). (3.7
ww

q

2
argue as follows. If ¢ solves (%“?a. ), then Vg € B;_ql, and thus ¢ € B}, | (Lemma
a b b

%TIG). Next, since u,p € WP AL we find that

The assumptions on s, p, q 1mtply that F € B ; (Lemma 6:22). We may now

Viwe ™ )=Vue ™ —wue Vo =1ue *(uAVu-Ve)=0.

Thus u e ' is constant, and therefore ¢ is, up to an appropriate additive con-
S
stant, a B P phase'of u. %’E% .
There is a flaw in the above. Indeed, (377) need not have a@glutmn. In T",
the necessary and sufficient conditions for the solvability of (3-7) are®

/ F=F0)=0 (3.8)
and
curl F =0. (3.9)
5 Y 1
Clearly, (%TCS) holds.? We complete Casgt% by noting that (%1?;9) holds in the
relevant range of s, p, ¢ and n (Lemma 6:27). O

7 See also [[Effs']@

8 This is easily seen by an inspection of the Fourier coefficients.
9 Expand u A Vu in Fourier series.
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3.1 Remark. We briefly discuss the lifting problem when s < 0. For such s,
distributions in B}, , need not be integrable functions, and thus the meaning of
the equality u = e'? is unclear. We therefore address the following reasonable
version of the lifting problem: let u : Q — S' be a measurable function such
that u € BS, (Q). Is there any 9 € L], _NB% (Q;R) such that u = e'¢?

Let us note that the answer is trivially positive when s <0, 1 < p < oo,
1<qg=<oc.

Indeed, let ¢ be any bounded m 1aegurable lifting of u. Then ¢ € B
L* — Bj, , when s <0 (see Lemma 633).

S

D> since

4 Negative cases

Case 6. Range. 0<s<1,1<p<oo,l<g<oo,n=2,and 1<sp<n.
Or0<s<1l,1sp<oo,g=o00,n=2,and 1<sp <n.

Conclusion. By, (€ S') does not have the lifting property.

Proof. We want to show that there exists a function u € B}, , such that u #e'?
for any p € B}, .

Besc])i\‘,%%gufﬁciently small € >0, set s1:=s/(1—¢) and p1:=(1—¢)p. By Lemma
%mave B;11,q1 > B;,q (for any ¢1). We will use later this fact for g1 :=
(1-¢€)gq.

Let w € B} ,,
and thus u € B}, , (Lemma 6.5).

We claim that there is no ¢ € Bj, , such that u = ¢'?. Argue by contradic-
tion. Since u:nlec”f = e'V, the function (¢ —w)/27 belongs to (B;’q +B;11,q1)(£2; 7).
By Lemma E‘ZS_S?T , this implies that ¢ — v is constant, and thus y € Bj, ., which
is a contradiction. O

eipsi
\Bj , andnset u:=e. Then u € Bf,ll,ql N L*® (Lemma %‘53‘}

Case 7. Range. 0<s<oo,l<p<oo,l<g<oo,n=2,and 1<sp<2.
Or0<s<oo,1<p<oo,g=o0co,n=2,and 1<sp <2.

Conclusion. B;’Q(Q;§1) does not have the lifting property.

Proof. The proof is based on the example of a topological obstruction consid-
ering the case n = 2. Consider the map u(x) = ﬁ’ Vx € R
x

We first prove that u € Bj, () for any smooth bounded domain Q R2.
We distinguish two cases: firstly, ¢ < oo and sp < 2 and secondly, ¢ = co and
sp=2.

In the first case, let s; > s such that s1 is not Psg,nteger and 1<sip <2,
which implies W51:P = B:,l,p — B3, ;- Since u € WP [Z"Section 4], we find that
u€eBj .

17
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The second case ig slightly more involved. By the Gagliardo-Nirenberg
inequality ( ma 6.6 below), it suffices to prove that u € B% (). Using
Proposition 276, a sufficient condition for this to hold is

A 12y S IRIZ, VR e R (4.1)

Since u is radially symmetric and 0-homogeneous, this amounts to check-
ing that

1A3 ullz1ge) < co. (4.2)
However, by the mean-value theorem, for all |x| = 1 we have

183 u(x)| < Vlxl?, (4.3)

Wh'ile A3 8 ;&%ﬁ?ded_ in B(0, 1) since u is Sl.valued. Using this fact and
estimate (E?‘)—%%. , We obtain (&27—. .

We next claim that z has no B;q lifting in Q provided Q c R? is a smooth
bounded domain containing the origin. AI‘%I:E by contradiction, and assume
that u = e'? for some ¢ € B;,q(Q). Let, as in [Z, p. 501, 0 € C®(R2\ ([0, 00) x {0}))
be such that e = u.

Note that 6 € BZ q(w) for every smooth bounded open set w such that
_ 9 o B . i Eunicite
w < R*\ ([0,00) x {0})). Since (¢ —0)/(2n) is Z-valued, Lemma %“25_] yields that
¢ — 0 is constant a.e. in Q\ ([0,00) x {0}). Thus, 6 € B;’q(Q). Similarly, 0 e
B;’q(Q), where 6 € C®°(R2 \ ((—00,0] x {0})) is such that ¢’ = u. We find that
(0-0)/(2m) e B3 (QQ). However, this is a non constant integer-valued function.
This contradicﬁéqLemma%%% proves non existence of lifting in B, .

(x1,%2)
|(x1,%2)|
and let  c R" be a smooth bounded domain. Then u € B}, (€; S and, if0 € Q,
then u has no B}, , lifting. O

When n = 3, the above arguments lead to the following. Let u(x) =

5 Open cases

Case 8. Range. s>1,1<p<oo,p<qg<oo,n=3,and sp =2.

Discussion. This case is complemergary to Case % In the above range, we con-

jecture that the conclusion of Case 5 still holds, i.e., that the space Bfo,q(Q;Sl)

@g%not have the lifting property. The non restriction propjgty (Prop@i{ion
.IT1) prevents us from extending the argument used in Case 5 to Case &:

Case 9. Range. s=1,1<p<oo,1<g<oo,n=3,and2<p<n.
Or:s=1,1<p<oo,g=00,n=3,and 2< p <n.

Disc %%zi?uré.lgl\{glen p=q=2, B% 2(Q;§1) = H1(Q;S?!) does have the lifting prop-
erty %Zﬁmﬁ]. The remai aﬂi:%g cases are open. The major difﬁcuilty arises
from the extension of Lemma E‘ZQ to the range considered in Case 9.

18
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Case 10. Range. s=0,1<p <00, 1 <q <oo (and arbitrary n).

Discussion. As explained in Remark %%, we consider only measurable func-
tions u : Q — St. We let Bg,q(Q;gl) ={u:Q—S';u measurable and u € Bg,q},
and for u in this space we are looking for a phase ¢ € Llloc ﬂBg’q.

Note that Bg,OO(Q;Sl) doeisahave the lifting property. Indeed, in this case
we have L™ c Bg,oo (Lemma 6:3) and then it suffices to argue as in the proof
of Case %%. More generally, Bg’q(Q;Sl) has the lifting property when L*®° —

BY ,.*° The remaining cases are open.

Case 11. Range. 0<s<1, p=1/s, q = oo (and arbitrary n).
Discussion. We do not know whether B}, (€2; S1) does have the lifting property.
Case 12. Range. 0<s<1,1<p<o0,q=00,n =3, and sp = n.

Discussion. We do not know Wh%%héer B3 gS‘Q; S1) does have the lifting property.
The difficulty common to Cases TT and 127s that in these ranggs B3, g VMO,
and thus we are unable to rely on the strategy used in Cases 3 and %

6 Analysis in Besov spaces

The results we state here are valid when 2 is a smooth bounded domain in
R”, or (0,1)" or T". However, in the proofs we will consider only one of these
sets, the most convenient for the proof.

6.1 Embeddings

6.1 Lemma. Let 0 < 571 < s¢ < 00, 1<pg<oo,1<p;<oo, 1Sq0§ooand
1< q1 <o0o. Then the following hold.

1. Ifq0<q1,then B3 — B$

pP,q0 p,q1°
2. If so—n/po=s1—n/p1, then B} . — B3 ...
3. If sp—n/pg>s1—n/pi, then B;%,qo - B;11,q1'

4. If By, ,, — B}. ;> then so—n/pg = s1—n/p1.

Consequently, when g < ¢4,

n n

s .
Bpogo = Bplg = s0o——=s1——. (6.1)

bo b1

10 A special case of this is p = ¢ = 2, since Bg 9= L2. Another special caseis 1<p<2=<gq.

’ triebel?2 triebel?2
Indeed, in that case we have L®° — LP = Fg 9 < Bg,q L['Brf)l,_é)ﬁrion 2.3.5, p. 51], L['3r51,_§ﬁﬁion
2.3.2, Proposition 2, p. 47].
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t b 12 triebel?2
Proof. F T Illiéetrsnl c]lée tae ec ion 3.2.4]. For items 2 and 3, see »[’35_%rle ection
‘T: .3. 1] Eﬁ_‘ﬂmm 1, p. 82]. Item 4 follows from a scaling argument. And
s an immediate consequence of items 1-4. O

it 12
For the next result, see e.g. H%i%%tlon 2.7.1, Remark 2, pp. 130-131].
6.2 Lemma. Let s >0, 1 < p <00, 1 <q < oo be such that sp > n. Then
— 0 o)
Bj, /(©) = C7(Q).
6.3 Lemma. Let s<0,1<p<ocoand 1=g <oco. Then L — Bj, .
Similarly, if 1 < p < oo, then L* — Bg,oo

Proof. We present the argument when Q = '; r%) et f.€ L°° with Fourier coef-
ficients (@, )mezn. Consider, as in Definition 275, the Tmctions

fi@ =Y ampj@rm)e®™™* VjeN,

meZn"

tri 12
By the (periodic version of) the multiplier theorem »BE)_%_'EH? ction 9.2.2, Theorem,
p. 267] we have

Ifille SUfllLe, V1I<p<oo, VjeN. (6.2)
. eriodicbesov
We find that [|f;llz» S I Iz» < If Iz, and thus (by Definition B‘S—dc_t% ,and with the

usual modification when g = co)

1/q
1£lss, < (228”) < oo.

J

The second part of the lemma follows from a similar argument. The proof is
left to the reader. O

An analogous proof leads to the following result. Details are left to the
reader.

6.4 Lemma. Let s>0,1<p<ooand 1=<q <oco. Then B} , — L”.

More generally, if keN, s>k, 1< p <oo, and 1 < g < oo, then B;,q — Wkp,
6.5 Lemma. Let 0<s<oo,1<p<ooandl<=<qg <oobesuchthat sp =n. Then
B;’q — VMO.

Same conclusion if 0 < s <00, 1 < p <oo and q = oo are such that sp > n.

Proof. Assume first that g < oco. Let p; > max{n,p,q} and set s; :=n/p1. By

esovem
Lemma and the fact that s; is not an integer, we have

S S1 S1 S1,P1
BP Bpl, Bpl P1 =W :

It then suffices to invoke the embedding
. .
WPt — VMO when s1p1=n %%ﬁffp. 210].

The case where g = oo is obtained via the first part of the proof. Indeed, it
suffices to choose 0 < s1 <00, 1< p;<ooand 0 < g1 <oo such thgt sip1=n
and B}, , — Bf,ll ;- Such s1, p1 and q; do exist, by Lemma %‘17
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l}or the. %llgwmg special case of the Gagliardo-Nirenberg embeddings, see
runstsic
e.g. emark 1, pp. 39-40].

6.6 Lemma. Let 0<s<oo,1<p<oo,1<g<oo,and 0<60<1. ThenB;,qn

Os
L= Bp/@,q/@

6.2 Restrictions

Captatio benevolentiz. Let f € L1(R?). Then, for a.e., y € R, the restriction
f(, ) of f to the line R x {y} belongs to L. In this section and the next one, we
examine some analogues of this property in the framework of Besov spaces.

For this purpose, we first introduce some notation for partial functions.
Let a c {1,...,n} and set o :={1,...,n}\a. If x = (xq,...,x,) € R*, then we
identify x with the couple (xq,x7), where x4 := (x;)jeq and xgz := (x;) jcz. Given
a function f = f(x1,...,x,), we let fo = fo(xy) denote the partial function xz —
f(x). Another useful notation: given an integer m such that 1 <m <n, set

Iln—-m,n):={ac{l,...,nh;#a=n—-—m}.

Thus, when a € I(n —m,n), fo(x,) is a function of m variables.
When ¢ = p, we have the following result.

6.7 Lemma. Let 1=m <n. Let s>0and 1= p <oo. Let f € B} (R").
1. Let a € I(n —m,n). Then, for a.e. x, € R”™™, we have f,(x,) EBZ,p(IRm).

2. We have

b
1Flzs @y~ 2 1faa)lgs  gm)d

acl(n-m,n)J/R*™™

t 12
Proof. For the case where m =1, see E%%%Ttlon 2.5.13, Theorem, (i), p. 115].
The general case is obtained by a straightforward induction on m. O

6.8 Lemma. Let s>0,1<p<ocoand 1<q <p. Let 1 <m <n be an integer.
Assume that sp = m and let f € B}, ,(T"). Then, for every a € I(n —m,n) and
for a.e. xo € T"™™, the partial map fa(xa) belongs to VMO(T™).
Same conclusion ifs>0,1<p<ooand1=<q <00, and we have sp > m.
Similar conclusions when Q = R" or (0,1)".

B b
Proof. In view of the Sobolev gg}beddings (Le] %%may assume that
sp=m and q = p. By Lemma %‘7 and Lemma 6%&?%01" a.e. x, we have f,(xq) €
Bj, ,(T™) = VMO(T™). O
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6.9 Lemma. Let s >0, 1<p<ooand 1<q <oo. Let M > s be an integer.

Let f € B;,q. For x' € T" 1, consider the partial map v(x,) = vy (x,) 1= F (', x5),
with x, € T. Then there exists a sequence (¢;) < (0,00) such that ¢; — 0 and for
a.e. x' € T" 1, we have

l—»oo

Lp“” - 0. (6.3)

More generally, given a finite number of functions f; € B/ pyg; With s; >0,
1<p;<ooandl=gq;<oo,and given an integer M > max;s;, we may choose a
common set A of full measure in T"~! and a sequence (¢;) such that the analog
of (623), i.e.,

e
‘;]

pi
lim L7(T)

[—o00 t

-0, (6.4)

holds simultaneously for all j and all x' € A.

Proof. We treat the case of a single function; the general case is similar.

equivnormhomo
Set gt = ”Aten

.B ,wWe have —sq-1
Lp y @

gt dt < oo, which is equiv-

alent to f11/2 Y =0 stqgg,mg do < oo. Therefore, there exists some o € (1/2,1)
such that

Y 2ms9gd <o, (6.5)

m=0
2
By (%.25) , we find that

. g2-mg
lim ——— = 6.6
ml—rgo 2-mg)s ( )
3
Using (%TeG) we find that, along a subsequence (m;), we have

. NAg-mzvlLe
lim ——

=0 forae. x' eT? L
m—oo (27 Miqg)s

1
This implies (63) with ¢, := 2™/ g, 0

6.3 (Non) restrictions

We now address the question whether, given f € B;q(le), we have f(x,) €
B}, ,(R) for a.e. x € R. This kind of questions can also be asked in higher
dimensions. The answer crucially depends on the sign of q — p.

We start with a simple result.
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Proposition 6.10. Let s >0 and 1< g < p <oo. Let f € B, (R?). Then for a.e.
x € R we have f(x,-) € B}, /(R).

s 9 A equivnormhomogrn . , . X
Proof. Let f € By, ,(R®). Using (E%‘)‘(_t_Z)_g_d. par and Holder’s inequality, we find
that for every finite interval [a,b] <R and M > s we have

b q/p
/ |f(x,')|g;q(R)dx / /lhlsqﬂ (/IAher(x,y)lpdy) dhdx
a ’ R
q/p

1
<(b—q)P VP / —( / (x, y)IP dxd dh
R |h|sa+1 la.b]xR hezf y Y

|f|Bs ([RZ) <00

whence the conclusion. O
When q > p, a striking phenomenon occurs.

17.26 roposition 6.11. L.et s>0and 1< p <qg < o0. en there exists some com-
P ition 6.11. L 0and 1 Th h i
pactly supported f € B;’q(ﬂ%z) such that for a.e. x € (0,1) we have f(x,-) ¢
o(R).

In particular, for any 1 <r <oo and a.e. x €(0,1) we have f(x,) ¢ B}, .(R).

Before proceeding to the proof, let us note that if f € B;’q(ﬂ%z) then f €
LP(R?), and thus the partial function f(x,-) is a well-defined element of L?(R)
for a.e. x.

Proof. Since BS, (R*) c BS  (R%), ¥ q, we may assume that g < co. We rely on
thg characterlzatlon of Besov spaces in terms of smooth wavelets, as in Section

%ﬁgt by explaining the construction of f. Let wr and ) be as in
Section With no loss of generality, we may assume that suppwys < [0,al
with a € N. Consider (a, ) (0,a) and y > 0 such that vj; =y in [, B].

Set 6 := f—a > 0 and consider some integer N such that [0,1]c[a—-N 6, B+
N 6]. We look for an f of the form

N
f=13 Y &, (6.7)
057N j=jo
with

g5, y) = 2777 N (2 —my—~£8)
mi€l; (68)
xwpy2y—-m1-2'""0a—-10J).
Here, the set I; satisfying

1;<{0,1,...,27}, (6.9)
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the integer jo and the coefficients p; > 0 will be defined later.
We consider the partial sums f 5 = Z;']:jo gﬁ. Clearly, we have f 5 e C* and,
provided jj is sufficiently large,

supfycK;:=[-N3§,5/4] x [20a - 1/4,(2¢ + 1)a + 1/4].

Wg I)Lext note that the compacts K, are mutually disjoint. Using Proposi-
tion 5‘6_ 5 item 2, we easily find that

N N
> ~ ¥ |

(=—N Bz’q([RZ) (=—-N

q
(6.10)

q
Bf,’q([Rz)

bl
On the other hand, if s and ¢ are wavele grﬁlelgglglgat Proposition B‘lﬂ
holds, then so are yg(-— A1) and (- —)lg) VAeR F[’?‘?_‘I‘FT, eorem 1.61 (i), Theo-

b b
rem 1.64]. Combining this fact with (%.‘1’0), we find that

N q J y
> fy ~ Y (#I(up)P)?P (6.11)
¢==N_|iBs ,®2) J=Jo

We now make the size assumption

[e.@]
S (#I; ()P < oo. (6.12)
J=Jjo
By (%.911'1) and (%.912'2), we see that the formal series in (%% defines a com-
pactly supported f € B, ,(R%), with ¥ f4— f in BS  (R?) (and therefore in
LP(R?)) as J — oo. oo
We next investigate the B;’,’oo norm of the restrictions f 5(’5’ ). Asin (%.‘IO),
we have

N
~ Y Iy )lss - (6.13)
B o® (=N

N
A ED
¢=—N

b6
Rewriting (%78) as

g, y) = p; 27PN (2 —my —€6)
m1€el; (6.14)
x Y2y —mq1 -2 0a—106),

we obtain

1F 5 g~ .supJ2j W) Y lyu@x—mi—8)P. (6.15)

Jo=Jj= m1€Ij

We now make the size assumption

. N .
sup 2/ (u;)* Z Z lwp (2 x—mq1—€6)P =00, Vx€[0,1]. (6.16)
jZ.jO €=—le€IJ'
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Then we claim that for a.e. x €(0,1) we have

f(x,) € B}, oo(R). (6.17)

Indeed, since ZZ;:_N ff — f in LP(R?), for a.e. x € R we have

4
Y fia,) = fx,”) in LP(R). (6.18)
(=—-N

8
We claim that for every x € [0,1] Iégh that (%.C_I'S) holds, we have f(x,-) ¢
B;’OO(IR). Indeed, on the one hand (6-16) implies that for some ¢ we have
lim oo ||f5(x, ')”BZ,OO(R) =o0o. We assume e.g. that this holds when ¢ = 0. Thus

sup2’ ()" Y (@ x—mIP = co. (6.19)

J=Jjo mi€l;

On the other hand ssume by contradiction that { (85 ") € B}, (R). Then we
may write f(x,-) asin (E‘M) with coefﬁc1ents asin (E‘IG) In partlcular taking
into account the explicit formula of gj and the fact that Y r—_nT J(x, 9= fx,-)
in LP(R), we find that for £ > jo and m1 € I; we have

J
u ) = ( > g?-(x, -)) ™M (g0 x, )
J=Jo
=2%P 1 (2 x —m1), VI = k.

(6.20)

We obtain a contradiction combining (%2%8) (E‘C% rollary @g‘%

It remains to construct I; and p; satisfying ) and (%‘1’6) We
will let I; = [s},¢;], with 0 <s; <¢; <2/ integers to be determlned later. Set
t:=qlpe (l,oo) and

1 l/p

Him G —s;+ DV Ing
b7 2 6
Clearly, (%79) and (%.EIQ) hold. It remains to define /; in order to have (%.916).
Consider the dyadic segment L :=[s/2/,t;/2/]. We claim that

N

Y, Y @ x—mi— o) 2y, VxeL;. (6.21)

(=—Nmiel;

Indeed, let m1 €[s;,¢;] be the integer part of 2/ x. By the definition of § and
by choice of N, there exists some ¢ € [-N,N] such that a <2/x-m1-£¢5 < p,
whence the conclus10

By the above, (%‘1’6) holds provided we have

sup2’ (u)P 1z () =00, Yx €[0,1]. (6.22) |qc60
P&\l i) = q

JZjo
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We next note that

1 Uj

2/ ()P ~ = , 6.23 600
(IJJ) |Lj|j1/t an |L_]| ( )
where u; := 1/(jV* In j) satisfies

Y uj=oo. (6.24)

J=zJo
600 6000 60
In view of (%@% (%.CZZI‘),_ existence of I; sa’l;isﬁir_}ng6 (%.CZQ) is a conse-
quence of Lemma 6: elow. The proof of Proposition 6.111is complete. O

6.12 Lemma. Consider a sequence (u;) of positive numbers such that ¥ j, u; =
co. Then there exists a sequence (L) of dyadic intervals L; = [s;/2/,¢;/2/],

such that:
1. Sj,tjEN,OSSJ'<2j.
2. |Ljl=o(uj)as j— oo.

3. Every x €[0,1] belongs to infinitely many L ’s.

Proof. Consider a sequence (v;) of positive numbers such that }_ ;- v;u; =00
and v; — 0. Let Lj, be the largest dyadic interval of the form [0, ;,/2/°] of
length <vj,u ,. This defines s;, =0 and ¢},.

Assuming L; =[s j/2j N j/2j 1=I[aj,b;] constructed for some j = jo, one of the
following two occurs. Either b; <1 and then we let L, be the largest dyadic
interval of the form [2tj/2j+1,tj+1/2j+1] such that ILjv1l <vjr1uji1. Or bj =1,
and then we let L1 be the largest dyadic interval of the form [0,¢ j+1/2j +1
such that |Lj+1| SUj+1Uj+1

Using the assumption ¥ ;- j, v, u; = co and the fact that |L ;| = v;u;—277, we
easily find that for every j = j, there exists some & > j such that L, =[ap,bp]
satisfies b, = 1, and thus the intervals L; cover each point x € [0,1] infinitely
many times. O

r10| 6.13 Remark. Following a suggestion of the first author, Bra seyr inv bsljzalL-s seur
gated the non restriction property established in Proposition 6.11. In 1+U§ s
(which is independent of the present work), Brasseur extends Proposition %‘1‘1‘
to the full range 0 < p < q < 0o; the construction is somewhat si i&ar to ours
(bfased on tbe size of the coef'ﬁ.c1ents M) in t.hej decomposition (6: ))blbalég Je-
lying on a different decomposition (subatomic instead of wavelets). L[TO‘]_alﬁ)
contains an interesting positive result: it exhibits function spaces X interme-

diate between B3, ,(R) and L_JOBZT;(IR) such that, if f € B;,q(l]@), then for a.e.
E>

x € R we have f(x,-) e X.
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6.4 Poincaré type inequalities

The next Poincaré type inequality for Besov spaces is certainly well-known,
but we were unable to find a reference in the literature.

6.14 Lemma. Let 0<s<1,1<p<o0, and 1< g <oo. Then we have

lr-1r

2.4 PB
Recall (Proposition ETGTthat the semi-norm in (ﬁ%s given by

dh \"
W)

< IfIB;’q , Vf:Q— R measurable function. (6.25)

Lp

IfBs , = 1f 1B @) = ( o IR NARF IS, (6.26)

when g < oo, with the obvious modifications when g = co or R” is replaced by
Q.

Proof. By BB75Fe have £ g, ~ £ e +f 15, Recall that the embedding

B gss Lp is compact}?ﬁ_‘l‘g%eorem 3.8.3, p. 296]. From this we infer that
(6- “holds for every function f € B}, . Indeed, assume by contradiction that
this is not the case. Then there exists a sequence of functions (f;);>1 < B;’q
such that, for every j,

frl,

Set g;j:=fj— £ fj. Then, up to a subsequence, we have g; — g in L?, where
lgllr =1 and fg = 0. We claim that g is constant in Q (and thus g = 0).
Indeed, by the Fatou lemma, for every h € R” we have

2J.|fj13

IAnglr < limianIAhgj e = limianIAhfj . (6.27)
4 3

By (%326), (%227) and the Fatou lemma, we have
Ing;,q < liminflgle;’q = liminflijBlsU,q =0;

thus g =0, as claimed. Thij B(éorol:gradicts the fact that ||gllz» = 1.

Let us now establish (6- only assuming that |f| B, < 00. We start by
reducing the case where ¢ = co to the case where ¢ < oco. ThlS reduction relies
on the straightforward estimate

|f1Bg, < IflBy o, Y0<0<s, VO<r<oo.

So let us assume that q¢ < co. For every integer £ =1, let ®;, : R — R be given
by

¢, if [t|<k
DOp(t):=LX -k, ift<-k.
k, ift=Fk
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4
Clearly, ®@;, is 1-Lipschitz, so that (%%26) easily yields
|Dx(Hlps, <IflBs, (6.28)
4
and (by dominated convergence, using q < oo and (%?26))

lim [D4(f)~ f1g; , =0. (6.29)

ecseO \;Dk(f gnlcl"o{%) c LP(Q), one has ®(f) € B}, , for every k. Therefore,
%2$_Ll’1mp y

(G- and (

1k(F) =~ crllzs S 1Px(Plgy, < I ps, (6.30)

hikf
with ¢y := f @p(f). Thanks to (E‘%%may pick up an increasing sequence of
1£1]§egers (Ar)r=1 such that, for every &, |®,, ,(f)— ‘Dﬂtk(f)|Bs <27*. Applying
(% 25‘)"60 0Dy, . (f)— Dy, (f), one therefore has

” (@, (F) = Crpr) = (P2, ()= cy) ”LP S |q)ﬂk+1(f) — Dy, B3, <27%,
which entails that @, (f)—cy, — g in L? as £ — co. Up to a subsequence, one
can also assume that @), (f)(x)—c,, — g(x) for a.e. x € Q. Take any x € Q2 such
that @, (f)(x) —cj, — g(x). Since ®,,(f)(x) — f(x) as k — oo, one obtains

khm cy, =ceC. (6.31)
hilkck ckc

%ﬁl&ll\}lf (%‘?}mc_(%ﬁl) and the Fatou lemma yield || f —cllz» < If] B, from which

easily follows. O

We next state and prove a generalization of Lemma %71'4.

6.15 Lemma. Let0<s<1,1<p<o00,1<q <00, and 6 €(0,1]. Define

1/q
dh ) (6.32)

s = —sq q
Fles ¢ ( /m I

when g < oo, with the obvious modifications when g = co or R” is replaced by
Q. Then we have

r-1r

2.4
Proof. Recall that ||f|| 30~ Ifllie +1f |B; us (Proposition E‘GT We continue as
in the proof of Lemma %‘14 - O

SIflgs ., V[ :Q— R measurable function. (6.33)
LP P,q,0

We end with an estimate involving derivatives.
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6.16 Lemma. Let s >0, 1<p <ooand 1<qg <oo. Let f € 2'(Q) be such that
Vf € B3 Q). Then f € BS (Q) and

-1

The above result is well-known, but we were unable to find it in the liter-
ature; for the convenience of the reader, we present the short argument when
Q=T".

SIVFlgst. (6.34) [at9

s
BP,‘I

2 hemi
Proof. We use the notation in Proposition g‘ﬂ‘? and the following result h6—c er,nm
Lemma 2.1.1, p. 16]: we have

Ifile ~277IIVFjle, Y1<p<oo, Vj=1. (6.35)

3 2
By combining (%%5) with Proposition EITH‘T, we obtain, e.g. when g < oco:

q
If-aolg, =T fi|  ~X2vf0%,
s ]21 B;,q _]21 (636)
< Z 28.]‘12 Jq||va”Lp ~ ”vf”Bs 1
Jz1

In part1cular € L' (Lemma %70 and thus ag = f f. Therefore, (%%6) is
equivalent to (%‘34) O

6.17 Remark. With more work, Lemma %%6 can be extended to the case
where p = 1. Although this will not be éleeded here, we sketch below the argu-
ment. With the notation in Section 273, consider the Littlewood-Paley decom-
position f =} f;, with f; := Zam(pj(2nm)e2”’m'x. Note that the Littlewood-
Paley decomposition of Vf is simply given by

VF =) Vfj. (6.37) |[mn7

hemi let
In the spirit of »[C‘I%emma 2.1.1, p. 16] (see als »['ge,_%’roof of Lemma 1]), one
may prove that we have the following analog of (6-35):

Ifile ~277IVFjlLe, VY1<p<oo, Vj=1. (6.38) [mn6
i gin €b 6 4
Using Definitio atzr,l 37yand (%17138), we obtain (%?36). We conclude as in the
proof of Lemma % T

29



characext

abi

6.5 Characterization of B; 7 via extensions

The type of results we present in this section are classical for functions
defined on the whole R" and for the har Snigngﬁ(;c?nsion. Such results were
obt n 51 by Uspenskii in the early sixties &'35‘]_15’701* quEger developments, see
»[‘B‘SE%_tec ion 2.12.2, Theorem, p. 184]; see also Section 275, When the harmonic
extension is replaced by other extensions by regularization, the kind of results
we alzleesent below were known to experts at least ﬁoragelzsjlgls gg‘gined on R"; s
FZIXS_I;ec ion 10.1.1, Theorem 1, p. 512] and also or a systematic treat-
ment of extensions by smoothing. The local variants (involving extensions by
averages in domains) we present below could be obt tir%%gs%¥ %gapting the ar-
guments we developed in a more general setting in Man which are quite
involved. However, we present here a more elementary approach, inspired by
%ﬁﬁfﬁment to our purpose. In what follows, we let | | denote the || [|oo norm
in R,

For simplicity, we state our results when Q = T", but they can be easily
adapted to arbitrary Q.

6.18 Lemma. et 0<s<1,1<p<oo, 1<qg <00, and 6 € (0,1]. Set Vs :=
T" % (0,0).
1. Let F € C®°(Vy). If
1/q

6/2 de
(/ eIV, o}, ?) <00 (6.39)
0

(with the obvious modification when ¢ = c0), then F has a trace f €
B, ,(T"), satisfying

1/q

0/2 de
IflBs < / e UN(VE), o7, ?) . (6.40)
0

p.g.6 ™

2. Conversely, let f € B}, (T"). Let p € C* be a mollifier supported in {|x| <
1} and set F'(x,¢€): —f*pg(x) xe€T" 0<e<d. Then

1/q
SIflgs (6.41)

p.a.5

o
d
( / 979 |(VE), o), =
0 &

A word about the existence of the trace in item 1 above. We will prove
below that for every 0 < A < /4 we have

|Fip»

5/2 de 1/q
< q-sq . 9 -
B;’q ~ /0 £ ”(VF)( 7€)||Lp e ) . (642)

d2
By Lemma %‘1’4 and a standard argument, this leads to the existence, in
p g of ttﬁ%hmn lim,_oF(-,€). This limit is the trace of F on T"” and clearly
satisfies (
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Proof. For simplicity, we treat only the case where ¢ < co; the case where
q = oo is somewhat simpler and is left to the reader.

Wac aim that in item 1 we may assume that F € C®(V). I 1 ged, assume
that (6:40) holds (with trF = F(:,0)) for such F'. By Lemma 6.14, we have
the stronger inequality ||trF — f trF B, < I(F), where I(F) is the irggegral in
(C. ). Then, by a standard approximati’on argument, we find that (%.‘40) holds
for every F.

So let F € goo(%), and set f(x) := F(x,0), Vx € T". Denote by I(F) the
quantity in (%%9). We have to prove that f satisfies

\flBs,, STE). (6.43)
If |h| <6, then

IALf@)| <|f(x+h)—F(x+h/2,|h|/2)|+ |f(x)— F(x + h/2,|h|/2)]. (6.44) |cga

4 b210
By symmetry and (%544), the estimate (%.71'3‘) will follow from
1/q
(/ |h| " f —F(-+h/2, |h|/2)||gp lhln) SI(F). (6.45) |cgb
|h|<6

5
In order to prove (%%5), we start from

1
|[F'(x+h/2,|Rh1/2) - f(x)] = / (VF)(x +th/2,t|h|/2)-(R/2,|R|/2)dt
0

) (6.46) |cg8
Slhl/ |\VF(x +th/2,t|h|/2)|dt.
0

5 8
Let J(F) denote the left-hand side of (%%5). Using (%546) and setting r := |h|/2,
we obtain

1 ? dn
[J(F)]? S/ |h|975¢ / IVE(-+th/2,t|h|/2)|1r dt
hi<6 0 ||

1 q
dh
=/ |h|97%9 / IVE(,t|h|/2)lLr dt -
|h|<6 0 |h]

6/2 1 q
~/ rg—sq-1 / I\VE(G,tr)| e dt) dr
0 0

5/2 r q
5 / aal / IVFClirdo) dr SHEN.
0 0

toinvei
The last inequality is a special case of Hardy’s inequality Fﬁ%é‘%ter 5,
Lemma 3.14], that we recall here when § =co.!! Let 1< ¢ <oo and 1 < p < oco.
If G € W51(10,00)), then

00 _ q q o0 !/ q
/ wd’”f(—q ) / _'(ip(f}l' dr. (6.48)
0 0

p—1
bousquetmironescu
11 But the argument adapts to a finite &; see e.g. bﬁrﬂ(ﬁ%%ﬁa_w 7.2].
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We obtain (%7[’7) by applying (%ﬁ?)‘witb G'(r) := |VF(,r)lLr and p := sq + 1.
The proof of item 1 is complete.
We next turn to item 2. We have

VF(x,¢) = %f * 1 (x), (6.49)

where V stands for (01,...,0,,0;). Here, n = (n%,...,n""1) € CO(T";R**1) is
supported in {|x| < 1} and is given in coordinates by

7’ =00, Vje[1,n], n"* = —div(xp). (6.50)

Noting that [ =0, we find that

1
IVF(x,€)| = —
&

/ (fx=y)—f@n(»dy
yl=e (6.51)

1
< n+1/ |f(x+h)—fx)dh.
€ |h|<e

h2
Integrating (%751) and using Minkowski’s inequality, we obtain

1
IVECOlLr S / |4 Fllze dh. (6.52)
|h|<e

1 il
Let L(F') be the quantity in the left-hand side of (%%1). Combining (%7152) with
Holder’s inequality, we find that

o
1 q
9 < - -
(LN < /0 et ( /IhngHAhflledh) de

0
1
S g™ I 6.53
N/O gnq+sq+18 /|h|5£ ”Ahf”Lpdth ( )
dh
N RIS UNALFIS, —— = If1%,
/lhlsa WL G =\ ey,
1

ie, (%‘.glrl) holds. -

In the same vein, we %aze the following result, involving the semi-norm
appearing in Proposition BTG,_more specifically the quantity

9,.q dh )"
Iflgr = (/ AL, —— (6.54)
e Al

P,q,0
when ¢ < oo, with the obvious modification when q = co. We first introduce
a notation. Given F € C2(Vy), we let DﬁF denote the collection of the second
order derivatives of F' which are either completely horizontal (that is of the
form 00, F, with j, % € [1,n]), or completely vertical (that is 0,+10,+1F).
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6.19 Lemma. Let 1 <p<ooand 1<gq <oco. Let F € C*®°(Vjs) and set

s d 1/q
MF):= ( / e N(VE), 012, —g)
0 £

and

0 de Vg
N(F):= (/ e?||(D2F), 8|3, ?)
0

(with the obvious modification when g = co).

1. If M(F)<oo and N(F) < oo, then F has a trace f € B},,q(T”), satisfying
lr-#7

'f'B},qa SN(F). (6.56)

< M(F)? (6.55)

LP

and

2. Conversely, let f € B},’q(T";Sl). Let p € C* be an even mollifier sup-
ported in {|x| < 1} and set F(x,¢e) := f * p(x), x € T*, 0 < e <. Then

M(F)+N(F)§|f|3;q5- (6.57)

azyanew
The above result is inspired by the proof of FZ‘I,LSRtion 10.1.1, Theorem
1, p. 512]. a’E{le arguments we present also lead to a (slightly different) proof
of Lemma %TIS.
We start by establishing some preliminary estimates. We call H € R" x R
“pure” if H is either horizontal, or vertical, i.e., either H € R x {0} or H € {0} xR.
For further use, let us note the following fact, valid for X € V5 and H € R**1.

H pure = |D?F(X)-(H,H)| < |D2F(X)||H|?. (6.58)
6.20 Lemma. Let X, H be such that [X,X +2H]c Vy. Let F € C%(Vs). Then

IALF(X)| < /0 2 1ID*F(X +7H)-(H,H)|dT. (6.59)
In particular, if H is pure and we write H = |H|K, then

2|H|
IAZF(X)| < / tIDZF(X +tK)|dt. (6.60)
0
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Proof. Set
GB)=FX+(1-s)H)+F(X+(1+s)H), s€[0,1],

so that G € C? and in addition we have

G'(0)=0, G"(s)=[D*F(X +(1-8)H)+D*F(X + (1 +s)H)]-(H,H), (6.61)

and

1
/ (1-9)G"(s)ds =G(1)-G(0)-G'(0) = A?{F(X). (6.62)
0

jc2 ja3 jad
Estimate (%.959) is a consequence of (%%161) and (%%162) (using the c anges of
Va%rz‘iable T:=1+5s) gg the special case where H is pure, we rely on (6:58) and
(%759) and obtain (%760) via the change of variable ¢ := 7|H|. O

jc3
If we combine (%TCGO) (applied first with H = (h,0), h € R"”, next with H =
(0,2), t €[0,6/2]) with Minkowski’s inequality, we obtain the two following con-

sequences12

[heR", 0<e=<6] = |A2F(,e)lLe SIRIPIDIFC,€)llLe, (6.63)

and!3

2t
[t,>0, e +2t<6] = | A2 F(-,e)uLpg/ rID2F(,e +r)lLodr. (6.64)
0

ten+1

b2 kfl bl
Proof of Lemma %“1‘9 We start by proving (%ﬁ5). By Lemma %.‘1’8 (applied
with s = 1/2 and with 2p (respectively go)linstead of p (respectiv alé’sq))’ F has,
on T", atracetrF € B%f%. By Lemma 6-18, item 1, and Lemma 6-15, we have

trF — ][trF trF — ][trF

kf1
i.e., (6:55) holds. -
We 1ext establish (%ﬁG). Arguing as at the bgggnning of the proof of
Lemmax%._r& one concludes that it suffices to prove (%756) when F € C*®°(Vy).
0 let us consider some F € C®(Vy). We set f(x)=F(x,0), Vx € T". Then
(%ﬁG) is equivalent to

S
Lp

< M(F)l/z
L

|f|311)q5 SN(F). (6.65)

We treat only the case where g < co; the case where g = 0o is slightly simpler
and is left to the reader.

12 In (8:63), we let A2ZF(-,¢) := F(-+2h, )~ 2F (- + h, ) + F(-,¢).
13 With the slight abuse of notation A2, F(-,&):=F(-,e +2t) — 2F(-,e + t) + F(:,¢).

ten+1
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The starting point is the following identity, valid when |2| < § and with
t:=|h|

AZf :A?em o F (- +2h,0) - ZA?QM o F (- +h,0)+ A?em o F(-,0)

v ] (6.66)
+2A2F(,4/2)~ A2F(.,1).
ibl ib2 id1l
By (6%63), (6:64) and (666), we find that
| 2 2
162 £l < / FIDEFC, Pl dr -+ RPIDZFC, [V2) s
0 (6.67)

+1RI2ID2F(, |RDILs.

jd2 04269
Finally, (%76‘7) combined with Hardy’s inequality (%.71‘8‘)‘(applied to the integral
f06 and with G'(r) := rllDﬁF(-,r)Ile and p:=q +1) yields

. (o, ! dh
|71 §/ - / r|\DyFC,r)||p, dr +[NF)]?
fle;,q,a |hl<6 |h|q( 0 2% Iz |hI™ (6.68)

SIN@E)E.

kf2
This implies (%76‘5) and completes the proof of item 1.
We now turn to item 2. We claim that

< 1/2
lle%f,Zq,a Siflgr (6.69)

p,q,0

i 22120 < |A2FIP (si —
Indee.d,. it S}(lfll'ices Fo note the a%allct that 1A fl1?P < 1A f1? (since |f| =1). By
combining (%%9. ) with Lemma %‘IS , we find that

S5 dg 1/(]
M(F)= ( / e NVE)E, — | SIflg . (6.70)
0 p,q

0

kb4 kg2
Thus, in order to complete the proof of (%57), it suffices to combine (%%0) with
the following estimate

N(F),SIfIB;qé, (6.71)

kg3
that we now establish. g;]%e key argument for proving (%%1) is the following
second order analog of (%751):

1

2 2

IDF (x,€)| S 2 /|h|55 |AL f(x—h)|dh. (6.72)
kil

The proof of (E‘?Z) appears in %‘%%%14]. For the sake of completeness, we

reproduce below the argument. First, differentiating the expression defining
F, we have

1 .
0;0¢F(x,e)= 5 f *(@;0kp)e, VJ, k€ [Lnl. (6.73)
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at3

ki2
Using ( . ) and the fact that 0;0.p is even and has zero average, we obtain
the identity

1
|hl<e
kil . cip
and thus (%772) holds for the derivatives 00, F, with j, k € [1,n].
We next note the identity

F(x,e)= % / p(h/e)A2 f(x - h)dh + f(x), (6.74)

which follows from the fact ﬁgl?{t p is even. il

By differentiating twice (6: 4L¥‘{ith respect to £, we obtain that (%772) holds
when j = kk:i pt 1. The proof of (%772) is complete.

Using (%772) and Minkowski’s inequality, we obtain

IDZF(,e)lLr <

/ 1A2 flizr dh, (6.75)
|h|<e

£n+2

” i1
which is a second order a al?g of (%7152). O ce, (%7152) is obtained, we repeat
the calculation leading to (%‘153. ) and obtain (6-71). The details are left to the
reader. b2

The proof of Lemma % 19 is complete. O

6.21 Remark. One may put Lemmas %1.311'8 and %].2%9 in the perspective of the
theory of weighted Sobolev spaces. Let us start by recalling one of the strik-
ing achievements of this theory. As it is well-known, we have trWl’l(IR’j) =
L(®" 1), and, when n =2, the trace oper tor has no linear continuous right-
inverse T : L\(R* 1) — Wl’l(Rn)%%%The expected analogs of these
facts for W»1(R?) are both wrong. More specifically, we have tr W>1(R?) =
Bil(R”_l) (which is a strict subspace of WL1(R*™1)), and the trace operator

has a linear continuous right inverse from B% 1(IR”‘I) into W21(R?). These
results are special cases %fl'l E k{l{aitrace theory for weighted Sobolev spaces de-
velo edl(?x?:a V}Jspenskii . For a modern treatment of this theory, see e.g.

traceso

6.6 Product estimates

t3 1
Lemma %‘22 below is a variant of H,‘SLemma D.2]. Here, Q is either smooth
bounded, or (0,1)", or T™.

6.22 Lemma. Let s>1,1<p<ocoand 1<q <oo. Ifu,v € B}, , NnL*(Q), then
uVv EB;;ql.
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Proof. After extension to R” and cutoff, we may assume that u,v € Bz’q NL*>.
It thus sulffices to prove that u,v € B, , NnL™(R") =uVve B;;}(IR”).

In order to prove the above, we argue as follows. Let u =) ujand v =} v;
be the Littlewood-Paley decompositions of u and v. Set

fj = Z upVu;+ Z u;Vug.
k<j k<j

Since supp #(u;Vv;) c B(0,2ma"{k’j}+2g, we find that uVv = Y. f/ is a Nikolskii
decompositiongof uVv; see Section 2°9. Asg;ﬁgne e.g. that g <oco. In view of
Proposition EI.BM, the conclusion of Lemma >6‘22 follows if we prove that

Zz(s—l)jq ”fJ”Zp < oo, (6.76) |mni

%31 hemi
In order to rove (6-76), we rely on the elementary estimates hG_EC er,nmemma
2.1.1, p. 16], [, formulas (D.8), (D.9), p. 71]

Your|  Sllulpe, VYjiz0, 6.77) [mn2
k<j Lo
Y Vor|| <20vllpe, Vjz0, (6.78) [mn3
k<j Lo
and
IVoilize <2Mvjle, VYj=0. (6.79) [mn4

2 4
By combining (%17177)-(%1?179), we obtain

q q
b b
Y 2eiay iy <% ol ”q( Sour|  IVuiIL+] Y Vor ||u,-||§,,)
k<j Lo k<j Lo
Slulfe Y 25w, + vl i Y 279 uj1d,
Sluliolvl?, +lvl?oluli, |
Slhulflolg, +lvlfxlulg,
1
and thus (B276) holds. 0

6.7 Superposition operators

In this section, we examine the mapping properties of the operator
T
Tcp, v 2, ®o v.

We work in Q) smooth bounded, or (0,1)", or T". unstsickel
The next result is classical and straightforward; see e.g. , Section 5.3.6,
Theorem 1].
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6.23 Lemma. Let 0<s<1, 1<p<oo,and 1<q <oco. Let ®:R¥ - R be a
Lipschitz function . Then T¢ maps Bz’q(Q;Rk) into B;,q(Q;IREl).
Special case: ¥ — e'¥ maps B;,q(Q;IR) into B;,q(Q;Sl).
In addition, when g < co, T'¢ is continuous.

tsickel
For the next result, see %%,isseicct%l 5.3.4, Theorem 2, p. 325].

ka2| 6.24 Lemma. Let s >0, 1< p <ooand 1< ¢ <oo. Let ® € C°(R*;R!). Then
T maps (BS , N L®)(Q;RF) into (BS , N L)(Q;R)).
Special case: ¥ — e'¥ maps (B} o NL®)€;R) into (B, , NL®)(Q;Sh).

6.8 Integer valued functions

. . Eﬁs_s . 14 . hﬁ]%
The next result is a cousin of [4," Appendix El]lhic?&t the argument in
does not s em t<l) apply in our situation. Lemma 6.25 can be obtained from the
results in %8‘],_“%1t we present below a simpler direct argument.

6.25 Lemma. Let s >0, 1 < p <oo and 1 < ¢ < co be such that sp > 1. Then
the functions in B;,q(Q;Z) are constant.
Same result when s >0, 1< p <oo, g =00 and sp > 1.
The same conclusion holds for functions in Z?le;jj,qJ(Q;Z), provided we
have for all j € [1,]: either s;pj=1and 1<qg;<oo,orsjpj>land 1<gq;<
oo.

B-VMO
Proof. The case where n =1 is simple. Indeed, by Lemma %‘5_ we have B} , —
VMO (and similarly Zk._lB;,j q; < YMO). %he conclusjon follows from the fact
J=1 Jo4J rezisnirenbergl
that VMO((0, 1); Z) functions are constant [1Z,Step b, p. 229]. .

We next turn to the general case. Let f = Zf‘=1 fj, with f; € B;’j,qJ(Q;Z),
Vj € [1,k]. In view of the conclusion, we may assume that Q =(0,1)". By the
Sobolev embeddings, we may assume that for all j we have s;p; =1 (and thus
either 1 <%ﬁé<oo ands; =1/pj,or pj=1ands;=1)and 1=<gq; < oo. Let, as
in Lemma 6.9, A < (0,1)""! be a set of full measure such that (6-4) holds with
M = 2. The proof of the lemma relies on the following key implication:

[x1+--+xp€Z, 1< p1,...,pp <00l = |x1+--+xp| S lxp[Pr+---+]xp Pk, (6.80) |cf2

This leads to the following consequence: if g := g1 +---+ g} is integer-valued,
then

17 gl SIAF LIl +-+ A7 87k, (6.81)

14 The context there is the one of the Sobolev spaces.
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f1 1
By combining (64) with (B81), we find that

st

lim
l—o0 t]

LY(O0,1) _

0, Vx'eA, for some sequence ¢; — 0. (6.82)

f4
By Lemma %‘.26 below, we find that f(x/,-) is constant, for every x' € A. By a
permutation of the coordinates, we find that for every i € [1,n], the function

t— fx1,..0,%i-1,t,%41,...,%,) iS constant, Vi € [1,n], a.e. x; €(0, 1)L (6.83)

here, Xj 1= (X1, .., X1, Xt 1,y %n) € (0,1)? 1. a0
We next minnvoke the fact that every measurable function satisfying (%783) is
constant (T2, Lemma 2]. O

6.26 Lemma. Let g € L1((0,1);Z) be such that, for some sequence t; — 0, we
have

2
lim

l—o00 t]

1
LD _ . (6.84)

Then g is constant.

Proof. In order to explain the main idea, let us first assume that g = 1p for
some B c(0,1). Let h€(0,1). If x€ B and x+2h ¢ B, then A,zlg(x) is odd, and
thus IA% g(x)| = 1. The same holds if x ¢ B and x + 2h € B. On the other hand,
we have |Agj g(x)| < 1, with equality only when either x € B and x + 2h ¢ B, or
x ¢ B and x + 2h € B. By the preceding, we obtain the inequality

A7 g(@)| = 1028 (@), Yz, Vh. (6.85)

£5 6
Using (%784) and (%785), we obtain

A
g = lim Sou8

=0.15 (6.86)
l—oo 2t

Thus either g =0, or g =1.

We next turn to the general case. Consider some % € Z such that the mea-
sure of the set g~ 1({k}) is positive. We may assume that 2 = 0, and we will
prove that g = 0. For this purpose, we set B := g"1(2Z), and we let g := 15. Ar-
guing as above, we have IA%g(x)l = |Agpg(x)|, Vx, VA, and thus g = 0. We find
that g takes only even values. We next consider the integer-valued map g/2.
By the above, g/2 takes only even values, and so on. We find that g =0. O

15 In (6:86), the first limit is in 2, the second one in L.
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6.9 Disintegration of the Jacobians

The purpose of this secti(gl is to prove and generalize the following result,
used in the analysis of Case

6.27 Lemma. Let s>1, 1< p<oo, 1<qg<p and n = 3, and assume that
sp=2. Let u € B, (Q; §1)and set F:=u A Vu. Then curl F = 0.
Sameconclus1on1fs>1 l1<p<oo,1<qg<o0andn=2, and we have
sp>2.
Same conclusion if s >1, 1< p <00, 1<q <oo and n =2, and we have
sp =2.

In view of the conclusion, we may assume that Q = (0,1)".
Note that in the above we have n = 2; for n = 1 there is nothing to prove.
Since the results we present in this sectjon are of independent interest, we
go beyond what is actually needed in Case g
The conclusion of (the generalization of) Lemma %‘2’7 relies on three in-
gredients. The first one is that it is possible to define, as a distribution, the
ggduct F :=uAVu for u in a low regularity Besov space; this s goes lgack to
when n = 2, and the case where n = 3 is treated in %‘]He second one
is a Fubini (disintegration) type result for the distribution curlF. Again,
this result h%lds even in Bego 0y spaces with lower regularity than the ones
in Lemma %‘2‘7 see Lemma 6:28 below The final ingredien 1s the fact thgt
when u € VMO((0,1)%;S') we have cyr ;. gee Lemma%—ZQ Lemma
is obtained by combining Ipmas %‘28 and via a dimensional reductlon
(solicmg) based on Lemma 6.8; a more general result is presented in Lemma

T . . 1ddjr _ [bousquetmironescu
Now let us proceed. First, following and bﬂi—l_%we explain now to define

the Jacobian Ju := 1/2 curl F of low regularity unimodular maps u € WYP2((0,1)*;S1),

with 1< p <00.'® Assume first that n = 2 and that u is smooth. Then, in the
distributions sense, we have

1 1
(Ju,{):—/ curlF(:——/ V{A(uAVu)
2 Jo,12 2 Jo,12

1
= 5/ (A 01u)05¢ — (u A 02u)01(] (6.87)
0,1)

1
= —/ (u1Vug AVE—ugVui1 AV(), VCECSO((O,I)z).
2 J0,12

In higher dimensions, it is better to identify Ju with the 2-form (or rather a
2-current) Ju = 1/2d(u Aduw).}” With this identification and modulo the action

TM%&%%M‘% (instead of (0,1)*) into S!, but this is not relevant for

the validity of the results we present here. o
17 We recover the two-dimensional formula (%787) via the usual identification of 2-forms on
(0,1)? with scalar functions (with the help of the Hodge *-operator).
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of the Hodge x-operator, Ju acts either or (n — 2)-forms, or on 2-forms. The
former point of view is usually adopted, and is expressed by the formula

/ d{A(uAVu)
0,1)"

/ diA(uidus —ugduy), Y{eCP(A"2(0,1)").18
(0,1)"

-1 n—1
(Ju,() = D

(6.88)

~ (_l)n—l
2

The starting point in exten 01515 the above formula to lower r O,%Hlarity maps u

is provided by the identity (6-89) below; when u is smooth, (6-89) is obtained

by a simple integration by parts. More specifically, consider any smooth ex-

tension U : (0,1)" x [0,00) — C, respectively ¢ € C(A™2((0,1)" x [0,00))) of u,
: 19 . %m_ﬁa_mwmmﬂ

respectively of {.*” Then we have the identity [9, Lemma 5.

(Ju,{) = (=11 / d¢ A dUy AdUs. (6.89)
(0,1)" x(0,00)

Foros}a 4low regularity u and for a well-chosen U, we take the right-hand side

of (%789) as the definition of Ju. More specifically, let ® € C®°(R2;R2) be such

that ®(z) = z/|z| when |z| = 1/2, and let v be a standard extension of u by

averages, i.e., v(x,&) = u * p.(x), x € (0,1)", € > 0, with p a sta glglld mollifier.

Set U := ®(v). With this clﬁoice of U, the r%lght-hand side of (6-89) does not
. ousquetmironesc . .
depend on ¢ (once ( is fixed) [9, Lemma 5.4 and the map u — Ju is continuous

oa3

oa4d

from WYP:2((0,1)*;S!) into the set of 2- (or (n — 2)-)currents. Whenug =1
e . . L. bousquetmirdnescu
continuity is straightforward. For the continuity when p > 1, see L[Q‘an—, eorem

1.1 item 2]. In addition, when u is sufﬁcientbé ussmx?é)ttn}ﬁ lgg(%llg éag%ample when u €

WL1((0,1)*;SY), Ju coincides®® with curl F [, Theorem 1.1 item 1]. Finally,
. ousguetmironescu
we have the estimate FQ_Tgh—l_l"t, eorem 1.1 item 3]
[Tu, Ol S ull,, Nddls, Ve CRA"2(0,1)"). (6.90)

We are now in position %ééexplain disintegration along two-planes. We
use the notation in Section 6.2. Let u € WYP-2((0,1)*;S1), with n > 3. Let
a € I(n—-2,n). Then for a.e. x4 €(0,1)" 2, the partial map uq(x,) belongs to
wlr-r((0,1)%;S') (Lemma o? ), and therefore Ju,(x,) makes sense and acts
on functions.?! Let now { € C?(A"—Z(o, 1)"). Then we may write

(=) %dx*= ) (¢9),Gxz)dx”

ael(n-2,n) acl(n-2,n)

Here, dx® is the canonical (n —2)-form induced by the coordinates x;, j € a,
and ({)q(xgz) = (“(xq4,x7) belongs to C°((0, 1)?) (for fixed xg).

18 Here, C‘g"(A”_z(O, 1)"*) denotes the space of smooth compactly supported (n — 2)-forms on
0,1)™.

19 We do not claim that U is 0§r1é\\/_lille%ed. When u is not smooth, existence of S!-valued
extensions is a delicate matter ?2‘5‘]7

20 Up to the action of the * operator.

21 Oy rather on 2-forms, in order to be consistent with our construction in dimension = 3.
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We next note the following formal calculation. Fix a € I(n —2,n), and let
a =1{j,k}, with j <k. Then

2(-1)" N Ju, % dx%y = / d(*dx®)A(uAVu)
0,1)
2/ (ajc"‘dxj+6k(“dxk)/\dx“/\u/\(ajudxj+6kudxk)
0,1)"
:/ 0;¢"unoru—0rl"undju)dx; Adx® Adxp,
0,1)"

that is,

1
Ju,)== ) &) (Jug, (), (x0)) dxa, (6.91)

acl(n-2,n) (0,1)r2

where e(a) € {—1,1} depends on a. 0co
When u € WH1((0, 1)”;§ig,2it is easy to see that (h‘)“.gl) is true (by Fubini’s
theorem). The validity of (%Tgl) under weaker regularity assumptions is the

content of our next result.

1/ n.ql %C%
6.28 Lemma. Let 1 <p <ooand n = 3. Let u e W"?((0,1)*;S"). Then (6:91)
holds.

Proof. The case p = 1 being clear, we may assume that 1 < p < co. We may
also assume th otéf = {*dx“ for some fixed a € I(n —2,n). A first ingredient
of the proof of (%%. 1) is the density (?frWU((o,1)”;§1)lefp’p((o,l)n;gl) into
wr-p((0, 1)”;% , Lemma 23], [7, Lemma A.1]. Next, we note that the left-
hand side of (O.C lé is continuous with respect to the WYP? convergence_of

. ousguetmironescu o oc2
unimodular maps [9, Theorem 1.1 item 2]. In addition, as we noted, (6-91)
holds when u € Vgl’l((O, 1)*;S1). Therefore, it suffices to prove that the right-
hand side of (%Tcgl) is continuous with respect to WYP? convergence of S!-
valued maps. This is proved as follows. Let u;,u € Wwlr-r((0,1)*;S1) be g&ch
u;—uin WVp.P_ By a standard argument, gid%ce the right-hand side of (%Tgl)
is uniformly boun géiQWith respect to j by (%790), it suffices to prove that the
right-hand side of (6:91) corresponding to u; tends to the one corresponding to
u possibly along a subsequence.

In turn, convergence up to a subsequence is proved as follows. Recall
the following vect I;gzailé%%d version of the “converse” to the dominated con-
vergence theorem [TT, Theorem 4.9, p. 94]. If X is a Banach space, w a mea-
sured space and f; — f in L”(w,X), then (possibly along a subsequence) for
a.e. ® € w we have fj(®,") — f(®,-) in X, and in addition there exists some
g € LP(w) such that ||f;(@,)lx < a(&‘)) for a.e. ® € w.

Using the above and Lemma 6.7 item 2 (applied with s = 1/p), we find that,
up to a subsequence, we have

(1 )a(xq) — ualxg) in WYPP((0,1)%SY) for a.e. x4 €(0,1)"72, (6.92)
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and in addition we have, for some g € L?((0, 1)"72),
(a0, 1)) < 8(xa) for a.e. x4 €(0,1)" 7. (6.93)

The continuity of the ri l&t -hand 1d4e of (%‘9 éalong some subsequence) is
obtained by combining (6.:92) and (6-93) with ( ) (applied with n =2).22 O

6.29 Lemma. Let 1 < p <oo. Let u € WP A VMO((0,1)?;S'). Then Ju = 0.

Proof. Assume first that in addition we have u € C*°. Then u = e'¥ for some
@ € C*®, and thus Ju = 1/2curl(u AVu) =1/2curl Ve = 0.

We now turn to the general case. Let F(x,¢) := u * p.(x), with p a standard
mollifier. Since u € VMO((0,1)?; i%fng}slgre exists some 6 > 0 such that 1/2 <
|F(x,e)l <1 when 0 < e <6 (see (32)y and the discussion in Case 3). Let ® €
C*®(R2;R?) be such that ®(z) := z/|z| when |z| = 1/2, and define F.(x) ;= F(x,¢)
and u, :=®oF,, V0<e<§. Then F, — u in WP and (by Lemma >6“§3_when
p > 1, respectively by a straightforward argument when p = 1) we have u, =
O(F,) — D(u) = u in WYP-P((0,1)%;S') as € — 0. Since (by the beginning of the

roof) we have Ju, = 0, we conclude via the continuity of JJ in W?-((0,1)%;S1)
ougquetmironescu
F@‘ﬁq—l_l_teorem Ttem 2]. O

We may now state and prove the following generalization of Lemma %‘27

6.30 Lemma. Let s>0,1<p<o00,1<q<p, n=3, and assume that sp = 2.
Let u EB;q(Q;Sl). Then Ju =0.
Same conclusion if s>0,1<p <o00,1<q <00, n =2, and we have sp > 2.
Same conclusion if s>0,1<p <o00,1<q <oo, n =2, and we have sp = 2.

roof. We may assume that 2 =(0,1)". By the Sobolev embeddings (Lemma

eso em
, it suffices to consider the limiting case where:

1. s>0,1<p<oo,l<g<oo,n=2,and sp =2.
Or
2. s>0,1<p<oo,q=p,n=3,and sp =2.

B bB-VM
n VleW of Lemmas %%%‘ﬁhe case where n = 2 is covered by Lemma
Assun}e th7a > 3. T the desired conclusion is obtained by combining
Lemmas O

6.31 Remark. Arguments similar to the one developed in this section lead to

the conil&és on that the Jacobians of maps u € W52((0,1)*;S*), defined when
squetmlironescu
sp=k h‘l%m;aﬁlsm e%g% e pver (k +1)-planes. When s =1 and p =k, this

assertion is implicit in roof of Proposition 2.2, pp. 701-704].

2
22In order to be complete, we should also check that the rlght hand side of (%(:9‘1) is measur-
able with re §t to xq. This is clear when u € W51((0,1)*;S1). The general case follows by
density and (%92
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