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1 Introduction

Let Ω ⊂ Rn be a bounded simply connected domain and u :Ω→ S1 a con-
tinuous (resp. Ck, k ≥ 1) function. It is a well-known fact that there exists a
continuous (resp. Ck) real-valued function ϕ such that u = eıϕ. In other words,
u has a continuous (resp. Ck) lifting.
The analogous problem when u belongs to the fractional Sobolev space W s,p,
s > 0, 1 ≤ p <∞, received an complete answer in

lss
[4]. Let us briefly recall the

results:

1. when n = 1, u has a lifting in W s,p for all s > 0 and all p ∈ [1,∞),

2. when n ≥ 2 and 0 < s < 1, u has a lifting in W s,p if and only if sp < 1 or
sp ≥ n,

3. when n ≥ 2 and s ≥ 1, u has a lifting in W s,p if and only if sp ≥ 2.

Further developments in the Sobolev context can be found in
bethuelchiron,nguyenphase,mironescuphase,mironescucras2
[1, 28, 24, 26].

In the present paper, we address the corresponding question in the frame-
work of Besov spaces. More specifically, given s, p, q in suitable ranges de-
fined later, we ask whether a map u ∈ Bs

p,q(Ω;S1) can be lifted as u = eıϕ, with
ϕ ∈ Bs

p,q(Ω;R). We say that Bs
p,q has the lifting property if and only if the

answer is positive.
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When dealing with circle-valued functions and their phases, it is natural
to consider only maps in L1

loc. This is why we assume that s > 0,1 and we take
the exponents p and q in the classical range p ∈ [1,∞), q ∈ [1,∞].2

Since Besov spaces are microscopic modifications of Sobolev (or Slobodeskii)
spaces, one expects a global picture similar to the one described before for
Sobolev spaces. The analysis in Besov spaces is indeed partly similar to the
one in Sobolev spaces, as far as the results and the techniques are concerned.
However, several difficulties occur and some cases still remain open. Thus,
the analysis of the lifting problem leads us to prove several new properties for
Besov spaces (in connection with restriction or absence of restriction proper-
ties, sums of integer valued functions which are constant, products of func-
tions in Besov spaces, disintegration properties for the Jacobian), which are
interesting in their own right. We also provide detailed arguments for clas-
sical properties (some embeddings, Poincaré inequalities) which could not be
precisely located in the literature.

Let us now describe more precisely our results and methods. When sp >
n, functions in Bs

p,q are continuous, which readily implies that Bs
p,q has the

lifting property (Case
tri
1).

In the case where sp < 1, we rely on a characterization of Bs
p,q in terms

of the Haar basis
bourdaud
[3, Théorème 5], to prove that Bs

p,q has the lifting property
(Case

A
2).

Assume now that 0 < s ≤ 1, sp = n and q < ∞. Let u ∈ Bs
p,q(Ω;S1) and

let F(x,ε) := u ∗ ρε, where ρ is a standard mollifier. Since Bs
p,q ,→ VMO,

for all ε sufficiently small and all x ∈ Ω we have 1/2 < |F(x,ε)| ≤ 1. Writing
F(x,ε)/ |F(x,ε)| = eıψε , where ψε is C∞, and relying on a slight modification of
the trace theory for weighted Sobolev spaces developed in

tracesoldnew
[27], we conclude,

letting εtend to 0, that u = eıψ0 , where ψ0 = limε→0ψε ∈ Bs
p,q, and therefore

Bs
p,q still has the lifting property (Case

X
3).

Consider now the case where s > 1 and sp ≥ 2. Arguing as in
lss
[4, Section 3],

it is easily seen that the lifting property for Bs
p,q will follow from the following

property: given u ∈ Bs
p,q(Ω;S1), if F := u∧∇u ∈ Lp(Ω;Rn), then (∗) curlF = 0.

The proof of (∗) is much more involved than the corresponding one for W s,p

spaces
lss
[4, Section 3]. It relies on a disintegration argument for the Jacobians,

more generally applicable in W1/p,p. This argument, in turn, relies on the fact
that curlF = 0 when u ∈VMO and n = 2, and a slicing argument. In particular,
we need a restriction property for Besov spaces, namely the fact that, for s > 0,
1 ≤ p <∞ and 1 ≤ q ≤ p, for all f ∈ Bs

p,q, the partial maps of f still belong to
Bs

p,p (see Lemma
oa1
6.7 below). Thus, we obtain that, when s > 1 and 1 ≤ p <∞,

1 However, we will discuss an appropriate version of the lifting problem when s ≤ 0; see
Remark

aa1
3.1 and Case

T
10 below.

2 We discard the uninteresting case where p = ∞. In that case, maps in Bs∞,q are con-
tinuous. Arguing as in Case

tri
1 below, we obtain the existence of a Bs∞,q phase for every

u ∈ Bs∞,q(Ω;S1).
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Bs
p,q does have the lifting property when [1 ≤ q < ∞, n = 2, and sp = 2], or

[1≤ q ≤ p, n ≥ 3, and sp = 2], or [1≤ q ≤∞, n ≥ 2, and sp > 2].
One can improve the conclusion of Lemma

oa1
6.7 as follows. For s > 0, 1 ≤

p < ∞ and 1 ≤ q ≤ p, for all f ∈ Bs
p,q, the partial maps of f belong to Bs

p,q
(Proposition

qh1
6.10). We emphasize the fact that this type of property holds only

under the crucial assumption q ≤ p. More precisely, if q > p and s > 0, then we
exhibit a compactly supported function f ∈ Bs

p,q(R2) such that, for almost every
x ∈ (0,1), f (x, ·) ∉ Bs

p,∞(R) (Proposition
l7.26
6.11). This phenomenon, which has not

been noticed before, shows a picture strikingly different from the one for W s,p,
and even more generally for Triebel-Lizorkin spaces

triebel2
[35, Section 2.5.13].

Let us return to the case when 0 < s < 1, 1 ≤ p < ∞ and n ≥ 2. Assume
now that [1 ≤ q <∞ and 1 ≤ sp < n], or [q =∞ and 1 < sp < n]. In this case,
we show that Bs

p,q does not have the lifting property. The argument uses
embedding theorems and the following fact, for which we provide a proof: let
si > 0, 1 ≤ pi <∞, and [s j p j = 1 and 1 ≤ q j <∞], or [s j p j > 1 and 1 ≤ q j ≤∞],
i = 1,2. Then, if f i ∈ Bsi

pi ,qi and f1 + f2 only takes integer values, then the
function f1 + f2 is constant.

Assume finally that 0 < s < ∞, 1 ≤ p < ∞, n ≥ 2 and [1 ≤ q < ∞ and 1 ≤
sp < 2] or [q =∞ and 1 ≤ sp ≤ 2]. In this case, Bs

p,q does not have the lifting
property either. We provide a counterexample of topological nature, inspired

by
lss
[4, Section 4]: namely, the function u(x) = (x1, x2)(

x2
1 + x2

2
)1/2 belongs to Bs

p,q but

has no lifting in Bs
p,q.

Contrary to the case of Sobolev spaces, some cases remain open. A first
case occurs when s > 1, 1 ≤ p < ∞, p < q < ∞, n ≥ 3, and sp = 2. In this
situation, since the restriction property for Bs

p,q does not hold, the argument
sketched before does not work any longer and we do not know if Bs

p,q has the
lifting property.

The case where s = 1, 1 ≤ p <∞, n ≥ 3, and [1 ≤ q <∞ and 2 ≤ p < n] or
[q =∞ and 2 < p ≤ n] is also open (except when s = 1 and p = q = 2, since in
this case, B1

2,2 =W1,2 has the lifting property). This is related to the fact that
it is not known whether the map ϕ 7→ eıϕ maps B1

p,q into itself.
When 1≤ p <∞, s = 1/p and q =∞, we do not know if B1/p

p,∞ has the lifting
property. In particular, it is unclear whether the Haar system provides a basis
of B1/p

p,∞. The case where q = ∞, n ≤ p < ∞, n ≥ 3 and s = n/p is also open.
Indeed, Bs

p,q is not embedded into VMO in this case, and the argument briefly
described above is not applicable any more.

Let us summarize the main results of this paper concerning the lifting
problem. We start with positive cases.

positive 1.1 Theorem. Let s > 0, 1 ≤ p < ∞, 1 ≤ q ≤ ∞. The lifting problem has a
positive answer in the following cases:

1. s > 0, 1≤ q ≤∞, and sp > n,
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2. 0< s < 1, 1≤ q ≤∞, and sp < 1,

3. 0< s ≤ 1, 1≤ q <∞, and sp = n,

4. (a) s > 1, 1≤ q <∞, n = 2, and sp = 2,

(b) s > 1, 1≤ q ≤ p, n ≥ 3, and sp = 2,

(c) s > 1, 1≤ q ≤∞, n ≥ 2, and sp > 2.

The negative cases are as follows:

negative 1.2 Theorem. Let s > 0, 1 ≤ p < ∞, 1 ≤ q ≤ ∞. The lifting problem has a
negative answer in the following cases:

1. (a) 0< s < 1, 1≤ q <∞, n ≥ 2, and 1≤ sp < n,

(b) 0< s < 1, q =∞, n ≥ 2, and 1< sp < n,

2. (a) 0< s <∞, 1≤ q <∞, n ≥ 2, and 1≤ sp < 2,

(b) 0< s <∞, 1≤ p <∞, q =∞, n ≥ 2, and 1< sp ≤ 2.

The paper is organized as follows. In Section
fun
2, we briefly recall the stan-

dard definition of Besov spaces and some classical characterizations of these
spaces (by Littlewood-Paley theory and wavelets). In Section

pos
3 we establish

Theorem
positive
1.1, namely the cases where Bs

p,q does have the lifting property, while
Section

neg
4 is devoted to negative cases (Theorem

negative
1.2). In Section

ope
5, we discuss

the remaining cases, which are widely open. The final section gathers state-
ments and proofs of various results on Besov spaces needed in the proofs of
Theorems

positive
1.1 and

negative
1.2.
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Notation, framework
1. Most of our results are stated in a smooth bounded domain Ω⊂Rn.

2. In few cases, proofs are simpler if we consider Zn-periodic maps u :
(0,1)n → S1. In this case, we denote the corresponding function spaces
Bs

p,q(Tn;S1), and the question is whether a map u ∈ Bs
p,q(Tn;S1) has
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a lifting ϕ ∈ Bs
p,q((0,1)n;R). [Of course, ϕ need not be, in general, Zn-

periodic.] If such a ϕ exists for every u ∈ Bs
p,q(Tn;S1), then Bs

p,q(Tn;S1)
has the lifting property.

However, in these results it is not crucial to work in Tn. An inspection of
the proofs shows that, with some extra work, we could take any smooth
bounded domain.

3. In the same vein, it is sometimes easier to work in Ω = (0,1)n (with no
periodicity assumption).

4. Partial derivatives are denoted ∂ j, ∂ j∂k, and so on, or ∂α.

5. ∧ denotes vector product of complex numbers: a∧b := a1b2−a2b1. Sim-
ilarly, u∧∇v := u1∇v2 −u2∇v1.

6. If u :Ω→C and if $ is a k-form on Ω (with k ∈ J0,n−1K), then $∧(u∧∇u)
denotes the (k+1)-form $∧ (u1du2 −u2du1).

7. We let Rn+ denote the open set Rn−1 × (0,∞).
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2 Crash course on Besov spaces
fun

We briefly recall here the basic properties of the Besov spaces in Rn, with
special focus on the properties which will be instrumental for our purposes.
For a complete treatment of these spaces, see

triebel2,fjw,triebel3,runstsickel
[35, 18, 36, 30].

2.1 Preliminaries

In the sequel, S (Rn) is the usual Schwartz space of rapidly decreasing C∞

functions. Let Z (Rn) denote the subspace of S (Rn) consisting of functions
ϕ ∈S (Rn) such that ∂αϕ(0)= 0 for every multi-index α ∈Nn. Let Z ′(Rn) stand
for the topological dual of Z (Rn). It is well-known

triebel2
[35, Section 5.1.2] that

Z ′(Rn) can be identified with the quotient space S ′(Rn)/P (Rn), where P (Rn)
denotes the space of all polynomials in Rn.

We denote by F the Fourier transform.
For all sequence ( f j) j≥0 of measurable functions on Rn, we set

∥∥( f j)
∥∥

lq(Lp) :=
(∑

j≥0

(ˆ
Rn

∣∣ f j(x)
∣∣p dx

)q/p
)1/q

,

with the usual modification when p =∞ and/or q =∞. If ( f j) is labelled by Z,
then

∥∥( f j)
∥∥

lq(Lp) is defined analogously with
∑

j≥0 replaced by
∑

j∈Z.
Finally, we fix some notation for finite order differences. Let Ω ⊂ Rn be a

domain and let f :Ω→R. For all integers M ≥ 0, all t > 0 and all x,h ∈Rn, set

∆M
h f (x)=


M∑

l=0

(
M
l

)
(−1)M−l f (x+ lh), if x, x+h, . . . , x+Mh ∈Ω

0, otherwise
. (2.1) ia1
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2.2 Definitions of Besov spaces
mm7

We first focus on inhomogeneous Besov spaces. Fix a sequence of functions
(ϕ j) j≥0 ∈S (Rn) such that:

1. supp ϕ0 ⊂ B(0,2) and supp ϕ j ⊂ B(0,2 j+1)\ B(0,2 j−1) for all j ≥ 1.

2. For all multi-index α ∈ Nn, there exists cα > 0 such that
∣∣Dαϕ j(x)

∣∣ ≤
cα2− j|α|, for all x ∈Rn and all j ≥ 0.

3. For all x ∈Rn, it holds
∑

j≥0ϕ j(x)= 1.

2.1 Definition (Definition of inhomogeneous Besov spaces). Let s ∈ R, 1 ≤
p <∞ and 1 ≤ q ≤∞. Define Bs

p,q(Rn) as the space of tempered distributions
f ∈S ′(Rn) such that

‖ f ‖Bs
p,q(Rn) :=

∥∥∥(
2s jF−1 (

ϕ jF f (·)))∥∥∥
lq(Lp)

<∞.

Recall
triebel2
[35, Section 2.3.2, Proposition 1, p. 46] that Bs

p,q(Rn) is a Banach
space which does not depend on the choice of the sequence (ϕ j) j≥0, in the
sense that two different choices for the sequence (ϕ j) j≥0 give rise to equiva-
lent norms. Once the ϕ j ’s are fixed, we refer to the equality f =∑

j f j in S ′ as
the Littlewood-Paley decomposition of f .

Let us now turn to the definition of homogeneous Besov spaces. Let (ϕ j) j∈Z
be a sequence of functions satisfying:

1. supp ϕ j ⊂ B(0,2 j+1)\ B(0,2 j−1) for all j ∈Z.

2. For all multi-index α ∈ Nn, there exists cα > 0 such that
∣∣Dαϕ j(x)

∣∣ ≤
cα2− j|α|, for all x ∈Rn and all j ∈Z.

3. For all x ∈Rn \{0}, it holds
∑

j∈Zϕ j(x)= 1.

2.2 Definition (Definition of homogeneous Besov spaces). Let s ∈R, 1≤ p <∞
and 1≤ q ≤∞. Define Ḃs

p,q(Rn) as the space of f ∈Z ′(Rn) such that

| f |Bs
p,q(Rn) :=

∥∥∥(
2s jF−1 (

ϕ jF f (·)))∥∥∥
lq(Lp)

<∞.

Note that this definition makes sense since, for all polynomial P and all f ∈
S ′(Rn), we have | f |Bs

p,q(Rn) = | f +P|Bs
p,q(Rn).

Again, Ḃs
p,q(Rn) is a Banach space which does not depend on the choice of

the sequence (ϕ j) j∈Z
triebel2
[35, Section 5.1.5, Theorem, p. 240].

For all s > 0 and all 1≤ p <∞, 1≤ q ≤∞, we have
triebel3
[36, Section 2.3.3, Theorem],

runstsickel
[30, Section 2.6.2, Proposition 3]

Bs
p,q(Rn)= Lp(Rn)∩ Ḃs

p,q(Rn) and ‖ f ‖Bs
p,q(Rn) ∼ ‖ f ‖Lp(Rn)+| f |Bs

p,q(Rn) . (2.2) homoglp

Besov spaces on domains of Rn are defined as follows.
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2.3 Definition (Besov spaces on domains). Let Ω⊂Rn be an open set. Then

1. Bs
p,q(Ω) := {

f ∈D′(Ω); there exists g ∈ Bs
p,q(Rn) such that f = g|Ω

}
,

equipped with the norm

‖ f ‖Bs
p,q(Ω) := inf

{
‖g‖Bs

p,q(Rn) ; g|Ω = f
}

.

2. Ḃs
p,q(Ω) := {

f ∈D′(Ω); there exists g ∈ Ḃs
p,q(Rn) such that f = g|Ω

}
,

equipped with the semi-norm

‖ f ‖Ḃs
p,q(Ω) := inf

{
‖g‖Ḃs

p,q(Rn) ; g|Ω = f
}

.

Local Besov spaces are defined in the usual way: f ∈ Bs
p,q near a point x

if for some cutoff ϕ which equals 1 near x we have ϕ f ∈ Bs
p,q. If f belongs to

Bs
p,q near each point, then we write f ∈ (Bs

p,q)loc.
The following is straightforward.

ka3 2.4 Lemma. Let f : Ω→ R. If, for each x ∈ Ω, f ∈ Bs
p,q(B(x, r)∩Ω) for some

r = r(x)> 0, then f ∈ Bs
p,q.

2.3 Besov spaces on Tn

mm6

Let ϕ0 ∈D(Rn) be such that

ϕ0(x)= 1 for all |x| < 1 and ϕ0(x)= 0 for all |x| ≥ 3
2

.

For all k ≥ 1 and all x ∈Rn, define

ϕk(x) :=ϕ0(2−kx)−ϕ0(2−k+1x).

periodicbesov 2.5 Definition. Let s ∈ R, 1 ≤ p < ∞ and 1 ≤ q ≤ ∞. Define Bs
p,q(Tn) as the

space of distributions f ∈D′(Tn) whose Fourier coefficients (am)m∈Zn satisfy

‖ f ‖Bs
p,q(Tn) :=

( ∞∑
j=0

2 jsq

∥∥∥∥∥x 7→ ∑
m∈Zn

amϕ j(2πm)e2ıπm·x
∥∥∥∥∥

q

Lp(Tn)

)1/q

<∞

(with the usual modification when q = ∞). Again, the choice of the system
(ϕ j) j≥0 is irrelevant, and the equality f =∑

f j, with f j :=∑
m amϕ j(2πm)e2ıπm·x,

is the Littlewood-Paley decomposition of f .

Alternatively, we have f ∈ Bs
p,q(Tn) if and only if f can be identified with a

Zn-periodic distribution in Rn, still denoted f , which belongs to (Bs
p,q)loc(Rn)

schmeisser
[31, Section 3.5.4, pp. 167-169].
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2.4 Characterization by differences
mm5

Among the various characterizations of Besov spaces, we recall here the
ones involving differences

triebel2
[35, Section 5.2.3],

runstsickel
[30, Theorem, p. 41],

triebel06
[37, Section

1.11.9, Theorem 1.118, p. 74].

p2.4 Proposition 2.6. Let s > 0, 1≤ p <∞ and 1≤ q ≤∞. Let M > s be an integer.
Then, with the usual modification when q =∞:

1. In the space Ḃs
p,q(Rn) we have the equivalence of semi-norms

| f |Bs
p,q(Rn) ∼

(ˆ
Rn

|h|−sq
∥∥∥∆M

h f
∥∥∥q

Lp(Rn)

dh
|h|n

)1/q

∼
n∑

j=1

(ˆ
R

|h|−sq
∥∥∥∆M

he j
f
∥∥∥q

Lp(Rn)

dh
|h|

)1/q
.

(2.3) equivnormhomogrn

2. The full Bs
p,q norm satisfies, for all δ> 0,

‖ f ‖Bs
p,q(Rn) ∼ ‖ f ‖Lp(Rn) +

(ˆ
|h|≤δ

|h|−sq
∥∥∥∆M

h f
∥∥∥q

Lp(Rn)

dh
|h|n

)1/q
.

2.5 Characterization by harmonic extensions
chha

In Section
pos
3, it will be convenient to work with extensions of maps in Bs

p,q.
The connection between regularity of maps and the properties of their suit-
able extensions is a classical topic in the theory of function spaces. Here is a
typical result in this direction. It characterizes Bs

p,q by means of the harmonic
extension

triebelheat
[34],

triebel2
[35, Section 2.12.2, Theorem, p. 184]. More specifically, if f is

measurable in Rn and s ∈ (0,1), then we have

‖ f ‖Bs
p,q(Rn) ∼ ‖ f ‖Lp(Rn) +

(ˆ ∞

0
t(1−s)q

∥∥∥∥∂Pt f
∂t

(·)
∥∥∥∥q

Lp(Rn)

dt
t

)1/q
, (2.4) besovnorm

where Pt stands for the Poisson semigroup generated by −∆, so that (x, t) 7→
Pt f (x), t > 0, x ∈ Rn, is the harmonic extension of f to the upper-half space.
Since when p > 1 we have∥∥∥∥∂Pt f

∂t

∥∥∥∥
Lp(Rn)

=
∥∥∥(−∆x)1/2Pt f

∥∥∥
Lp(Rn)

∼ ‖∇xPt f ‖Lp(Rn) ,

one also has, for 1< p <∞ and 1≤ q ≤∞,

‖ f ‖Bs
p,q(Rn) ∼ ‖ f ‖Lp(Rn) +

(ˆ ∞

0
t(1−s)q ‖∇Pt f (·)‖q

Lp(Rn)
dt
t

)1/q
(2.5) besovnormbis

(with the usual modification when q =∞).
The results in the literature are not suited to our context. We will need

some variants of (
besovnormbis
2.5), which will be stated and proved in Section

characext
6.5 below.
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2.6 Lizorkin type characterizations
mm1

Such characterizations involve restrictions of the Fourier transform on
cubes or corridors; see e.g.

triebel2
[35, Section 2.5.4, pp. 85-86] or

schmeisser
[31, Section 3.5.3,

pp. 166-167]. The following special case
schmeisser
[31, Section 3.5.3, Theorem, p. 167]

will be useful later.

mm2 Proposition 2.7. Let s ∈ R, 1 < p <∞ and 1 ≤ q ≤∞. Set K0 := {0} ⊂ Zn and,
for j ≥ 1, let K j := {m ∈ Zn; 2 j−1 ≤ |m| < 2 j}.3 Let f ∈ D′(Tn) have the Fourier
series expansion f =∑

m∈Zn ame2ıπm·x. We set f j :=∑
m∈K j ame2ıπm·x. Then we

have the norm equivalence

‖ f ‖Bs
p,q(Tn) ∼

( ∞∑
j=0

2 jsq ∥∥ f j
∥∥q

Lp(Tn)

)1/q

(with the usual modification when q =∞).

2.7 Characterization by the Haar system
at7

Besov spaces can also be described via the size of their wavelet coefficients.
To illustrate this, we start with low smoothness Besov spaces, which can be de-
scribed using the Haar basis. (The next section is devoted to smoother spaces
and bases.) For the results of this section, see e.g.

devorepopov
[17, Corollary 5.3],

bourdaud
[3,

Section 7],
triebel06
[37, Theorem 1.58],

triebel10
[38, Theorem 2.21].

Let

ψM(x) :=


1, if 0≤ x < 1/2
−1, if 1/2≤ x ≤ 1
0, if x ∉ [0,1]

, and ψF (x) := ∣∣ψM(x)
∣∣ . (2.6) qa8

When j ∈N, we let

G j :=
{

{F, M}n , if j = 0
{F, M}n \{(F,F, . . . ,F)}, if j > 0

. (2.7) qa1

For all m ∈Zn, all x ∈Rn and all G ∈ {F, M}n, define

ΨG
m(x) :=

n∏
r=1

ψGr (xr −mr). (2.8) qa2

Finally, for all m ∈Zn, all j ∈N, all G ∈G j and all x ∈Rn, let

Ψ
j,G
m (x) :=

{
ΨG

m(x), if j = 0
2n j/2ΨG

m(2 jx), if j ≥ 1
. (2.9) qa3

3 Here, |m| :=maxn
l=1 |ml |.
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Recall that the family (Ψ j,G
m ), called the Haar system, is an orthonormal basis

of L2(Rn)
triebel06
[37, Proposition 1.53]. Moreover, we have the following result

triebel10
[38,

Theorem 2.21].

at11 Proposition 2.8. Let s > 0, 1 ≤ p < ∞, and 1 ≤ q ≤ ∞ be such that sp < 1.
Let f ∈ S ′(Rn). Then f ∈ Bs

p,q(Rn) if and only if there exists a sequence(
µ

j,G
m

)
j≥0, G∈G j , m∈Zn

such that

∞∑
j=0

∑
G∈G j

( ∑
m∈Zn

∣∣∣µ j,G
m

∣∣∣p
)q/p

<∞ (2.10) qa4

(obvious modification when q =∞) and

f =
∞∑
j=0

∑
G∈G j

∑
m∈Zn

µ
j,G
m 2− j(s−n/p)2−n j/2Ψ

j,G
m . (2.11) decompof

Here, the series in (
decompof
2.11) converges unconditionally in Bs

p,q(Rn) when q <
∞. Moreover,

‖ f ‖Bs
p,q(Rn) ∼

 ∞∑
j=0

∑
G∈G j

( ∑
m∈Zn

∣∣∣µ j,G
m

∣∣∣p
)q/p

1/q

(2.12) qa5

(obvious modification when q =∞).

Equivalently, Proposition
at11
2.8 can be reformulated as follows. Consider the

partition of Rn into standard dyadic cubes Q of side 2− j. 4 For all x ∈Rn, denote
by Q j(x) the unique dyadic cube of side 2− j containing x. If f ∈ L1

loc(R
n), define

E j( f )(x) := ffl
Q j(x) f for all j ≥ 0. We also set E−1( f ) := 0. We have the following

results (see
bourdaud
[3, Theorem 5 with m = 0] in Rn; see also

lss
[4, Appendix A] in the

framework of Sobolev spaces on Tn).

caracBesov Proposition 2.9. Let s > 0, 1≤ p <∞, and 1≤ q ≤∞ be such that sp < 1. Let
f ∈ L1

loc(R
n). Then

‖ f ‖q
Bs

p,q(Rn) ∼
∑
j≥0

2s jq‖E j( f )−E j−1( f )‖q
Lp

(obvious modification when q =∞).

Similar results hold when Rn is replaced by (0,1)n or Tn; it suffices to
consider only dyadic cubes contained in [0,1)n.

mq2 Corollary 2.10. Let s > 0, 1 ≤ p <∞, and 1 ≤ q ≤∞ be such that sp < 1. Let
f ∈ L1

loc(R
n). Then

‖ f ‖q
Bs

p,q(Rn) ∼
∑
j≥0

2s jq‖ f −E j( f )‖q
Lp

(obvious modification when q =∞).
Similar results hold when Rn is replaced by (0,1)n or Tn.

4 Thus the Q’s are of the form Q = 2− j ∏n
k=1[mk,mk +1), with mk ∈Z.
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mp1 Corollary 2.11. Let s > 0, 1 ≤ p <∞, and 1 ≤ q ≤∞ be such that sp < 1. Let
(ϕ j) j≥0 be a sequence of functions on (0,1)n such that: for any j, ϕ j is constant
on each dyadic cube Q of size 2− j. Assume that

∑
j≥1 2s jq‖ϕ j −ϕ j−1‖q

Lp <∞.
Then (ϕ j) converges in Lp to some ϕ ∈ Bs

p,q, and we have

∥∥ϕ∥∥
Bs

p,q((0,1)n) .

(∑
j≥0

2s jq‖ϕ j −ϕ j−1‖q
Lp

)1/q

(with the convention ϕ−1 := 0 and with the usual modification when q =∞).

In the framework of Sobolev spaces, Corollaries
mq2
2.10 and

mp1
2.11 are easy

consequences of Proposition
caracBesov
2.9; see

lss
[4, Appendix A, Theorem A.1] and

lss
[4,

Appendix A, Corollary A.1]. The arguments in
lss
[4] apply with no changes to

Besov spaces. Details are left to the reader.

2.8 Characterization via smooth wavelets
qa6

Proposition
at11
2.8 has a counterpart when sp ≥ 1; this requires smoother “mother

wavelet” ψM and “father wavelet” ψF . Given ψF and ψM two real functions,
define ψ j,G

m as in (
qa1
2.7)–(

qa3
2.9). Then

meyer92
[22, Chapter 6],

triebel06
[37, Section 1.7.3] for every

integer k > 0 we may find some ψF ∈ Ck
c (R) and ψM ∈ Ck

c (R) such that the
following result holds.

qb1 Proposition 2.12. Let s > 0, 1 ≤ p < ∞, and 1 ≤ q ≤ ∞ be such that s < k.
Let f ∈ S ′(Rn). Then f ∈ Bs

p,q(Rn) if and only if there exists a sequence(
µ

j,G
m

)
j≥0, G∈G j , m∈Zn

such that

∞∑
j=0

∑
G∈G j

( ∑
m∈Zn

∣∣∣µ j,G
m

∣∣∣p
)q/p

<∞ (2.13) qb2

(obvious modification when q =∞) and

f =
∞∑
j=0

∑
G∈G j

∑
m∈Zn

µ
j,G
m 2− j(s−n/p)2−n j/2Ψ

j,G
m . (2.14) qb3

Here, the series in (
decompof
2.11) converges unconditionally in Bs

p,q(Rn) when q <
∞. Moreover,

‖ f ‖Bs
p,q(Rn) ∼

 ∞∑
j=0

∑
G∈G j

( ∑
m∈Zn

∣∣∣µ j,G
m

∣∣∣p
)q/p

1/q

(2.15) qb4

(obvious modification when q =∞).
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For further use, let us note that, if f ∈ Bs
p,q(Rn) for some s > 0, 1 ≤ p <∞

and 1≤ q ≤∞, then we have

µ
j,G
m =µ j,G

m ( f )= 2 j(s−n/p+n/2)
ˆ
Rn

f (x)Ψ j,G
m (x)dx. (2.16) qb40

This immediately leads to the following consequence of Proposition
qb1
2.12,

the proof of which is left to the reader.

qb400 Corollary 2.13. Let s > 0, 1 ≤ p <∞ and 1 ≤ q ≤∞ be such that s < k. As-
sume that f ∈ Lp(Rn) is such that the coefficients µ j,G

m given by (
qb40
2.16) satisfy

∞∑
j=0

∑
G∈G j

( ∑
m∈Zn

∣∣∣µ j,G
m

∣∣∣p
)q/p

=∞ (2.17) qb50

(obvious modification when q =∞). Then f 6∈ Bs
p,q(Rn).

2.9 Nikolskiı̆ type decompositions
mm8

In practice, we often do not know the Littlewood-Paley decomposition of
some given f , but only a Nikolskiı̆ representation (or decomposition) of f .
More specifically, set C j := B(0,2 j+2), with j ∈N. Let f j ∈S ′ satisfy

suppF f j ⊂C j, ∀ j ∈N, and f =∑
j

f j in S ′; (2.18) e230501

the decomposition f = ∑
j f j is a Nikolskiı̆ decomposition of f . Note that the

Littlewood-Paley decomposition is a special Nikolskiı̆ decomposition.
We have the following result.

mm9 Proposition 2.14. Let s > 0, 1 ≤ p <∞, 1 ≤ q ≤∞. Assume that (
e230501
2.18) holds.

Then we have

∥∥∥∑
j

f j
∥∥∥

Bs
p,q

.

(∑
j

2sq j‖ f j‖q
Lp

)1/q

, (2.19) 28024

with the usual modification when q =∞.

The above was proved in
gnp
[13, Lemma 1] (see also

yamazaki
[40]) in the framework of

Triebel-Lizorkin spaces F s
p,q; the proof applies with no change to Besov spaces

and will be omitted here. For related results in the framework of Besov spaces,
see

triebel2
[35, Section 2.5.2, pp. 79-80] and

schmeisser
[31, Section 2.3.2, Theorem, p. 105].
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3 Positive cases
pos

We start with the trivial case.

tri Case 1. Range. s > 0, 1≤ p <∞, 1≤ q ≤∞, and sp > n.
Conclusion. Bs

p,q(Ω;S1) does have the lifting property.

Proof. Since Bs
p,q(Ω) ,→ C0(Ω) (Lemma

ka1
6.2), we may write u = eıϕ, with ϕ

continuous. Locally, we have ϕ=−ı lnu, for some smooth determination ln of
the complex logarithm. Then ϕ belongs to Bs

p,q locally in Ω (Lemma
ka2
6.24), and

thus globally (Lemma
ka3
2.4).

A Case 2. Range. 0< s < 1, 1≤ p <∞, 1≤ q ≤∞, and sp < 1.
Conclusion. Bs

p,q(Ω;S1) does have the lifting property.

Proof. The argument being essentially the one in
lss
[4, Section 1], we will be

sketchy. Assume for simplicity that Ω = (0,1)n. Let u ∈ Bs
p,q(Ω;S1). For all

j ∈N, consider the function U j defined by

U j(x) :=
{

E j(u)(x)/|E j(u)(x)|, if E j(u)(x) 6= 0
1, if E j(u)(x)= 0

.

Since E j(u) → u a.e., we find that U j → u a.e. on Ω. By induction on j, for all
j ∈N we construct a phase ϕ j of U j, constant on each dyadic cube of size 2− j,
and satisfying the inequality

|ϕ j −ϕ j−1| ≤π|U j −U j−1| on Ω, ∀ j ≥ 1.5 (3.1) mq1

As in
lss
[4], (

mq1
3.1) implies

|ϕ j −ϕ j−1|. |u−E j(u)|+ |u−E j−1(u)|,

and thus, e.g. when q <∞, we have∑
j≥1

2s jq‖ϕ j −ϕ j−1‖q
Lp .

∑
j≥0

2s jq‖u−E j(u)‖q
Lp .

Applying Corollaries
mq2
2.10 and

mp1
2.11, we obtain that ϕ j → ϕ in Lp to some ϕ ∈

Bs
p,q(Ω;R). Since ϕ j is a phase of U j and U j → u a.e., we find that ϕ is a phase

of u. In addition, we have the control ‖ϕ‖Bs
p,q . ‖u‖Bs

p,q .

X Case 3. Range. 0< s < 1, 1≤ p <∞, 1≤ q <∞, and sp = n.
Conclusion. Bs

p,q(Ω;S1) does have the lifting property.

5 Thus ϕ j is the phase of U j closest to ϕ j−1.
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Proof. Here, it will be convenient to work with Ω=Tn. Let | | denote the sup
norm in Rn. Let ρ ∈ C∞ be a mollifier supported in {|x| ≤ 1} and set F(x,ε) :=
u∗ρε(x), x ∈ Tn, ε > 0. Since sp = n, we have u ∈ VMO(Tn), by Lemma

B-VMO
6.5.

Let us recall that, if u ∈VMO(Tn;S1) then, for some δ> 0 (depending on u) we
have

brezisnirenberg1
[14, Remark 3, p. 207]

1
2
< |F(x,ε)| ≤ 1 for all x ∈Tn and all ε ∈ (0,δ).6 (3.2) boundsv

Define

w(x,ε) := F(x,ε)
|F(x,ε)| for all x ∈Tn and all ε ∈ (0,δ).

Pick up a function ψ ∈ C∞(Tn× (0,δ);R) such that w = eıψ. We note that for all
j ∈ J1,nK we have ∇ψ=−ıw∇w, and ∂ j|F| = |F|−1(F∂ jF +F∂ jF)/2. Therefore,
(
boundsv
3.2) yields∣∣∇ψ∣∣= |∇w|. |∇F| . (3.3) nablaw

In view of (
nablaw
3.3) and estimate (

cg1
6.41) in Lemma

ab1
6.18, we find that

|u|q
Bs,p

q (Tn)
&
ˆ δ

0
εq−sq‖(∇F)(·,ε)‖q

Lp
dε
ε

&
ˆ δ

0
εq−sq‖(∇ψ)(·,ε)‖q

Lp
dε
ε

. (3.4) ka5

Combining (
ka5
3.4) with the conclusion of Lemma

ab1
6.18, we obtain that the phase

ψ has, on Tn, a trace ϕ ∈ Bs
p,q, in the sense that the limit ϕ := limε→0ψ(·,ε)

exists in Bs
p,q. In particular (using Lemma

kc2
6.4), we have that ψ(·,ε j) →ϕ a.e.

along some sequence ε j → 0; this leads to w(·,ε j) = eıψ(·,ε j) → eıϕ a.e. Since, on
the other hand, we have limε→0 w(·,ε) = u a.e., we find that ϕ is a Bs

p,q phase
of u.

The next case is somewhat similar to Case
X
3, so that our argument is less

detailed.

kc3 Case 4. Range. s = 1, p = n, 1≤ q <∞.
Conclusion. B1

n,q(Ω;S1) does have the lifting property.

Proof. We consider δ, w and ψ as in Case
X
3. The analog of (

nablaw
3.3) is the estimate

|∂ j∂kψ|+ |∇ψ|2 . |∂ j∂kF|+ |∇F|2, (3.5) kc4

which is a straightforward consequence of the identities

∇ψ=−ıw∇w and ∂ j∂kψ=−ıw∂ j∂kw+ ıw2∂ jw∂kw.

6 For an explicit calculation leading to (
boundsv
3.2), see e.g.

surveypetru
[23, p. 415].
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Combining (
kc4
3.5) with the second part of Lemma

kb2
6.19, we obtain

|u|q
B1

n,q
&
ˆ δ

0
εq

(
n∑

j,k=1

∥∥∂ j∂kψ(·,ε)∥∥q
Ln +

∥∥∂ε∂εψ(·,ε)∥∥q
Ln +‖∇ψ(·,ε)‖2q

L2n

)
dε
ε

. (3.6) kg1a

By (
kg1a
3.6) and the first part of Lemma

kb2
6.19, we find that ψ has a trace ϕ := trψ ∈

B1
n,q(Tn). Clearly, ϕ is a B1

n,q phase of u.

Y Case 5. Range. s > 1, 1≤ p <∞, 1≤ q <∞, n = 2, and sp = 2.
Or s > 1, 1≤ p <∞, 1≤ q ≤ p, n ≥ 3, and sp = 2.
Or: s > 1, 1≤ p <∞, 1≤ q ≤∞, n ≥ 2, and sp > 2.

Conclusion. Bs
p,q(Ω;S1) does have the lifting property.

Note that, in the critical case where sp = 2, our result is weaker in dimen-
sion n ≥ 3 (when we ask 1 ≤ q ≤ p) than in dimension 2 (when we merely ask
1≤ q <∞).

Proof. The general strategy is the same as in
lss
[4, Section 3, Proof of Theorem

3],7 but the key argument (validity of (
at1
3.9) below) is much more involved in

our case.
It will be convenient to work in Ω = Tn. Let u ∈ Bs

p,q(Tn;S1). Assume
first that we do may write u = eıϕ, with ϕ ∈ Bs

p,q((0,1)n;R). Then u,ϕ ∈ W1,p

(Lemma
kc2
6.4). We are thus in position to apply chain’s rule and infer that

∇u = ıu∇ϕ, and therefore

∇ϕ= 1
ıu

∇u = F, with F := u∧∇u ∈ Lp(Tn;Rn). (3.7) at2

The assumptions on s, p, q imply that F ∈ Bs−1
p,q (Lemma

at3
6.22). We may now

argue as follows. If ϕ solves (
at2
3.7), then ∇ϕ ∈ Bs−1

p,q , and thus ϕ ∈ Bs
p,q (Lemma

at4
6.16). Next, since u,ϕ ∈W1,p ∩L∞, we find that

∇(u e−ıϕ)=∇u e−ıϕ− ıu e−ıϕ∇ϕ= ıu e−ıϕ(u∧∇u−∇ϕ)= 0.

Thus u e−ıϕ is constant, and therefore ϕ is, up to an appropriate additive con-
stant, a Bs

p,q phase of u.
There is a flaw in the above. Indeed, (

at2
3.7) need not have a solution. In Tn,

the necessary and sufficient conditions for the solvability of (
at2
3.7) are8

ˆ
Tn

F = F̂(0)= 0 (3.8) at5

and

curlF = 0. (3.9) at1

Clearly, (
at5
3.8) holds.9 We complete Case

Y
5 by noting that (

at1
3.9) holds in the

relevant range of s, p, q and n (Lemma
at6
6.27).

7 See also
carbou
[15].

8 This is easily seen by an inspection of the Fourier coefficients.
9 Expand u∧∇u in Fourier series.
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aa1 3.1 Remark. We briefly discuss the lifting problem when s ≤ 0. For such s,
distributions in Bs

p,q need not be integrable functions, and thus the meaning of
the equality u = eıϕ is unclear. We therefore address the following reasonable
version of the lifting problem: let u : Ω→ S1 be a measurable function such
that u ∈ Bs

p,q(Ω). Is there any ϕ ∈ L1
loc ∩Bs

p,q(Ω;R) such that u = eıϕ?
Let us note that the answer is trivially positive when s < 0, 1 ≤ p < ∞,

1≤ q ≤∞.
Indeed, let ϕ be any bounded measurable lifting of u. Then ϕ ∈ Bs

p,q, since
L∞ ,→ Bs

p,q when s < 0 (see Lemma
ia2
6.3).

4 Negative cases
neg

B Case 6. Range. 0< s < 1, 1≤ p <∞, 1≤ q <∞, n ≥ 2, and 1≤ sp < n.
Or 0< s < 1, 1≤ p <∞, q =∞, n ≥ 2, and 1< sp < n.

Conclusion. Bs
p,q(Ω;S1) does not have the lifting property.

Proof. We want to show that there exists a function u ∈ Bs
p,q such that u 6= eıϕ

for any ϕ ∈ Bs
p,q.

For sufficiently small ε> 0, set s1 := s/(1−ε) and p1 := (1−ε)p. By Lemma
Besovemb
6.1, we have Bs1

p1,q1 6,→ Bs
p,q (for any q1). We will use later this fact for q1 :=

(1−ε)q.
Let ψ ∈ Bs1

p1,q1 \ Bs
p,q and set u := eıψ. Then u ∈ Bs1

p1,q1 ∩L∞ (Lemma
eipsi
6.23)

and thus u ∈ Bs
p,q (Lemma

gn
6.6).

We claim that there is no ϕ ∈ Bs
p,q such that u = eıϕ. Argue by contradic-

tion. Since u = eıϕ = eıψ, the function (ϕ−ψ)/2π belongs to (Bs
p,q+Bs1

p1,q1)(Ω;Z).
By Lemma

Eunicite
6.25, this implies that ϕ−ψ is constant, and thus ψ ∈ Bs

p,q, which
is a contradiction.

xa2 Case 7. Range. 0< s <∞, 1≤ p <∞, 1≤ q <∞, n ≥ 2, and 1≤ sp < 2.
Or 0< s <∞, 1≤ p <∞, q =∞, n ≥ 2, and 1< sp ≤ 2.

Conclusion. Bs
p,q(Ω;S1) does not have the lifting property.

Proof. The proof is based on the example of a topological obstruction consid-
ering the case n = 2. Consider the map u(x)= x

|x| , ∀x ∈R2.

We first prove that u ∈ Bs
p,q(Ω) for any smooth bounded domain Ω ⊂ R2.

We distinguish two cases: firstly, q ≤∞ and sp < 2 and secondly, q =∞ and
sp = 2.

In the first case, let s1 > s such that s1 is not an integer and 1 < s1 p < 2,
which implies W s1,p = Bs1

p,p ,→ Bs
p,q. Since u ∈W s1,p lss

[4, Section 4], we find that
u ∈ Bs

p,q.
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The second case is slightly more involved. By the Gagliardo-Nirenberg
inequality (Lemma

gn
6.6 below), it suffices to prove that u ∈ B2

1,∞(Ω). Using
Proposition

p2.4
2.6, a sufficient condition for this to hold is∥∥∆3

hu
∥∥

L1(R2) . |h|2 , ∀h ∈R2. (4.1) qf1

Since u is radially symmetric and 0-homogeneous, this amounts to check-
ing that

‖∆3
e1

u‖L1(R2) <∞. (4.2) delta3l1

However, by the mean-value theorem, for all |x| ≥ 1 we have

|∆3
e1

u(x)|. 1/|x|3, (4.3) delta3infty

while ∆3
e1

u is bounded in B(0,1) since u is S1-valued. Using this fact and
estimate (

delta3infty
4.3), we obtain (

delta3l1
4.2).

We next claim that u has no Bs
p,q lifting in Ω provided Ω⊂ R2 is a smooth

bounded domain containing the origin. Argue by contradiction, and assume
that u = eıϕ for some ϕ ∈ Bs

p,q(Ω). Let, as in
lss
[4, p. 50], θ ∈ C∞(R2 \([0,∞)×{0}))

be such that eıθ = u.
Note that θ ∈ Bs

p,q(ω) for every smooth bounded open set ω such that
ω ⊂ R2 \ ([0,∞)× {0})). Since (ϕ−θ)/(2π) is Z-valued, Lemma

Eunicite
6.25 yields that

ϕ− θ is constant a.e. in Ω\ ([0,∞)× {0}). Thus, θ ∈ Bs
p,q(Ω). Similarly, θ̃ ∈

Bs
p,q(Ω), where θ̃ ∈ C∞(R2 \ ((−∞,0]× {0})) is such that eıθ̃ = u. We find that

(θ− θ̃)/(2π) ∈ Bs
p,q(Ω). However, this is a non constant integer-valued function.

This contradicts Lemma
Eunicite
6.25 and proves non existence of lifting in Bs

p,q.

When n ≥ 3, the above arguments lead to the following. Let u(x)= (x1, x2)
|(x1, x2)| ,

and letΩ⊂Rn be a smooth bounded domain. Then u ∈ Bs
p,q(Ω;S1) and, if 0 ∈Ω,

then u has no Bs
p,q lifting.

5 Open cases
ope
xa1 Case 8. Range. s > 1, 1≤ p <∞, p < q <∞, n ≥ 3, and sp = 2.

Discussion. This case is complementary to Case
Y
5. In the above range, we con-

jecture that the conclusion of Case
Y
5 still holds, i.e., that the space Bs

p,q(Ω;S1)
does not have the lifting property. The non restriction property (Proposition
l7.26
6.11) prevents us from extending the argument used in Case

Y
5 to Case

xa1
8.

Z Case 9. Range. s = 1, 1≤ p <∞, 1≤ q <∞, n ≥ 3, and 2≤ p < n.
Or: s = 1, 1≤ p <∞, q =∞, n ≥ 3, and 2< p ≤ n.

Discussion. When p = q = 2, B1
2,2(Ω;S1)= H1(Ω;S1) does have the lifting prop-

erty
bethuelzheng
[2, Lemma 1]. The remaining cases are open. The major difficulty arises

from the extension of Lemma
at3
6.22 to the range considered in Case

Z
9.
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T Case 10. Range. s = 0, 1≤ p <∞, 1≤ q <∞ (and arbitrary n).
Discussion. As explained in Remark

aa1
3.1, we consider only measurable func-

tions u :Ω→S1. We let B0
p,q(Ω;S1) := {u :Ω→S1; u measurable and u ∈ B0

p,q},
and for u in this space we are looking for a phase ϕ ∈ L1

loc ∩B0
p,q.

Note that B0
p,∞(Ω;S1) does have the lifting property. Indeed, in this case

we have L∞ ⊂ B0
p,∞ (Lemma

ia2
6.3) and then it suffices to argue as in the proof

of Case
aa1
3.1. More generally, B0

p,q(Ω;S1) has the lifting property when L∞ ,→
B0

p,q.10 The remaining cases are open.

xa3 Case 11. Range. 0< s ≤ 1, p = 1/s, q =∞ (and arbitrary n).
Discussion. We do not know whether Bs

p,q(Ω;S1) does have the lifting property.

xa4 Case 12. Range. 0< s ≤ 1, 1< p <∞, q =∞, n ≥ 3, and sp = n.
Discussion. We do not know whether Bs

p,q(Ω;S1) does have the lifting property.
The difficulty common to Cases

xa3
11 and

xa4
12 is that in these ranges Bs

p,∞ 6⊂VMO,
and thus we are unable to rely on the strategy used in Cases

X
3 and

kc3
4.

6 Analysis in Besov spaces

The results we state here are valid when Ω is a smooth bounded domain in
Rn, or (0,1)n or Tn. However, in the proofs we will consider only one of these
sets, the most convenient for the proof.

6.1 Embeddings
ape

Besovemb 6.1 Lemma. Let 0 < s1 < s0 < ∞, 1 ≤ p0 < ∞, 1 ≤ p1 < ∞, 1 ≤ q0 ≤ ∞ and
1≤ q1 ≤∞. Then the following hold.

1. If q0 < q1, then Bs
p,q0

,→ Bs
p,q1

.

2. If s0 −n/p0 = s1 −n/p1, then Bs0
p0,q0 ,→ Bs1

p1,q0 .

3. If s0 −n/p0 > s1 −n/p1, then Bs0
p0,q0 ,→ Bs1

p1,q1 .

4. If Bs0
p0,q0 ,→ Bs1

p1,q1 , then s0 −n/p0 ≥ s1 −n/p1.

Consequently, when q0 ≤ q1,

Bs0
p0,q0 ,→ Bs1

p1,q1
⇐⇒ s0 − n

p0
≥ s1 − n

p1
. (6.1) equiv

10 A special case of this is p = q = 2, since B0
2,2 = L2. Another special case is 1 < p ≤ 2 ≤ q.

Indeed, in that case we have L∞ ,→ Lp = F0
p,2 ,→ B0

p,q
triebel2
[35, Section 2.3.5, p. 51],

triebel2
[35, Section

2.3.2, Proposition 2, p. 47].
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Proof. For item 1, see
triebel2
[35, Section 3.2.4]. For items 2 and 3, see

triebel2
[35, Section

3.3.1] or
runstsickel
[30, Theorem 1, p. 82]. Item 4 follows from a scaling argument. And

(
equiv
6.1) is an immediate consequence of items 1–4.

For the next result, see e.g.
triebel2
[35, Section 2.7.1, Remark 2, pp. 130-131].

ka1 6.2 Lemma. Let s > 0, 1 ≤ p < ∞, 1 ≤ q ≤ ∞ be such that sp > n. Then
Bs

p,q(Ω) ,→ C0(Ω).

ia2 6.3 Lemma. Let s < 0, 1≤ p <∞ and 1≤ q ≤∞. Then L∞ ,→ Bs
p,q.

Similarly, if 1≤ p ≤∞, then L∞ ,→ B0
p,∞.

Proof. We present the argument when Ω=Tn. Let f ∈ L∞, with Fourier coef-
ficients (am)m∈Zn . Consider, as in Definition

periodicbesov
2.5, the functions

f j(x) := ∑
m∈Zn

amϕ j(2πm) e2ıπm·x, ∀ j ∈N.

By the (periodic version of) the multiplier theorem
triebel2
[35, Section 9.2.2, Theorem,

p. 267] we have

‖ f j‖Lp . ‖ f ‖Lp , ∀1≤ p ≤∞, ∀ j ∈N. (6.2) kb1

We find that ‖ f j‖Lp . ‖ f ‖Lp ≤ ‖ f ‖L∞ , and thus (by Definition
periodicbesov
2.5, and with the

usual modification when q =∞)

‖ f ‖Bs
p,q .

(∑
j

2s jq

)1/q

<∞.

The second part of the lemma follows from a similar argument. The proof is
left to the reader.

An analogous proof leads to the following result. Details are left to the
reader.

kc2 6.4 Lemma. Let s > 0, 1≤ p <∞ and 1≤ q ≤∞. Then Bs
p,q ,→ Lp.

More generally, if k ∈N, s > k, 1≤ p <∞, and 1≤ q ≤∞, then Bs
p,q ,→Wk,p.

B-VMO 6.5 Lemma. Let 0< s <∞, 1≤ p <∞ and 1≤ q <∞ be such that sp = n. Then
Bs

p,q ,→VMO.
Same conclusion if 0< s <∞, 1≤ p <∞ and q =∞ are such that sp > n.

Proof. Assume first that q <∞. Let p1 > max {n, p, q} and set s1 := n/p1. By
Lemma

Besovemb
6.1 and the fact that s1 is not an integer, we have

Bs
p,q ,→ Bs1

p1,q ,→ Bs1
p1,p1

=W s1,p1 .

It then suffices to invoke the embedding

W s1,p1 ,→VMO when s1 p1 = n
brezisnirenberg1
[14, Example 2, p. 210].

The case where q = ∞ is obtained via the first part of the proof. Indeed, it
suffices to choose 0 < s1 <∞, 1 ≤ p1 <∞ and 0 < q1 <∞ such that s1 p1 = n
and Bs

p,q ,→ Bs1
p1,q1 . Such s1, p1 and q1 do exist, by Lemma

Besovemb
6.1.
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For the following special case of the Gagliardo-Nirenberg embeddings, see
e.g.

runstsickel
[30, Remark 1, pp. 39-40].

gn 6.6 Lemma. Let 0 < s <∞, 1 ≤ p <∞, 1 ≤ q ≤∞, and 0 < θ < 1. Then Bs
p,q ∩

L∞ ,→ Bθs
p/θ,q/θ.

6.2 Restrictions
mo6

Captatio benevolentiæ. Let f ∈ L1(R2). Then, for a.e., y ∈ R, the restriction
f (·, y) of f to the line R×{y} belongs to L1. In this section and the next one, we
examine some analogues of this property in the framework of Besov spaces.

For this purpose, we first introduce some notation for partial functions.
Let α ⊂ {1, . . . ,n} and set α := {1, . . . ,n} \α. If x = (x1, . . . , xn) ∈ Rn, then we
identify x with the couple (xα, xα), where xα := (x j) j∈α and xα := (x j) j∈α. Given
a function f = f (x1, . . . , xn), we let fα = fα(xα) denote the partial function xα 7→
f (x). Another useful notation: given an integer m such that 1≤ m ≤ n, set

I(n−m,n) := {α⊂ {1, . . . ,n}; #α= n−m}.

Thus, when α ∈ I(n−m,n), fα(xα) is a function of m variables.
When q = p, we have the following result.

oa1 6.7 Lemma. Let 1≤ m < n. Let s > 0 and 1≤ p <∞. Let f ∈ Bs
p,p(Rn).

1. Let α ∈ I(n−m,n). Then, for a.e. xα ∈Rn−m, we have fα(xα) ∈ Bs
p,p(Rm).

2. We have

‖ f ‖p
Bs

p,p(Rn) ∼
∑

α∈I(n−m,n)

ˆ
Rn−m

‖ fα(xα)‖p
Bs

p,p(Rm) dxα.

Proof. For the case where m = 1, see
triebel2
[35, Section 2.5.13, Theorem, (i), p. 115].

The general case is obtained by a straightforward induction on m.

mo7 6.8 Lemma. Let s > 0, 1 ≤ p <∞ and 1 ≤ q ≤ p. Let 1 ≤ m < n be an integer.
Assume that sp ≥ m and let f ∈ Bs

p,q(Tn). Then, for every α ∈ I(n−m,n) and
for a.e. xα ∈Tn−m, the partial map fα(xα) belongs to VMO(Tm).

Same conclusion if s > 0, 1≤ p <∞ and 1≤ q ≤∞, and we have sp > m.
Similar conclusions when Ω=Rn or (0,1)n.

Proof. In view of the Sobolev embeddings (Lemma
Besovemb
6.1), we may assume that

sp = m and q = p. By Lemma
oa1
6.7 and Lemma

B-VMO
6.5, for a.e. xα we have fα(xα) ∈

Bs
p,p(Tm) ,→VMO(Tm).
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ad1 6.9 Lemma. Let s > 0, 1 ≤ p < ∞ and 1 ≤ q < ∞. Let M > s be an integer.
Let f ∈ Bs

p,q. For x′ ∈Tn−1, consider the partial map v(xn)= vx′(xn) := f (x′, xn),
with xn ∈T. Then there exists a sequence (tl)⊂ (0,∞) such that tl → 0 and for
a.e. x′ ∈Tn−1, we have

lim
l→∞

∥∥∥∆M
tl

v
∥∥∥

Lp(T)

ts
l

= 0. (6.3) ce1

More generally, given a finite number of functions f j ∈ Bs j
p j ,q j , with s j > 0,

1≤ p j <∞ and 1≤ q j <∞, and given an integer M >max j s j, we may choose a
common set A of full measure in Tn−1 and a sequence (tl) such that the analog
of (

ce1
6.3), i.e.,

lim
l→∞

∥∥∥∆M
tl

f j(x′, ·)
∥∥∥

Lp j (T)

ts j
l

= 0, (6.4) cf1

holds simultaneously for all j and all x′ ∈ A.

Proof. We treat the case of a single function; the general case is similar.
Set gt :=

∥∥∥∆M
ten

f
∥∥∥

Lp
. By (

equivnormhomogrn
2.3), we have

´ 1
0 t−sq−1 gq

t dt <∞, which is equiv-

alent to
´ 1

1/2
∑

m≥0 2msq gq
2−mσdσ <∞. Therefore, there exists some σ ∈ (1/2,1)

such that∑
m≥0

2msq gq
2−mσ <∞. (6.5) ce2

By (
ce2
6.5) , we find that

lim
m→∞

g2−mσ

(2−mσ)s = 0. (6.6) ce3

Using (
ce3
6.6) we find that, along a subsequence (ml), we have

lim
m→∞

‖∆2−mlσv‖Lp

(2−mlσ)s = 0 for a.e. x′ ∈Tn−1.

This implies (
ce1
6.3) with tl := 2−mlσ.

6.3 (Non) restrictions

We now address the question whether, given f ∈ Bs
p,q(R2), we have f (x, ·) ∈

Bs
p,q(R) for a.e. x ∈ R. This kind of questions can also be asked in higher

dimensions. The answer crucially depends on the sign of q− p.
We start with a simple result.
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qh1 Proposition 6.10. Let s > 0 and 1≤ q ≤ p <∞. Let f ∈ Bs
p,q(R2). Then for a.e.

x ∈R we have f (x, ·) ∈ Bs
p,q(R).

Proof. Let f ∈ Bs
p,q(R2). Using (

equivnormhomogrn
2.3) (part 2) and Hölder’s inequality, we find

that for every finite interval [a,b]⊂R and M > s we have
ˆ b

a
| f (x, ·)|qBs

p,q(R) dx ∼
ˆ b

a

ˆ
R

1
|h|sq+1

(ˆ
R

|∆M
he2

f (x, y)|p d y
)q/p

dhdx

≤ (b−a)(p−q)/p
ˆ
R

1
|h|sq+1

(ˆ
[a,b]×R

|∆M
he2

f (x, y)|p dxdy
)q/p

dh

. | f |qBs
p,q(R2)

<∞

whence the conclusion.

When q > p, a striking phenomenon occurs.

l7.26 Proposition 6.11. Let s > 0 and 1 ≤ p < q ≤∞. Then there exists some com-
pactly supported f ∈ Bs

p,q(R2) such that for a.e. x ∈ (0,1) we have f (x, ·) 6∈
Bs

p,∞(R).
In particular, for any 1≤ r <∞ and a.e. x ∈ (0,1) we have f (x, ·) 6∈ Bs

p,r(R).

Before proceeding to the proof, let us note that if f ∈ Bs
p,q(R2) then f ∈

Lp(R2), and thus the partial function f (x, ·) is a well-defined element of Lp(R)
for a.e. x.

Proof. Since Bs
p,q(R2) ⊂ Bs

p,∞(R2), ∀q, we may assume that q <∞. We rely on
the characterization of Besov spaces in terms of smooth wavelets, as in Section
qa6
2.8.

We start by explaining the construction of f . Let ψF and ψM be as in
Section

qa6
2.8. With no loss of generality, we may assume that suppψM ⊂ [0,a]

with a ∈N. Consider (α,β)⊂ (0,a) and γ> 0 such that ψM ≥ γ in [α,β].
Set δ :=β−α> 0 and consider some integer N such that [0,1]⊂ [α−N δ,β+

N δ]. We look for an f of the form

f =
N∑

`=−N

∑
j≥ j0

g`j , (6.7) qb5

with

g`j(x, y)=µ j 2− j(s−2/p) ∑
m1∈I j

ψM(2 jx−m1 −`δ)

×ψM(2 j y−m1 −2 j+1`a−`δ).
(6.8) qb6

Here, the set I j satisfying

I j ⊂ {0,1, . . . ,2 j}, (6.9) qb7
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the integer j0 and the coefficients µ j > 0 will be defined later.
We consider the partial sums f `J :=∑J

j= j0
g`j . Clearly, we have f `J ∈ Ck and,

provided j0 is sufficiently large,

sup f `J ⊂ K l := [−N δ,5/4]× [2`a−1/4, (2`+1)a+1/4].

We next note that the compacts K` are mutually disjoint. Using Proposi-
tion

p2.4
2.6 item 2, we easily find that∥∥∥∥∥ N∑

`=−N
f `J

∥∥∥∥∥
q

Bs
p,q(R2)

∼
N∑

`=−N

∥∥∥ f `J
∥∥∥q

Bs
p,q(R2)

. (6.10) qb9

On the other hand, if ψM and ψF are wavelets such that Proposition
qb1
2.12

holds, then so are ψF (·−λ) and ψM(·−λ), ∀λ ∈R triebel06
[37, Theorem 1.61 (ii), Theo-

rem 1.64]. Combining this fact with (
qb9
6.10), we find that∥∥∥∥∥ N∑

`=−N
f `J

∥∥∥∥∥
q

Bs
p,q(R2)

∼
J∑

j= j0

(
#I j (µ j)p)q/p . (6.11) qc1

We now make the size assumption

∞∑
j= j0

(
#I j (µ j)p)q/p <∞. (6.12) qc2

By (
qc1
6.11) and (

qc2
6.12), we see that the formal series in (

qb5
6.7) defines a com-

pactly supported f ∈ Bs
p,q(R2), with

∑N
`=−N f `J → f in Bs

p,q(R2) (and therefore in
Lp(R2)) as J →∞.

We next investigate the Bs
p,∞ norm of the restrictions f `J(x, ·). As in (

qb9
6.10),

we have∥∥∥∥∥ N∑
`=−N

f `J(x, ·)
∥∥∥∥∥

Bs
p,∞(R)

∼
N∑

`=−N
‖ f `J(x, ·)‖Bs

p,∞(R). (6.13) qc3

Rewriting (
qb6
6.8) as

g`j(x, y)=µ j 2− j(s−1/p) 2 j/p ∑
m1∈I j

ψM(2 jx−m1 −`δ)

×ψM(2 j y−m1 −2 j+1`a−`δ),
(6.14) qc4

we obtain

‖ f `J(x, ·)‖p
Bs

p,∞(R) ∼ sup
j0≤ j≤J

2 j (µ j)p ∑
m1∈I j

|ψM(2 j x−m1 −`δ)|p. (6.15) qc5

We now make the size assumption

sup
j≥ j0

2 j (µ j)p
N∑

`=−N

∑
m1∈I j

|ψM(2 j x−m1 −`δ)|p =∞, ∀x ∈ [0,1]. (6.16) qc6
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Then we claim that for a.e. x ∈ (0,1) we have

f (x, ·) 6∈ Bs
p,∞(R). (6.17) qc7

Indeed, since
∑N
`=−N f `J → f in Lp(R2), for a.e. x ∈R we have

∑̀
`=−N

f `J(x, ·)→ f (x, ·) in Lp(R). (6.18) qc8

We claim that for every x ∈ [0,1] such that (
qc8
6.18) holds, we have f (x, ·) 6∈

Bs
p,∞(R). Indeed, on the one hand (

qc6
6.16) implies that for some ` we have

limJ→∞ ‖ f `J(x, ·)‖Bs
p,∞(R) =∞. We assume e.g. that this holds when `= 0. Thus

sup
j≥ j0

2 j (µ j)p ∑
m1∈I j

|ψM(2 j x−m1)|p =∞. (6.19) qc80

On the other hand, assume by contradiction that f (x, ·) ∈ Bs
p,∞(R). Then we

may write f (x, ·) as in (
qb3
2.14), with coefficients as in (

qb40
2.16). In particular, taking

into account the explicit formula of g`j and the fact that
∑N
`=−N f `J(x, ·)→ f (x, ·)

in Lp(R), we find that for k ≥ j0 and m1 ∈ I j we have

µ
k,{M}
m1 ( f (x, ·))=µk,{M}

m1

(
J∑

j= j0

g0
j(x, ·)

)
=µk,{M}

m1 (g0
k(x, ·))

= 2k/pµkψM(2k x−m1), ∀J ≥ k.

(6.20) qc800

We obtain a contradiction combining (
qc80
6.19), (

qc800
6.20) and Corollary

qb400
2.13.

It remains to construct I j and µ j satisfying (
qb7
6.9), (

qc2
6.12) and (

qc6
6.16). We

will let I j = Js j, t jK, with 0 ≤ s j ≤ t j ≤ 2 j integers to be determined later. Set
t := q/p ∈ (1,∞) and

µ j :=
(

1
(t j − s j +1) j1/t ln j

)1/p
.

Clearly, (
qb7
6.9) and (

qc2
6.12) hold. It remains to define I j in order to have (

qc6
6.16).

Consider the dyadic segment L j := [s j/2 j, t j/2 j]. We claim that

N∑
`=−N

∑
m1∈I j

|ψM(2 j x−m1 −`δ)|p ≥ γp, ∀x ∈ L j. (6.21) qa11

Indeed, let m1 ∈ [s j, t j] be the integer part of 2 j x. By the definition of δ and
by choice of N, there exists some ` ∈ J−N, NK such that α≤ 2 j x−m1 −`δ≤β,
whence the conclusion.

By the above, (
qc6
6.16) holds provided we have

sup
j≥ j0

2 j (µ j)p 1L j(x) =∞, ∀x ∈ [0,1]. (6.22) qc60
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We next note that

2 j (µ j)p ∼ 1
|L j| j1/t ln j

= u j

|L j|
, (6.23) qc600

where u j := 1/( j1/t ln j) satisfies∑
j≥ j0

u j =∞. (6.24) qc6000

In view of (
qc600
6.23) and (

qc6000
6.24), existence of I j satisfying (

qc60
6.22) is a conse-

quence of Lemma
tempSeq
6.12 below. The proof of Proposition

l7.26
6.11 is complete.

tempSeq 6.12 Lemma. Consider a sequence (u j) of positive numbers such that
∑

j≥ j0 u j =
∞. Then there exists a sequence (L j) of dyadic intervals L j = [s j/2 j, t j/2 j],
such that:

1. s j, t j ∈N, 0≤ s j < 2 j.

2. |L j| = o(u j) as j →∞.

3. Every x ∈ [0,1] belongs to infinitely many L j ’s.

Proof. Consider a sequence (v j) of positive numbers such that
∑

j≥ j0 v j u j =∞
and v j → 0. Let L j0 be the largest dyadic interval of the form [0, t j0 /2 j0] of
length ≤ v j0 u j0 . This defines s j0 = 0 and t j0 .

Assuming L j = [s j/2 j, t j/2 j]= [a j,b j] constructed for some j ≥ j0, one of the
following two occurs. Either b j < 1 and then we let L j+1 be the largest dyadic
interval of the form [2t j/2 j+1, t j+1/2 j+1] such that |L j+1| ≤ v j+1 u j+1. Or b j ≥ 1,
and then we let L j+1 be the largest dyadic interval of the form [0, t j+1/2 j+1]
such that |L j+1| ≤ v j+1 u j+1.

Using the assumption
∑

j≥ j0 v j u j =∞ and the fact that |L j| ≥ v j u j−2− j, we
easily find that for every j ≥ j0 there exists some k > j such that Lk = [ak,bk]
satisfies bk ≥ 1, and thus the intervals L j cover each point x ∈ [0,1] infinitely
many times.

r10 6.13 Remark. Following a suggestion of the first author, Brasseur investi-
gated the non restriction property established in Proposition

l7.26
6.11. In

brasseur
[10]

(which is independent of the present work), Brasseur extends Proposition
l7.26
6.11

to the full range 0 < p < q ≤∞; the construction is somewhat similar to ours
(based on the size of the coefficients µ j in the decomposition (

qb6
6.8)), but re-

lying on a different decomposition (subatomic instead of wavelets).
brasseur
[10] also

contains an interesting positive result: it exhibits function spaces X interme-
diate between Bs

p,q(R) and
⋃
ε>0

Bs−ε
p,q (R) such that, if f ∈ Bs

p,q(R2), then for a.e.

x ∈R we have f (x, ·) ∈ X .
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6.4 Poincaré type inequalities

The next Poincaré type inequality for Besov spaces is certainly well-known,
but we were unable to find a reference in the literature.

ad2 6.14 Lemma. Let 0< s < 1, 1≤ p <∞, and 1≤ q ≤∞. Then we have∥∥∥∥ f −
 

f
∥∥∥∥

Lp
. | f |Bs

p,q
, ∀ f :Ω→R measurable function. (6.25) PBesov

Recall (Proposition
p2.4
2.6) that the semi-norm in (

PBesov
6.25) is given by

| f |Bs
p,q = | f |Bs

p,q(Rn) :=
(ˆ

Rn
|h|−sq‖∆h f ‖q

Lp
dh
|h|n

)1/q
(6.26) aa4

when q <∞, with the obvious modifications when q =∞ or Rn is replaced by
Ω.

Proof. By (
homoglp
2.2), we have ‖ f ‖Bs

p,q ∼ ‖ f ‖Lp + | f |Bs
p,q . Recall that the embedding

Bs
p,q ,→ Lp is compact

triebel1
[33, Theorem 3.8.3, p. 296]. From this we infer that

(
PBesov
6.25) holds for every function f ∈ Bs

p,q. Indeed, assume by contradiction that
this is not the case. Then there exists a sequence of functions ( f j) j≥1 ⊂ Bs

p,q
such that, for every j,

1=
∥∥∥∥ f j −

 
f j

∥∥∥∥
Lp

≥ j
∣∣ f j

∣∣
Bs

p,q
.

Set g j := f j −
ffl

f j. Then, up to a subsequence, we have g j → g in Lp, where
‖g‖Lp = 1 and

´
g = 0. We claim that g is constant in Ω (and thus g = 0).

Indeed, by the Fatou lemma, for every h ∈Rn we have

‖∆h g‖Lp ≤ liminf‖∆h g j‖Lp = liminf‖∆h f j‖Lp . (6.27) aa3

By (
aa4
6.26), (

aa3
6.27) and the Fatou lemma, we have

|g|Bs
p,q ≤ liminf |g j|Bs

p,q = liminf | f j|Bs
p,q = 0;

thus g = 0, as claimed. This contradicts the fact that ‖g‖Lp = 1.
Let us now establish (

PBesov
6.25) only assuming that | f |Bs

p,q < ∞. We start by
reducing the case where q =∞ to the case where q <∞. This reduction relies
on the straightforward estimate

| f |Bσ
p,r . | f |Bs

p,∞ , ∀0<σ< s, ∀0< r <∞.

So let us assume that q <∞. For every integer k ≥ 1, let Φk : R→ R be given
by

Φk(t) :=


t, if |t| ≤ k
−k, if t ≤−k
k, if t ≥ k

.
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Clearly, Φk is 1-Lipschitz, so that (
aa4
6.26) easily yields

|Φk( f )|Bs
p,q

≤ | f |Bs
p,q

(6.28) controlphik

and (by dominated convergence, using q <∞ and (
aa4
6.26))

lim
k→∞

|Φk( f )− f |Bs
p,q

= 0. (6.29) convphikf

Since Φk( f ) ∈ L∞(Ω) ⊂ Lp(Ω), one has Φk( f ) ∈ Bs
p,q for every k. Therefore,

(
PBesov
6.25) and (

controlphik
6.28) imply

‖Φk( f )− ck‖Lp . |Φk( f )|Bs
p,q

≤ | f |Bs
p,q

(6.30) phikck

with ck := ffl
Φk( f ). Thanks to (

convphikf
6.29), we may pick up an increasing sequence of

integers (λk)k≥1 such that, for every k,
∣∣Φλk+1( f )−Φλk ( f )

∣∣
Bs

p,q
≤ 2−k. Applying

(
PBesov
6.25) to Φλk+1( f )−Φλk ( f ), one therefore has∥∥(

Φλk+1( f )− cλk+1

)− (
Φλk ( f )− cλk

)∥∥
Lp .

∣∣Φλk+1( f )−Φλk ( f )
∣∣
Bs

p,q
≤ 2−k,

which entails that Φλk ( f )− cλk → g in Lp as k →∞. Up to a subsequence, one
can also assume that Φλk ( f )(x)− cλk → g(x) for a.e. x ∈Ω. Take any x ∈Ω such
that Φλk ( f )(x)− cλk → g(x). Since Φλk ( f )(x)→ f (x) as k →∞, one obtains

lim
k→∞

cλk = c ∈C. (6.31) ckc

Finally, (
phikck
6.30), (

ckc
6.31) and the Fatou lemma yield ‖ f − c‖Lp . | f |Bs

p,q
, from which

(
PBesov
6.25) easily follows.

We next state and prove a generalization of Lemma
ad2
6.14.

ad3 6.15 Lemma. Let 0< s < 1, 1≤ p <∞, 1≤ q ≤∞, and δ ∈ (0,1]. Define

| f |Bs
p,q,δ

:=
(ˆ

|h|≤δ
|h|−sq‖∆h f ‖q

Lp
dh
|h|n

)1/q
(6.32) ad4

when q <∞, with the obvious modifications when q =∞ or Rn is replaced by
Ω. Then we have∥∥∥∥ f −

 
f
∥∥∥∥

Lp
. | f |Bs

p,q,δ
, ∀ f :Ω→R measurable function. (6.33) ad5

Proof. Recall that ‖ f ‖Bs
p,q ∼ ‖ f ‖Lp +| f |Bs

p,q,δ
(Proposition

p2.4
2.6). We continue as

in the proof of Lemma
ad2
6.14.

We end with an estimate involving derivatives.
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at4 6.16 Lemma. Let s > 0, 1 < p <∞ and 1 ≤ q ≤∞. Let f ∈ D′(Ω) be such that
∇ f ∈ Bs−1

p,q (Ω). Then f ∈ Bs
p,q(Ω) and∥∥∥∥ f −

 
f
∥∥∥∥

Bs
p,q

. ‖∇ f ‖Bs−1
p,q

. (6.34) at9

The above result is well-known, but we were unable to find it in the liter-
ature; for the convenience of the reader, we present the short argument when
Ω=Tn.

Proof. We use the notation in Proposition
mm2
2.7 and the following result

chemin
[16,

Lemma 2.1.1, p. 16]: we have

‖ f j‖Lp ∼ 2− j‖∇ f j‖Lp , ∀1≤ p ≤∞, ∀ j ≥ 1. (6.35) mm3

By combining (
mm3
6.35) with Proposition

mm2
2.7, we obtain, e.g. when q <∞:

‖ f −a0‖q
Bs

p,q
=

∥∥∥∥∥∑
j≥1

f j

∥∥∥∥∥
q

Bs
p,q

∼ ∑
j≥1

2s jq‖ f j‖q
Lp

.
∑
j≥1

2s jq2− jq‖∇ f j‖q
Lp ∼ ‖∇ f ‖q

Bs−1
p,q

.
(6.36) mm4

In particular, f ∈ L1 (Lemma
kc2
6.4), and thus a0 = ffl

f . Therefore, (
mm4
6.36) is

equivalent to (
at9
6.34).

mn41 6.17 Remark. With more work, Lemma
at4
6.16 can be extended to the case

where p = 1. Although this will not be needed here, we sketch below the argu-
ment. With the notation in Section

mm6
2.3, consider the Littlewood-Paley decom-

position f = ∑
f j, with f j := ∑

amϕ j(2πm)e2ıπm·x. Note that the Littlewood-
Paley decomposition of ∇ f is simply given by

∇ f =∑∇ f j. (6.37) mn7

In the spirit of
chemin
[16, Lemma 2.1.1, p. 16] (see also

leta
[5, Proof of Lemma 1]), one

may prove that we have the following analog of (
mm3
6.35):

‖ f j‖Lp ∼ 2− j‖∇ f j‖Lp , ∀1≤ p ≤∞, ∀ j ≥ 1. (6.38) mn6

Using Definition
periodicbesov
2.5, (

mn7
6.37) and (

mn6
6.38), we obtain (

mm4
6.36). We conclude as in the

proof of Lemma
at4
6.16.
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6.5 Characterization of Bs
p,q via extensions

characext

The type of results we present in this section are classical for functions
defined on the whole Rn and for the harmonic extension. Such results were
obtained by Uspenskiı̆ in the early sixties

uspenskii
[39]. For further developments, see

triebel2
[35, Section 2.12.2, Theorem, p. 184]; see also Section

chha
2.5. When the harmonic

extension is replaced by other extensions by regularization, the kind of results
we present below were known to experts at least for maps defined on Rn; see
mazyanew
[21, Section 10.1.1, Theorem 1, p. 512] and also

tracesoldnew
[27] for a systematic treat-

ment of extensions by smoothing. The local variants (involving extensions by
averages in domains) we present below could be obtained by adapting the ar-
guments we developed in a more general setting in

tracesoldnew
[27], and which are quite

involved. However, we present here a more elementary approach, inspired by
mazyanew
[21], sufficient to our purpose. In what follows, we let | | denote the ‖ ‖∞ norm
in Rn.

For simplicity, we state our results when Ω = Tn, but they can be easily
adapted to arbitrary Ω.

ab1 6.18 Lemma. Let 0 < s < 1, 1 ≤ p < ∞, 1 ≤ q ≤ ∞, and δ ∈ (0,1]. Set Vδ :=
Tn × (0,δ).

1. Let F ∈ C∞(Vδ). If(ˆ δ/2

0
εq−sq‖(∇F)(·,ε)‖q

Lp
dε
ε

)1/q

<∞ (6.39) cg6

(with the obvious modification when q = ∞), then F has a trace f ∈
Bs

p,q(Tn), satisfying

| f |Bs
p,q,δ

.

(ˆ δ/2

0
εq−sq‖(∇F)(·,ε)‖q

Lp
dε
ε

)1/q

. (6.40) ab2

2. Conversely, let f ∈ Bs
p,q(Tn). Let ρ ∈ C∞ be a mollifier supported in {|x| ≤

1} and set F(x,ε) := f ∗ρε(x), x ∈Tn, 0< ε< δ. Then(ˆ δ

0
εq−sq‖(∇F)(·,ε)‖q

Lp
dε
ε

)1/q

. | f |Bs
p,q,δ

. (6.41) cg1

A word about the existence of the trace in item 1 above. We will prove
below that for every 0<λ< δ/4 we have

∣∣F|Tn×{λ}
∣∣
Bs

p,q
.

(ˆ δ/2

0
εq−sq‖(∇F)(·,ε)‖q

Lp
dε
ε

)1/q

. (6.42) cg2

By Lemma
ad2
6.14 and a standard argument, this leads to the existence, in

Bs
p,q, of the limit limε→0 F(·,ε). This limit is the trace of F on Tn and clearly

satisfies (
ab2
6.40).
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Proof. For simplicity, we treat only the case where q < ∞; the case where
q =∞ is somewhat simpler and is left to the reader.

We claim that in item 1 we may assume that F ∈ C∞(Vδ). Indeed, assume
that (

ab2
6.40) holds (with trF = F(·,0)) for such F. By Lemma

ad2
6.14, we have

the stronger inequality
∥∥trF −ffl trF

∥∥
Bs

p,q
. I(F), where I(F) is the integral in

(
cg6
6.39). Then, by a standard approximation argument, we find that (

ab2
6.40) holds

for every F.
So let F ∈ C∞(Vδ), and set f (x) := F(x,0), ∀x ∈ Tn. Denote by I(F) the

quantity in (
cg6
6.39). We have to prove that f satisfies

| f |Bs
p,q . I(F). (6.43) ab210

If |h| ≤ δ, then

|∆h f (x)| ≤ | f (x+h)−F(x+h/2, |h|/2)|+ | f (x)−F(x+h/2, |h|/2)| . (6.44) cg4

By symmetry and (
cg4
6.44), the estimate (

ab210
6.43) will follow from(ˆ

|h|≤δ
|h|−sq‖ f −F(·+h/2, |h|/2)‖q

Lp
dh
|h|n

)1/q
. I(F). (6.45) cg5

In order to prove (
cg5
6.45), we start from

|F(x+h/2, |h|/2)− f (x)| =
∣∣∣∣∣
ˆ 1

0
(∇F)(x+ th/2, t|h|/2) · (h/2, |h|/2)dt

∣∣∣∣∣
≤ |h|

ˆ 1

0
|∇F(x+ th/2, t|h|/2)|dt.

(6.46) cg8

Let J(F) denote the left-hand side of (
cg5
6.45). Using (

cg8
6.46) and setting r := |h|/2,

we obtain

[J(F)]q ≤
ˆ
|h|≤δ

|h|q−sq

(ˆ 1

0
‖∇F(·+ th/2, t|h|/2)‖Lp dt

)q
dh
|h|n

=
ˆ
|h|≤δ

|h|q−sq

(ˆ 1

0
‖∇F(·, t|h|/2)‖Lp dt

)q
dh
|h|n

∼
ˆ δ/2

0
rq−sq−1

(ˆ 1

0
‖∇F(·, tr)‖Lp dt

)q

dr

∼
ˆ δ/2

0
r−sq−1

(ˆ r

0
‖∇F(·,σ)‖Lp dσ

)q
dr . [I(F)]q.

(6.47) ch1

The last inequality is a special case of Hardy’s inequality
steinweiss
[32, Chapter 5,

Lemma 3.14], that we recall here when δ=∞.11 Let 1≤ q <∞ and 1< ρ <∞.
If G ∈W1,1

loc ([0,∞)), then
ˆ ∞

0

|G(r)−G(0)|q
rρ

dr ≤
(

q
ρ−1

)qˆ ∞

0

|G′(r)|q
rρ−q dr. (6.48) e04269

11 But the argument adapts to a finite δ; see e.g.
bousquetmironescu
[9, Proof of Corollary 7.2].
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We obtain (
ch1
6.47) by applying (

e04269
6.48) with G′(r) := ‖∇F(·, r)‖Lp and ρ := sq+1.

The proof of item 1 is complete.
We next turn to item 2. We have

∇F(x,ε)= 1
ε

f ∗ηε(x), (6.49) kh2

where ∇ stands for (∂1, . . . ,∂n,∂ε). Here, η = (η1, . . . ,ηn+1) ∈ C∞(Tn;Rn+1) is
supported in {|x| ≤ 1} and is given in coordinates by

η j = ∂ jρ, ∀ j ∈ J1,nK, ηn+1 =−div(xρ). (6.50) kh3

Noting that
´
η= 0, we find that

|∇F(x,ε)| = 1
ε

∣∣∣∣ˆ|y|≤ε( f (x− y)− f (x))ηε(y)d y
∣∣∣∣

.
1

εn+1

ˆ
|h|≤ε

| f (x+h)− f (x)|dh.
(6.51) ch2

Integrating (
ch2
6.51) and using Minkowski’s inequality, we obtain

‖∇F(·,ε)‖Lp .
1

εn+1

ˆ
|h|≤ε

‖∆h f ‖Lp dh. (6.52) ci1

Let L(F) be the quantity in the left-hand side of (
cg1
6.41). Combining (

ci1
6.52) with

Hölder’s inequality, we find that

[L(F)]q .
ˆ δ

0

1
εnq+sq+1

(ˆ
|h|≤ε

‖∆h f ‖Lp dh
)q

dε

.
ˆ δ

0

1
εnq+sq+1 ε

n(q−1)
ˆ
|h|≤ε

‖∆h f ‖q
Lp dh dε

.
ˆ
|h|≤δ

|h|−sq‖∆h f ‖q
Lp

dh
|h|n = | f |qBs

p,q,δ
,

(6.53) mj1

i.e, (
cg1
6.41) holds.

In the same vein, we have the following result, involving the semi-norm
appearing in Proposition

p2.4
2.6, more specifically the quantity

| f |B1
p,q,δ

:=
(ˆ

|h|≤δ
|h|−q‖∆2

h f ‖q
Lp

dh
|h|n

)1/q
(6.54) kd4

when q < ∞, with the obvious modification when q = ∞. We first introduce
a notation. Given F ∈ C2(Vδ), we let D2

#F denote the collection of the second
order derivatives of F which are either completely horizontal (that is of the
form ∂ j∂kF, with j,k ∈ J1,nK), or completely vertical (that is ∂n+1∂n+1F).
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kb2 6.19 Lemma. Let 1≤ p <∞ and 1≤ q ≤∞. Let F ∈ C∞(Vδ) and set

M(F) :=
(ˆ δ

0
εq‖(∇F)(·,ε)‖2q

L2p

dε
ε

)1/q

and

N(F) :=
(ˆ δ

0
εq ∥∥(D2

#F)(·,ε)∥∥q
Lp

dε
ε

)1/q

(with the obvious modification when q =∞).

1. If M(F)<∞ and N(F)<∞, then F has a trace f ∈ B1
p,q(Tn), satisfying∥∥∥∥ f −

 
f
∥∥∥∥

Lp
. M(F)

1
2 (6.55) kf1

and

| f |B1
p,q,δ

. N(F). (6.56) kb3

2. Conversely, let f ∈ B1
p,q(Tn;S1). Let ρ ∈ C∞ be an even mollifier sup-

ported in {|x| ≤ 1} and set F(x,ε) := f ∗ ρε(x), x ∈ Tn, 0 < ε < δ. Then

M(F)+N(F). | f |B1
p,q,δ

. (6.57) kb4

The above result is inspired by the proof of
mazyanew
[21, Section 10.1.1, Theorem

1, p. 512]. The arguments we present also lead to a (slightly different) proof
of Lemma

ab1
6.18.

We start by establishing some preliminary estimates. We call H ∈ Rn ×R
“pure” if H is either horizontal, or vertical, i.e., either H ∈Rn×{0} or H ∈ {0}×R.
For further use, let us note the following fact, valid for X ∈Vδ and H ∈Rn+1.

H pure =⇒ |D2F(X ) · (H,H)|. |D2
#F(X )||H|2. (6.58) ja2

jc1 6.20 Lemma. Let X ,H be such that [X , X +2H]⊂Vδ. Let F ∈ C2(Vδ). Then

|∆2
HF(X )| ≤

ˆ 2

0
τ|D2F(X +τH) · (H,H)|dτ. (6.59) jc2

In particular, if H is pure and we write H = |H|K , then

|∆2
HF(X )|.

ˆ 2|H|

0
t|D2

#F(X + tK)|dt. (6.60) jc3
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Proof. Set

G(s) := F(X + (1− s)H)+F(X + (1+ s)H), s ∈ [0,1],

so that G ∈ C2 and in addition we have

G′(0)= 0, G′′(s)= [D2F(X + (1− s)H)+D2F(X + (1+ s)H)] · (H,H), (6.61) ja3

and
ˆ 1

0
(1− s)G′′(s)ds =G(1)−G(0)−G′(0)=∆2

HF(X ). (6.62) ja4

Estimate (
jc2
6.59) is a consequence of (

ja3
6.61) and (

ja4
6.62) (using the changes of

variable τ := 1± s). In the special case where H is pure, we rely on (
ja2
6.58) and

(
jc2
6.59) and obtain (

jc3
6.60) via the change of variable t := τ|H|.

If we combine (
jc3
6.60) (applied first with H = (h,0), h ∈ Rn, next with H =

(0, t), t ∈ [0,δ/2]) with Minkowski’s inequality, we obtain the two following con-
sequences12

[h ∈Rn, 0≤ ε≤ δ] =⇒ ‖∆2
hF(·,ε)‖Lp . |h|2‖D2

#F(·,ε)‖Lp , (6.63) jb1

and13

[t,ε≥ 0, ε+2t ≤ δ] =⇒ ‖∆2
ten+1

F(·,ε)‖Lp .
ˆ 2t

0
r‖D2

#F(·,ε+ r)‖Lp dr. (6.64) jb2

Proof of Lemma
kb2
6.19. We start by proving (

kf1
6.55). By Lemma

ab1
6.18 (applied

with s = 1/2 and with 2p (respectively 2q) instead of p (respectively q)), F has,
on Tn, a trace trF ∈ B1/2

2p,2q. By Lemma
ab1
6.18, item 1, and Lemma

ad3
6.15, we have∥∥∥∥trF −

 
trF

∥∥∥∥
Lp

.
∥∥∥∥trF −

 
trF

∥∥∥∥
L2p

. M(F)1/2

i.e., (
kf1
6.55) holds.

We next establish (
kb3
6.56). Arguing as at the beginning of the proof of

Lemma
ab1
6.18, one concludes that it suffices to prove (

kb3
6.56) when F ∈ C∞(Vδ).

So let us consider some F ∈ C∞(Vδ). We set f (x) = F(x,0), ∀x ∈ Tn. Then
(
kb3
6.56) is equivalent to

| f |B1
p,q,δ

. N(F). (6.65) kf2

We treat only the case where q <∞; the case where q =∞ is slightly simpler
and is left to the reader.

12 In (
jb1
6.63), we let ∆2

hF(·,ε) := F(·+2h,ε)−2F(·+h,ε)+F(·,ε).
13 With the slight abuse of notation ∆2

ten+1
F(·,ε) := F(·,ε+2t)−2F(·,ε+ t)+F(·,ε).
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The starting point is the following identity, valid when |h| ≤ δ and with
t := |h|

∆2
h f =∆2

ten+1/2F(·+2h,0)−2∆2
ten+1/2F(·+h,0)+∆2

ten+1/2F(·,0)

+2∆2
hF(·, t/2)−∆2

hF(·, t).
(6.66) jd1

By (
jb1
6.63), (

jb2
6.64) and (

jd1
6.66), we find that

‖∆2
h f ‖Lp .

ˆ |h|

0
r‖D2

#F(·, r)‖Lp dr+|h|2‖D2
#F(·, |h|/2)‖Lp

+|h|2‖D2
#F(·, |h|)‖Lp .

(6.67) jd2

Finally, (
jd2
6.67) combined with Hardy’s inequality (

e04269
6.48) (applied to the integral´ δ

0 and with G′(r) := r‖D2
#F(·, r)‖Lp and ρ := q+1) yields

| f |q
B1

p,q,δ
.
ˆ
|h|≤δ

1
|h|q

(ˆ |h|

0
r
∥∥D2

#F(·, r)
∥∥

Lp dr

)q
dh
|h|n + [N(F)]q

. [N(F)]q.

(6.68) kf6

This implies (
kf2
6.65) and completes the proof of item 1.

We now turn to item 2. We claim that

| f |B1/2
2p,2q,δ

. | f |1/2
B1

p,q,δ
. (6.69) kg1

Indeed, it suffices to note the fact that |∆2
h f |2p . |∆2

h f |p (since | f | = 1). By
combining (

kg1
6.69) with Lemma

ab1
6.18, we find that

M(F)=
(ˆ δ

0
εq‖(∇F)(·,ε)‖2q

L2p

dε
ε

)1/q

. | f |B1
p,q,δ

. (6.70) kg2

Thus, in order to complete the proof of (
kb4
6.57), it suffices to combine (

kg2
6.70) with

the following estimate

N(F). | f |B1
p,q,δ

, (6.71) kg3

that we now establish. The key argument for proving (
kg3
6.71) is the following

second order analog of (
ch2
6.51):

|D2
#F(x,ε)|. 1

εn+2

ˆ
|h|≤ε

|∆2
h f (x−h)|dh. (6.72) ki1

The proof of (
ki1
6.72) appears in

mazyanew
[21, p. 514]. For the sake of completeness, we

reproduce below the argument. First, differentiating the expression defining
F, we have

∂ j∂kF(x,ε)= 1
ε2 f ∗ (∂ j∂kρ)ε, ∀ j, k ∈ J1,nK. (6.73) ki2
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Using (
ki2
6.73) and the fact that ∂ j∂kρ is even and has zero average, we obtain

the identity

∂ j∂kF(x,ε)= 1
2εn+2

ˆ
|h|≤ε

∂ j∂kρ(h/ε)∆2
h f (x−h)dh,

and thus (
ki1
6.72) holds for the derivatives ∂ j∂kF, with j, k ∈ J1,nK.

We next note the identity

F(x,ε)= 1
2εn

ˆ
ρ(h/ε)∆2

h f (x−h)dh+ f (x), (6.74) ki4

which follows from the fact that ρ is even.
By differentiating twice (

ki4
6.74) with respect to ε, we obtain that (

ki1
6.72) holds

when j = k = n+1. The proof of (
ki1
6.72) is complete.

Using (
ki1
6.72) and Minkowski’s inequality, we obtain

‖D2
#F(·,ε)‖Lp .

1
εn+2

ˆ
|h|≤ε

‖∆2
h f ‖Lp dh, (6.75) mi1

which is a second order analog of (
ci1
6.52). Once (

ci1
6.52) is obtained, we repeat

the calculation leading to (
mj1
6.53) and obtain (

kg3
6.71). The details are left to the

reader.
The proof of Lemma

kb2
6.19 is complete.

av1 6.21 Remark. One may put Lemmas
ab1
6.18 and

kb2
6.19 in the perspective of the

theory of weighted Sobolev spaces. Let us start by recalling one of the strik-
ing achievements of this theory. As it is well-known, we have trW1,1(Rn+) =
L1(Rn−1), and, when n ≥ 2, the trace operator has no linear continuous right-
inverse T : L1(Rn−1) → W1,1(Rn)

gagliardo
[19],

peetre
[29]. The expected analogs of these

facts for W2,1(Rn+) are both wrong. More specifically, we have trW2,1(Rn+) =
B1

1,1(Rn−1) (which is a strict subspace of W1,1(Rn−1)), and the trace operator
has a linear continuous right inverse from B1

1,1(Rn−1) into W2,1(Rn+). These
results are special cases of the trace theory for weighted Sobolev spaces de-
veloped by Uspenskiı̆

uspenskii
[39]. For a modern treatment of this theory, see e.g.

tracesoldnew
[27].

6.6 Product estimates

Lemma
at3
6.22 below is a variant of

lss
[4, Lemma D.2]. Here, Ω is either smooth

bounded, or (0,1)n, or Tn.

at3 6.22 Lemma. Let s > 1, 1 ≤ p <∞ and 1 ≤ q ≤∞. If u,v ∈ Bs
p,q ∩L∞(Ω), then

u∇v ∈ Bs−1
p,q .

36



Proof. After extension to Rn and cutoff, we may assume that u,v ∈ Bs
p,q ∩L∞.

It thus suffices to prove that u,v ∈ Bs
p,q ∩L∞(Rn)=⇒ u∇v ∈ Bs−1

p,q (Rn).
In order to prove the above, we argue as follows. Let u =∑

u j and v =∑
v j

be the Littlewood-Paley decompositions of u and v. Set

f j := ∑
k≤ j

uk∇v j +
∑
k< j

u j∇vk.

Since suppF (uk∇v j) ⊂ B(0,2max{k, j}+2), we find that u∇v =∑
f j is a Nikolskiı̆

decomposition of u∇v; see Section
mm8
2.9. Assume e.g. that q < ∞. In view of

Proposition
mm9
2.14, the conclusion of Lemma

at3
6.22 follows if we prove that∑

2(s−1) jq‖ f j‖q
Lp <∞. (6.76) mn1

In order to prove (
mn1
6.76), we rely on the elementary estimates

chemin
[16, Lemma

2.1.1, p. 16],
lss
[4, formulas (D.8), (D.9), p. 71]∥∥∥∥∥∑

k≤ j
uk

∥∥∥∥∥
L∞

. ‖u‖L∞ , ∀ j ≥ 0, (6.77) mn2

∥∥∥∥∥∑
k< j

∇vk

∥∥∥∥∥
L∞

. 2 j‖v‖L∞ , ∀ j ≥ 0, (6.78) mn3

and

‖∇v j‖Lp . 2 j‖v j‖Lp , ∀ j ≥ 0. (6.79) mn4

By combining (
mn2
6.77)-(

mn4
6.79), we obtain

∑
2(s−1) jq‖ f j‖q

Lp .
∑

2(s−1) jq

(∥∥∥∥∥∑
k≤ j

uk

∥∥∥∥∥
q

L∞
‖∇v j‖q

Lp +
∥∥∥∥∥∑

k< j
∇vk

∥∥∥∥∥
q

L∞
‖u j‖q

Lp

)
. ‖u‖q

L∞
∑

2s jq‖v j‖q
Lp +‖v‖q

L∞
∑

2s jq‖u j‖q
Lp

. ‖u‖q
L∞‖v‖q

Bs
p,q

+‖v‖q
L∞‖u‖q

Bs
p,q

,

and thus (
mn1
6.76) holds.

6.7 Superposition operators

In this section, we examine the mapping properties of the operator

TΦ, ψ
TΦ7−−→Φ◦ψ.

We work in Ω smooth bounded, or (0,1)n, or Tn.
The next result is classical and straightforward; see e.g.

runstsickel
[30, Section 5.3.6,

Theorem 1].
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eipsi 6.23 Lemma. Let 0 < s < 1, 1 ≤ p <∞, and 1 ≤ q <∞. Let Φ : Rk → Rl be a
Lipschitz function . Then TΦ maps Bs

p,q(Ω;Rk) into Bs
p,q(Ω;Rl).

Special case: ψ 7→ eıψ maps Bs
p,q(Ω;R) into Bs

p,q(Ω;S1).
In addition, when q <∞, TΦ is continuous.

For the next result, see
runstsickel
[30, Section 5.3.4, Theorem 2, p. 325].

ka2 6.24 Lemma. Let s > 0, 1 ≤ p <∞ and 1 ≤ q ≤∞. Let Φ ∈ C∞(Rk;Rl). Then
TΦ maps (Bs

p,q ∩L∞)(Ω;Rk) into (Bs
p,q ∩L∞)(Ω;Rl).

Special case: ψ 7→ eıψ maps (Bs
p,q ∩L∞)(Ω;R) into (Bs

p,q ∩L∞)(Ω;S1).

6.8 Integer valued functions

The next result is a cousin of
lss
[4, Appendix B],14 but the argument in

lss
[4]

does not seem to apply in our situation. Lemma
Eunicite
6.25 can be obtained from the

results in
bbmuni
[8], but we present below a simpler direct argument.

Eunicite 6.25 Lemma. Let s > 0, 1 ≤ p <∞ and 1 ≤ q <∞ be such that sp ≥ 1. Then
the functions in Bs

p,q(Ω;Z) are constant.
Same result when s > 0, 1≤ p <∞, q =∞ and sp > 1.
The same conclusion holds for functions in

∑k
j=1 Bs j

p j ,q j (Ω;Z), provided we
have for all j ∈ J1,kK: either s j p j = 1 and 1 ≤ q j <∞, or s j p j > 1 and 1 ≤ q j ≤
∞.

Proof. The case where n = 1 is simple. Indeed, by Lemma
B-VMO
6.5 we have Bs

p,q ,→
VMO (and similarly

∑k
j=1 Bs j

p j ,q j ,→VMO). The conclusion follows from the fact
that VMO((0,1);Z) functions are constant

brezisnirenberg1
[14, Step 5, p. 229].

We next turn to the general case. Let f = ∑k
j=1 f j, with f j ∈ Bs j

p j ,q j (Ω;Z),
∀ j ∈ J1,kK. In view of the conclusion, we may assume that Ω= (0,1)n. By the
Sobolev embeddings, we may assume that for all j we have s j p j = 1 (and thus
either 1 < p j <∞ and s j = 1/p j, or p j = 1 and s j = 1) and 1 ≤ q j <∞. Let, as
in Lemma

ad1
6.9, A ⊂ (0,1)n−1 be a set of full measure such that (

cf1
6.4) holds with

M = 2. The proof of the lemma relies on the following key implication:

[x1+·· ·+xk ∈Z, 1≤ p1, . . . , pk <∞] =⇒ |x1+·· ·+xk|. |x1|p1+·· ·+|xk|pk . (6.80) cf2

This leads to the following consequence: if g := g1 +·· ·+ gk is integer-valued,
then

‖∆2
h g‖L1 . ‖∆2

h g1‖p1
Lp1 +·· ·+‖∆2

h gk‖pk
Lpk . (6.81) aaa1

14 The context there is the one of the Sobolev spaces.
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By combining (
cf1
6.4) with (

aaa1
6.81), we find that

lim
l→∞

∥∥∥∆2
tl en

f (x′, ·)
∥∥∥

L1((0,1))

tl
= 0, ∀x′ ∈ A, for some sequence tl → 0. (6.82) cf3

By Lemma
cf4
6.26 below, we find that f (x′, ·) is constant, for every x′ ∈ A. By a

permutation of the coordinates, we find that for every i ∈ J1,nK, the function

t 7→ f (x1, ..., xi−1, t, xi+1, ..., xn) is constant, ∀ i ∈ J1,nK, a.e. x̂i ∈ (0,1)n−1; (6.83) aa2

here, x̂i := (x1, ..., xi−1, xi+1, ..., xn) ∈ (0,1)n−1.
We next invoke the fact that every measurable function satisfying (

aa2
6.83) is

constant
blmn
[12, Lemma 2].

cf4 6.26 Lemma. Let g ∈ L1((0,1);Z) be such that, for some sequence tl → 0, we
have

lim
l→∞

∥∥∥∆2
tl

g
∥∥∥

L1((0,1))

tl
= 0. (6.84) cf5

Then g is constant.

Proof. In order to explain the main idea, let us first assume that g = 1B for
some B ⊂ (0,1). Let h ∈ (0,1). If x ∈ B and x+2h 6∈ B, then ∆2

h g(x) is odd, and
thus |∆2

h g(x)| ≥ 1. The same holds if x 6∈ B and x+2h ∈ B. On the other hand,
we have |∆2h g(x)| ≤ 1, with equality only when either x ∈ B and x+2h 6∈ B, or
x 6∈ B and x+2h ∈ B. By the preceding, we obtain the inequality

|∆2
h g(x)| ≥ |∆2h g(x)|, ∀x, ∀h. (6.85) cf6

Using (
cf5
6.84) and (

cf6
6.85), we obtain

g′ = lim
l→∞

∆2tl g
2tl

= 0.15 (6.86) cf7

Thus either g = 0, or g = 1.
We next turn to the general case. Consider some k ∈Z such that the mea-

sure of the set g−1({k}) is positive. We may assume that k = 0, and we will
prove that g = 0. For this purpose, we set B := g−1(2Z), and we let g := 1B. Ar-
guing as above, we have |∆2

h g(x)| ≥ |∆2h g(x)|, ∀x, ∀h, and thus g = 0. We find
that g takes only even values. We next consider the integer-valued map g/2.
By the above, g/2 takes only even values, and so on. We find that g = 0.

15 In (
cf7
6.86), the first limit is in D′, the second one in L1.
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6.9 Disintegration of the Jacobians
au1

The purpose of this section is to prove and generalize the following result,
used in the analysis of Case

Y
5.

at6 6.27 Lemma. Let s > 1, 1 ≤ p < ∞, 1 ≤ q ≤ p and n ≥ 3, and assume that
sp ≥ 2. Let u ∈ Bs

p,q(Ω;S1) and set F := u∧∇u. Then curlF = 0.
Same conclusion if s > 1, 1 ≤ p < ∞, 1 ≤ q ≤ ∞ and n ≥ 2, and we have

sp > 2.
Same conclusion if s > 1, 1 ≤ p < ∞, 1 ≤ q < ∞ and n = 2, and we have

sp = 2.

In view of the conclusion, we may assume that Ω= (0,1)n.
Note that in the above we have n ≥ 2; for n = 1 there is nothing to prove.
Since the results we present in this section are of independent interest, we

go beyond what is actually needed in Case
Y
5.

The conclusion of (the generalization of) Lemma
at6
6.27 relies on three in-

gredients. The first one is that it is possible to define, as a distribution, the
product F := u∧∇u for u in a low regularity Besov space; this goes back to
lddjr
[7] when n = 2, and the case where n ≥ 3 is treated in

bousquetmironescu
[9]. The second one

is a Fubini (disintegration) type result for the distribution curlF. Again,
this result holds even in Besov spaces with lower regularity than the ones
in Lemma

at6
6.27; see Lemma

mo2
6.28 below. The final ingredient is the fact that

when u ∈ VMO((0,1)2;S1) we have curlF = 0; see Lemma
mo3
6.29. Lemma

at6
6.27

is obtained by combining Lemmas
mo2
6.28 and

mo3
6.29 via a dimensional reduction

(slicing) based on Lemma
mo7
6.8; a more general result is presented in Lemma

mo4
6.30.

Now let us proceed. First, following
lddjr
[7] and

bousquetmironescu
[9], we explain how to define

the Jacobian Ju := 1/2curlF of low regularity unimodular maps u ∈W1/p,p((0,1)n;S1),
with 1 ≤ p <∞.16 Assume first that n = 2 and that u is smooth. Then, in the
distributions sense, we have

〈Ju,ζ〉 = 1
2

ˆ
(0,1)2

curlF ζ=−1
2

ˆ
(0,1)2

∇ζ∧ (u∧∇u)

= 1
2

ˆ
(0,1)2

[(u∧∂1u)∂2ζ− (u∧∂2u)∂1ζ]

= 1
2

ˆ
(0,1)2

(u1∇u2 ∧∇ζ−u2∇u1 ∧∇ζ), ∀ζ ∈ C∞
c ((0,1)2).

(6.87) oa2

In higher dimensions, it is better to identify Ju with the 2-form (or rather a
2-current) Ju ≡ 1/2d(u∧du).17 With this identification and modulo the action

16 In
lddjr
[7] and

bousquetmironescu
[9], maps are from Sn (instead of (0,1)n) into S1, but this is not relevant for

the validity of the results we present here.
17 We recover the two-dimensional formula (

oa2
6.87) via the usual identification of 2-forms on

(0,1)2 with scalar functions (with the help of the Hodge ∗-operator).

40



of the Hodge ∗-operator, Ju acts either or (n−2)-forms, or on 2-forms. The
former point of view is usually adopted, and is expressed by the formula

〈Ju,ζ〉 = (−1)n−1

2

ˆ
(0,1)n

dζ∧ (u∧∇u)

= (−1)n−1

2

ˆ
(0,1)n

dζ∧ (u1 du2 −u2 du1), ∀ζ ∈ C∞
c (Λn−2(0,1)n).18

(6.88) oa3

The starting point in extending the above formula to lower regularity maps u
is provided by the identity (

oa4
6.89) below; when u is smooth, (

oa4
6.89) is obtained

by a simple integration by parts. More specifically, consider any smooth ex-
tension U : (0,1)n × [0,∞) → C, respectively ς ∈ C∞

c (Λn−2((0,1)n × [0,∞))) of u,
respectively of ζ.19 Then we have the identity

bousquetmironescu
[9, Lemma 5.5]

〈Ju,ζ〉 = (−1)n−1
ˆ

(0,1)n×(0,∞)
dς∧ dU1 ∧dU2. (6.89) oa4

For a low regularity u and for a well-chosen U , we take the right-hand side
of (

oa4
6.89) as the definition of Ju. More specifically, let Φ ∈ C∞(R2;R2) be such

that Φ(z) = z/|z| when |z| ≥ 1/2, and let v be a standard extension of u by
averages, i.e., v(x,ε) = u∗ρε(x), x ∈ (0,1)n, ε > 0, with ρ a standard mollifier.
Set U := Φ(v). With this choice of U , the right-hand side of (

oa4
6.89) does not

depend on ς (once ζ is fixed)
bousquetmironescu
[9, Lemma 5.4] and the map u 7→ Ju is continuous

from W1/p,p((0,1)n;S1) into the set of 2- (or (n− 2)-)currents. When p = 1,
continuity is straightforward. For the continuity when p > 1, see

bousquetmironescu
[9, Theorem

1.1 item 2]. In addition, when u is sufficiently smooth (for example when u ∈
W1,1((0,1)n;S1)), Ju coincides20 with curlF

bousquetmironescu
[9, Theorem 1.1 item 1]. Finally,

we have the estimate
bousquetmironescu
[9, Theorem 1.1 item 3]

|〈Ju,ζ〉|. |u|p
W1/p,p‖dζ‖L∞ , ∀ζ ∈ C∞

c (Λn−2(0,1)n). (6.90) oa6

We are now in position to explain disintegration along two-planes. We
use the notation in Section

mo6
6.2. Let u ∈ W1/p,p((0,1)n;S1), with n ≥ 3. Let

α ∈ I(n−2,n). Then for a.e. xα ∈ (0,1)n−2, the partial map uα(xα) belongs to
W1/p,p((0,1)2;S1) (Lemma

oa1
6.7), and therefore Juα(xα) makes sense and acts

on functions.21 Let now ζ ∈ C∞
c (Λn−2(0,1)n). Then we may write

ζ= ∑
α∈I(n−2,n)

ζαdxα = ∑
α∈I(n−2,n)

(
ζα

)
α (xα)dxα.

Here, dxα is the canonical (n−2)-form induced by the coordinates x j, j ∈ α,
and (ζα)α(xα)= ζα(xα, xα) belongs to C∞

c ((0,1)2) (for fixed xα).

18 Here, C∞
c (Λn−2(0,1)n) denotes the space of smooth compactly supported (n−2)-forms on

(0,1)n.
19 We do not claim that U is S1-valued. When u is not smooth, existence of S1-valued

extensions is a delicate matter
soreview
[25].

20 Up to the action of the ∗ operator.
21 Or rather on 2-forms, in order to be consistent with our construction in dimension ≥ 3.

41



We next note the following formal calculation. Fix α ∈ I(n−2,n), and let
α= { j,k}, with j < k. Then

2(−1)n−1〈Ju,ζαdxα〉 =
ˆ

(0,1)n
d(ζαdxα)∧ (u∧∇u)

=
ˆ

(0,1)n
(∂ jζ

αdx j +∂kζ
αdxk)∧dxα∧u∧ (∂ ju dx j +∂ku dxk)

=
ˆ

(0,1)n
(∂ jζ

αu∧∂ku−∂kζ
αu∧∂ ju)dx j ∧dxα∧dxk,

that is,

〈Ju,ζ〉 = 1
2

∑
α∈I(n−2,n)

ε(α)
ˆ

(0,1)n−2
〈Juα,

(
ζα

)
α (xα)〉dxα, (6.91) oc2

where ε(α) ∈ {−1,1} depends on α.
When u ∈ W1,1((0,1)n;S1), it is easy to see that (

oc2
6.91) is true (by Fubini’s

theorem). The validity of (
oc2
6.91) under weaker regularity assumptions is the

content of our next result.

mo2 6.28 Lemma. Let 1 ≤ p <∞ and n ≥ 3. Let u ∈W1/p,p((0,1)n;S1). Then (
oc2
6.91)

holds.

Proof. The case p = 1 being clear, we may assume that 1 < p < ∞. We may
also assume that ζ = ζαdxα for some fixed α ∈ I(n−2,n). A first ingredient
of the proof of (

oc2
6.91) is the density of W1,1((0,1)n;S1)∩W1/p,p((0,1)n;S1) into

W1/p,p((0,1)n;S1)
bbmihes
[6, Lemma 23],

lddjr
[7, Lemma A.1]. Next, we note that the left-

hand side of (
oc2
6.91) is continuous with respect to the W1/p,p convergence of

unimodular maps
bousquetmironescu
[9, Theorem 1.1 item 2]. In addition, as we noted, (

oc2
6.91)

holds when u ∈ W1,1((0,1)n;S1). Therefore, it suffices to prove that the right-
hand side of (

oc2
6.91) is continuous with respect to W1/p,p convergence of S1-

valued maps. This is proved as follows. Let u j,u ∈ W1/p,p((0,1)n;S1) be such
u j → u in W1/p,p. By a standard argument, since the right-hand side of (

oc2
6.91)

is uniformly bounded with respect to j by (
oa6
6.90), it suffices to prove that the

right-hand side of (
oc2
6.91) corresponding to u j tends to the one corresponding to

u possibly along a subsequence.
In turn, convergence up to a subsequence is proved as follows. Recall

the following vector-valued version of the “converse” to the dominated con-
vergence theorem

brezisfa
[11, Theorem 4.9, p. 94]. If X is a Banach space, ω a mea-

sured space and f j → f in Lp(ω, X ), then (possibly along a subsequence) for
a.e. $ ∈ ω we have f j($, ·) → f ($, ·) in X , and in addition there exists some
g ∈ Lp(ω) such that ‖ f j($, ·)‖X ≤ g($) for a.e. $ ∈ω.

Using the above and Lemma
oa1
6.7 item 2 (applied with s = 1/p), we find that,

up to a subsequence, we have

(u j)α(xα)→ uα(xα) in W1/p,p((0,1)2;S1) for a.e. xα ∈ (0,1)n−2, (6.92) oc3
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and in addition we have, for some g ∈ Lp((0,1)n−2),

|(u j)α(xα)|W1/p,p((0,1)2) ≤ g(xα) for a.e. xα ∈ (0,1)n−2. (6.93) oc4

The continuity of the right-hand side of (
oc2
6.91) (along some subsequence) is

obtained by combining (
oc3
6.92) and (

oc4
6.93) with (

oa6
6.90) (applied with n = 2).22

mo3 6.29 Lemma. Let 1≤ p <∞. Let u ∈W1/p,p ∩VMO((0,1)2;S1). Then Ju = 0.

Proof. Assume first that in addition we have u ∈ C∞. Then u = eıϕ for some
ϕ ∈ C∞, and thus Ju = 1/2curl(u∧∇u)= 1/2curl∇ϕ= 0.

We now turn to the general case. Let F(x,ε) := u∗ρε(x), with ρ a standard
mollifier. Since u ∈ VMO((0,1)2;S1), there exists some δ > 0 such that 1/2 <
|F(x,ε)| ≤ 1 when 0 < ε < δ (see (

boundsv
3.2) and the discussion in Case

X
3). Let Φ ∈

C∞(R2;R2) be such that Φ(z) := z/|z| when |z| ≥ 1/2, and define Fε(x) := F(x,ε)
and uε :=Φ◦Fε, ∀0< ε< δ. Then Fε→ u in W1/p,p and (by Lemma

eipsi
6.23 when

p > 1, respectively by a straightforward argument when p = 1) we have uε =
Φ(Fε) →Φ(u) = u in W1/p,p((0,1)2;S1) as ε→ 0. Since (by the beginning of the
proof) we have Juε = 0, we conclude via the continuity of J in W1/p,p((0,1)2;S1)
bousquetmironescu
[9, Theorem 1.1 item 2].

We may now state and prove the following generalization of Lemma
at6
6.27.

mo4 6.30 Lemma. Let s > 0, 1 ≤ p <∞, 1 ≤ q ≤ p, n ≥ 3, and assume that sp ≥ 2.
Let u ∈ Bs

p,q(Ω;S1). Then Ju = 0.
Same conclusion if s > 0, 1≤ p <∞, 1≤ q ≤∞, n ≥ 2, and we have sp > 2.
Same conclusion if s > 0, 1≤ p <∞, 1≤ q <∞, n = 2, and we have sp = 2.

Proof. We may assume that Ω = (0,1)n. By the Sobolev embeddings (Lemma
Besovemb
6.1), it suffices to consider the limiting case where:

1. s > 0, 1≤ p <∞, 1≤ q <∞, n = 2, and sp = 2.

Or

2. s > 0, 1≤ p <∞, q = p, n ≥ 3, and sp = 2.

In view of Lemmas
Besovemb
6.1 and

B-VMO
6.5, the case where n = 2 is covered by Lemma

mo3
6.29. Assume that n ≥ 3. Then the desired conclusion is obtained by combining
Lemmas

oa1
6.7,

mo7
6.8,

mo2
6.28 and

mo3
6.29.

oc1 6.31 Remark. Arguments similar to the one developed in this section lead to
the conclusion that the Jacobians of maps u ∈ W s,p((0,1)n;Sk), defined when
sp ≥ k

lddjr
[7],

bousquetmironescu
[9], disintegrate over (k+1)-planes. When s = 1 and p ≥ k, this

assertion is implicit in
isobe2
[20, Proof of Proposition 2.2, pp. 701-704].

22In order to be complete, we should also check that the right-hand side of (
oc2
6.91) is measur-

able with respect to xα. This is clear when u ∈ W1,1((0,1)n;S1). The general case follows by
density and (

oc3
6.92).
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