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Abstract

In this paper we are interested in the differential inclusion 0 ∈ ẍ(t)+ b
t
ẋ(t)+∂F (x(t)) in a finite-

dimensional Hilbert space H, where F is a sum of two convex, lower semi-continuous functions with
one being differentiable with Lipschitz gradient. The motivation of this study is that the differential
inclusion models an accelerated version of proximal gradient algorithm called FISTA. In particular
we prove existence of a global solution for this inclusion. Furthermore we show that under the
condition b > 3, the convergence rate of F (x(t)) towards the minimimum of F is of order of o

(
t−2

)
and that the solution-trajectory converges to a minimizer of F . These results generalize the ones
obtained in the differential setting ( where F is differentiable ) in [6].

Keywords : Convex optimization, differential inclusion, FISTA algorithm, fast minimization,
asymptotic behavior

1 Introduction
In this paper we are interested in the following second order differential inclusion.

ẍ(t) +
b

t
ẋ(t) + ∂F (x(t)) 3 0 (DI)

with some initial conditions x(t0) = x0 ∈ H and ẋ(t0) = v0 ∈ H. We make the following hypotheses :

H 1. H is a finite dimensional Hilbert space ( e.g. H = Rd, d ≥ 1 )

H 2. t0 > 0

H 3. b > 1

H 4. F (= f + g) : H −→ R where f, g are lower semi-continuous and convex functions such that
f ∈ C1(H) with L-Lipschitz gradient and F = f + g is coercive.

Remark 1. We point out that the hypotheses made on F , ensure the existence of a minimizer of F (
which may not be necessarily unique )

1



The interest of studying this inclusion comes from the fact that it models the FISTA algorithm.
In other words the numerical scheme that one can obtain by discretizing (DI) is FISTA. The FISTA
algorithm (Fast Iterative Shrinkage-Thresholding Algorithm) consists of an accelerated version of the
classical proximal algorithm (Forward-Backward algorithm). It was introduced by Beck and Teboulle in
[15], based on ideas of Nesterov in [29] ( see also [30] ) and Güler [25]. Several versions of FISTA have
been studied (depending on the over-relaxation parameters). In our case we focus on the one studied in
[21] and will use the name FISTA for this version. Some more details on this algorithm are presented
in paragraph 2.2.

In the seminal works of Alvarez [3] and Attouch and al [7], the authors study the following second
order differential equation often called "Heavy Ball with Friction" (HBF).

ẍ(t) + γẋ(t) +∇F (x(t)) = 0 (HBF)

where γ ≥ 0 is a non-negative parameter and F is a convex and continuously differentiable function.
The interest on studying this differential equation, is that its solution describes the motion of a mass
rolling over the graph of F , allowing to explore the different minimum points. It turns out that the
values of F over the trajectory, converge asymptotically to its minimum (if one exists for the non-convex
case), as well as that the trajectory itself converges to minimizer of F .

Further investigations concerning the asymptotic properties of the solution-trajectory of (HBF), had
also been carried out, when the constant term γ ≥ 0 is replaced by a general aymptotical vanishing
viscosity term γ(t) ≥ 0 verifying some integrability conditions ( see for example [18], [19] and [27] )

By extending the analysis for the semi-differential case (when F is not necessarily differentiable), in
[5] and [20] the authors study the corresponding differential inclusion :

ẍ(t) + γẋ(t) + ∂F (x(t)) 3 0 (1.1)

where γ ≥ 0 and domF possibly different from H ( this allows for example g be an indicator function of
a closed convex set). This leads to consider new types of solutions to (1.1), other than the classical ones
( see definition 2.1 in [5] and in [20]), due to the fact that ẍ can be a Radon-measure. For these solutions
it is shown that the same asymptotical properties as the ones obtained in the completely differential
setting in [3], hold.

In [2] the authors study a differential inclusion in the same setting as the one that we treat in this
work, with the viscosity term b

t ẋ(t) replaced by the term ∂g(ẋ(t)). The authors show the existence and
uniqueness of a solution. Moreover by some additional hypotheses, they obtain a finite-time stabilization
result concerning the generated trajectory.

In [32] and [6] the authors study, in a possible infinite dimensional Hilbert space H, the differential
equation modeling the FISTA algorithm :

ẍ(t) +
b

t
ẋ(t) +∇F (x(t)) = 0 (1.2)

where b > 0 and F is a continuously differentiable and convex function. They show that under some
additional hypotheses on b > 0, the solution-trajectory of (1.2) enjoys fast convergence minimization
properties over F of a quadratic order. Furthermore in [6] they establish the weak convergence of the
trajectory to a minimizer of F .

In a recent paper [10], the authors study the ODE (1.2) with the additional geometrical damping-
term γ∇2F (x(t))ẋ(t).

ẍ(t) +
b

t
ẋ(t) + γ∇2F (x(t))ẋ(t) +∇F (x(t)) = 0 (1.3)

where b, γ > 0. Interestingly, despite the presence of the Hessian of F -term (which demands a higher
order of regularity over F ), the ODE (1.3) can be written equivalently as a coupled system of two
first-order differential equations which makes also sense even when the function F is not differentiable
(by considering its subdifferential instead of its gradient) (see also [4] and [8] in the same spirit). For
this system they show the existence and uniqueness of a (coupled) solution, for which the same fast
convergence properties as in the completely differential setting holds.

Motivated by these works, in this paper we study the differential inclusion (DI). More precisely, the
main result of this paper is that (DI) admits a solution to some suitable space. In addition we obtain the
same results concerning the asymptotical behavior of this solution, to the ones obtained for the solution
of (1.2) in the completely differential setting, (where F is continuously differentiable), as presented in
[6].
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Our approach consists in discretizing the differential inclusion (DI) which leads to a discrete scheme
corresponding to the FISTA algorithm (version considered in [21]). Then we reformulate the problem by
defining some suitable interpolate functions. By using some good properties of the FISTA algorithm, we
are able to deduce a-priori estimates for the interpolate functions. We then conclude by a compactness
argument in some suitable space. This method is also used in [16], [11] and [24] (see Chapter 2 and 3)
for approximation of first order dynamical systems.

Remark 2. The inclusion (DI) can be written equivalently as

Ẋ(t) +A(t,X(t)) +H(X(t)) 3 0 (1.4)

with X(t) = (x(t), ẋ(t))T , A(t, (a1, a2)) = (−a2, bta2+∇f(a1))T and H(((a1, a2))) = (0, ∂g(a1))T for all
t ≥ t0 and a = (a1, a2) ∈ H2. Nevertheless, under this reformulation, the operator H is not necessarily
maximal monotone, hence the classical theory for monotone inclusions for existence and uniqueness of a
solution of (1.4), can not be applied directly ( for more information in this topic, we address the reader
to Chapter 3 in [17] ).

The organization of this paper is the following. In Section 2, we introduce some standard notions
that we use in our analysis. We also recall the FISTA algorithm and some of its basic properties, useful
for the proof of existence of a solution for (DI). In Section 3, we present the main Theorem of this
paper, concerning the existence of a solution of (DI). Finally in Section 4 we show that the regularity of
the solution of (DI) is sufficient to obtain the fast convergence properties of F (x(t)) to the minimimum
of F and the convergence of the trajectory to a minimizer.

2 Preliminary material

2.1 Basic Notions
We start by recalling some basic tools that will be used in this paper.

Given an interval I ⊂ R+, p ∈ [1,+∞] and m ∈ N, we denote as Wm,p(I;H) the classical Sobolev
space with values on H, i.e. the space of functions in Lp(I) whose distributional derivatives up to order
m belong to Lp(I). For a detailed presentation of some properties of these spaces, we address the reader
to [1] and [23]

Given a function G : H → R, we define its subdifferential, as the multi-valued operator ∂G : H → 2H,
such that for all x ∈ H :

∂G(x) = {z ∈ H : ∀y ∈ H, G(x) ≤ G(y) + 〈z, x− y〉}

We also recall the definition of the proximal operator which is the basic tool for FISTA algorithm.
If G is a lower semi-continuous, proper and convex function, the proximal operator of G is the operator
ProxGH −→ R, such that :

ProxG(x) = arg min
y∈H

{G(y) +
‖x− y‖2

2
} ,∀x ∈ H (2.1)

Here we must point out that the proximal operator is well-defined, since by the hypothesis made on G,
for every x ∈ H, the function y → G(y) + ‖x−y‖2

2 , admits a unique minimizer.
Equivalently the proximal operator can be also seen as the resolvent of the maximal monotone

operator ∂G, i.e. for all x ∈ H and γ a positive parameter we have that :

ProxγG(x) = (Id+ γ∂G)−1(x) (2.2)

For a detailed study concerning the subdifferential and the proximal operator and their properties,
we address the reader to [14].

Finally, for a sequence of {fn}n∈N defined in X∗ (the dual of a Banach space X), we will use the
classical notation for weak-star convergence to f with the symbol ⇀∗, ( fn ⇀∗ f in X∗ ) i.e.

〈fn, φ〉 → 〈f, φ〉 ∀φ ∈ X (2.3)
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2.2 The FISTA algorithm
In this paragraph we present different results concerning the FISTA algorithm. The setting is the same
as the one settled in the introduction. We furthermore denote with x∗ a minimizer of F ( we recall that
the hypotheses made on F ensure the existence of such a minimizer). For ease of reading the proofs of
the results presented here are postponed in the Appendix. For a detailed presentation of some of these
results we also address the reader to [21].

Firstly, we recall the FISTA algorithm ( version considered in [21]) :

Algorithm 1 FISTA
Let 0 < γ ≤ 1

L , {tn}n∈N∗ and a real number a > 0 . We consider the sequences {tn}n∈N {xn}n∈N,
{yn}n∈N, {un}n∈N, such that t0 = 1, x0, x1 ∈ H and for every n ∈ N∗ we set :

tn =
n+ a− 1

a
(2.4)

un = (1− tn)xn−1 + tnxn (2.5)

yn =

(
1− 1

tn+1

)
xn +

1

tn+1
un (2.6)

= xn + an(xn − xn−1) with an =
tn − 1

tn+1
(2.7)

xn+1 = T (yn) (2.8)

where T (x) = Proxγg(x− γ∇f(x))

For our analysis we also consider the following sequences : {δn}n∈N∗ , {vn}n∈N∗ , {wn}n∈N and
{En}n∈N∗ such that:

δn =
1

2
‖xn − xn−1‖2 (2.9)

vn =
1

2
‖un − x∗‖2 (2.10)

wn = F (xn)− F (x∗) (2.11)

En = anδn + γwn (2.12)

As already mentioned, the FISTA algorithm consists of accelerating the classical proximal (F-B)
algorithm (i.e. where every iteration is generated by evaluating the proximal operator on the previous
point), by adding an extra over-relaxation term in the previous point ( this is the term an(xn − xn−1)
in (2.7) ). Remarkably, this leads to some fast convergence properties of the sequence {wn}n∈N to 0
which is of order O

(
t−2
)
, in comparison to the FB algorithm which is of order O

(
t−1
)
( recently it was

shown in [9] that when a > 2, the convergence rate of {wn}n∈N, is actually o
(
t−2
)
asymptotically ).

The first versions of FISTA algorithm that were considered, correspond to different choices of the

sequence {tn}n∈N∗ such as tn+1 = n+1
2 ( that is (2.4) for a = 2) in [29] and tn+1 =

1+
√

4t2n+1

2 in [15].
In a first view the choice on a seems anodyne, nevertheless it turns out that a smart tuning of a > 2
allow to deduce some additional properties such as the weak convergence of {xn}n∈N to a minimizer of
F (see Theorem 3 in [21]), or the improvement of the asymptotic convergence rate of {wn}n∈N up to
o
(
t−2
)
(see Theorem 1 in [9]).

In order to study FISTA we use the following classical Lemma which is based on the L-Lipschitz
character of ∇f and the definition of the proximal operator. A proof for this Lemma can also be found
in [15] (see Lemma 2.3).

Lemma 2.1. For any y ∈ H and 0 < γ ≤ 1
L we have that for every x ∈ H :

2γ(F (x)− F (T (y))) ≥ ‖T (y)− x‖2 − ‖y − x‖2 (2.13)

Proof. See A.1 in Appendix
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The next Corollary shows the decreasing property of {En}n∈N∗ and therefore the strong connection
between the sequences {δn}n∈N∗ and {wn}n∈N∗ .

Corollary 2.1. Let 0 < γ ≤ 1
L and {xn}n∈N a sequence generated by FISTA. The sequence {En}n∈N∗

is decreasing

Proof. By applying (2.13) with y = yn and x = xn, we find that for every n ≥ 1 it holds :

δn+1 − a2nδn ≤ γ(wn − wn+1) (2.14)

and since an ≤ 1 ∀n ≥ 1, we deduce that for all n ≥ 1 it holds :

a2n+1δn+1 + γwn+1 ≤ a2nδn + γwn

which concludes this corollary.

The next Proposition contains some basic results for the different sequences generated by FISTA
algorithm. In our setting they provide some suitable bound-estimates for the interpolate functions that
we use later. For a detailed presentation of these results and their proofs, we also adress the reader to
[21].

Proposition 2.2. Let 0 < γ ≤ 1
L , a ≥ 2, tn = n+a−1

a and the sequence {xn}n∈N defined by FISTA
algorithm. Then there exists a positive constant C1 > 0 which does not depend on γ, such that for all
n ∈ N∗ :

δn ≤ C1γ (2.15)

Remark 3. Here we must point out that, if in addition we suppose that a > 2, then there exists some
positive constants C2, C3 which do not depend on γ such that for all n ≥ 1 it holds :

‖xn‖ ≤ C2 and
n∑
k=1

kδk ≤ C3 (2.16)

Proof. See A.2 in Appendix

3 Existence of solution for (DI)
In this section we present the main Theorem of this paper, concerning the existence of a solution of
(DI).

Theorem 3.1. Under the hypothesesH1., H2., H.3. andH.4. made on F , for λ ∈ (0, 1) and any com-
pact set K of [t0,+∞), the inclusion (DI) admits a solution x in W 2,∞

loc ((t0,+∞);H)∩C 1,λ([t0, T ];H),
such that x(t0) = x0 and ẋ(t0) = v0, in the sense that for every T > t0 and φ ∈ C 1

c ((t0, T );R+), the
following inequality holds:∫ T

t0

(
g(x(t))− g(z)

)
φ(t)dt ≤

∫ T

t0

〈ẍ(t) +
b

t
ẋ(t) +∇f(x(t)), z − x(t)〉φ(t)dt (WFDI)

In fact we have that (DI) holds almost everywhere in [t0,+∞)

Remark 4. In fact, for λ ∈ (0, 1)and any compact set K ⊂ [t0,+∞), we have that W 2,∞
loc ((t0,+∞);H)∩

C 1,λ(K;H) = W 2,∞
loc ((t0,+∞);H), since W 2,∞

loc ((t0,+∞);H) is compactly embedded in C 1,λ(K;H).
The notation in the Theorem and in the proof stands for pedagogical reasons.

3.1 Discretization of (DI)
As already mentioned, in order to prove the existence of a solution of the differential inclusion (DI), we
will study it in a discrete setting. Let T > t0 We discretize (DI) in [t0, T ] ( with a time step denoted as

h > 0 and tn−1 = (n − 1)h + t0 ) explicitly with respect to f (with yn = xn +
n−1+ t0

h −b
n−1+ t0

h

(xn − xn−1))
and implicitly with respect to g.

Let h ∈ (0,m), where m = min{1, 1√
L
}. We obtain :
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xn+1 − 2xn + xn−1
h2

+
b

(n− 1)h+ t0

xn − xn−1
h

+∇f(yn) + ∂g(xn+1) 3 0

with x0 = x(t0) and x1 = hv0 + x0

(3.1)

We remark that the scheme (3.1) is equivalent to the FISTA algorithm as considered in paragraph
2.1, with a = b − 1 ≥ 2 and γ = h2. In other words, given the starting points x0, x1 ∈ H , ∀n ≥ 1, we
have :

yn = xn +
n− 1

n+ a
(xn − xn−1) and

xn+1 = Proxγg(yn − γ∇f(yn))
(3.2)

Indeed by (3.1) we have that :

xn+1 + h2∂g(xn+1) 3 xn +
n− 1 + t0

h − b
n− 1 + t0

h

(xn − xn−1)− h2∇f(yn) = yn − h2∇f(yn) (3.3)

which by characterization of the proximal operator (2.2) for all n ≥ 1, gives :

yn = xn +
n− 1 + t0

h − b
n− 1 + t0

h

(xn − xn−1) and

xn+1 = Proxh2g(yn − h2∇f(yn))

(3.4)

which (up to a re-indexation n ; n − 1 − t0
h + b − 1, ) is also equivalent to (3.2) with γ = h2 and

b = a+ 1.
As mentioned before, the strategy that we follow, is to define some suitable interpolate functions

that model (3.1), which by using some compactness arguments will converge to a limit-function solution
of (DI) in the sense as given in Theorem 3.1.

In fact, the discrete scheme (3.4) of (DI) ( or equivalently the FISTA algorithm ), provides some
suitable a-priori estimates for the corresponding generated sequences {xn}n≥1. Then we conclude with
some compactness argument in some suitable space.

We first define the interpolate functions which model (3.1).

3.2 Interpolate functions
By discretization with a time-step h ∈ (0,m), for all t ∈ [t0, T ], we set n = b t−t0h c + 1 and tn−1 =
(n− 1)h+ t0. Let {xn}n∈N the corresponding sequences generated by FISTA ( in what follows, we do
not denote the dependency of the generated sequences {xn}n∈N on the time-step h ). For all t ∈ [t0, T ],
we introduce the following interpolate functions :

x̃h(t) = xn+1 ∀t ∈ [tn−1, tn) (3.5)

and ỹh(t) = yn = xn + an(xn − xn−1) ∀t ∈ [tn−1, tn) (3.6)

with x̃h(t0) = ỹh(t0) = x1 ( we recall that an = n−1
n+a ). These functions are both piecewise constant.

We also define :

x̂h(t) =
xn + xn−1

2
+
xn − xn−1

h
(t− tn−1) +

xn+1 − 2xn + xn−1
2h2

(t− tn−1)2 ∀t ∈ [tn−1, tn) (3.7)

with x̂h(t0) = x1+x0

2 and ˙̂xh(t0) = x1−x0

h = v0.
In fact, by construction, the function x̂h is C 1([t0, T ];H) and piecewise C 2([t0, T ];H) with:

˙̂xh(t) =
xn − xn−1

h
+
xn+1 − 2xn + xn−1

h2
(t− tn−1) , tn−1 ≤ t < tn (3.8)

and ¨̂xh(t) =
xn+1 − 2xn + xn−1

h2
, tn−1 < t < tn (3.9)
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By definition of these functions and relation (3.1), it follows that(
1− b

(n− 1)h+ t0
(t− tn−1)

)
¨̂xh(t) +

b

(n− 1)h+ t0
˙̂xh(t) +∇f(ỹh(t)) + ∂g(x̃h(t)) 3 0 a.e. in [t0, T ]

(3.10)
where n = b t−t0h c+ 1, ∀t ∈ [t0, T ] and tn−1 = (n− 1)h+ t0.

By definition of ∂g and by multiplying by a (positive) test-function φ ∈ C 1
c ((t0, T );R+) and then

integrating in (t0, T ), we obtain that for all z ∈ H it holds :

∫ T

t0

(
g(x̃h(t))− g(z)

)
φ(t)dt ≤

∫ T

t0

〈(1− b

tn−1
(t− tn−1))¨̂xh(t) +

b

tn−1
˙̂xh(t) +∇f(ỹh(t)), z − x̃h(t)〉φ(t)dt

(3.11)
We now turn our attention into finding some suitable a-priori estimates for these interpolate func-

tions.

3.3 A-priori estimates
In this paragraph we derive some useful estimates for the interpolate functions considered before, in
order to show their convergence in some suitable space, to a limit-function solution to (DI) by some
compactness argument.

We recall that from FISTA’s analysis in Section 2 and in particular from Proposition 2.2, there exist
a positive constant C1 > 0 which do not depend on h, such that :

‖xn − xn−1‖ ≤ C1h ,∀n ∈ N∗ (3.12)

In fact by (3.12) and the discretization scheme, for all t ∈ [t0, T ], we have :

‖xn‖ ≤ C1nh = C1(b t− t0
h
c+ 1)h ≤ C1(T − t0) + C1h ≤ CT (3.13)

for a positive constant CT > 0,depending on T and independent of h, given that h < m.
In particular we have the following Lemma showing the control level according to the step h that

we obtain for the family of the interpolate functions {x̃h}0<h<m, {ỹh}0<h<m and {x̂h}0<h<m .

Lemma 3.1. For any h ∈ (0,m) there exists a positive constant CT (depending on T ) which does not
depend on h such that :

sup
h∈(0,m)

{{‖x̃h‖∞, ‖ỹh‖∞, ‖x̂h‖∞} < CT (3.14)

Proof. In fact by definition of function x̃h and relation (3.13), it follows that for all h ∈ (0,m) and
t ∈ [t0, T ] we have :

‖x̃h(t)‖ = ‖xn+1‖ ≤ CT < +∞

So that ‖x̃h‖∞ ≤ CT .
By definition of function x̂h, for all h ∈ (0,m) and t ∈ [t0, T ], we also have :

‖x̂h(t)‖ ≤ ‖xn‖+ ‖xn−1‖
2

+
‖xn − xn−1‖

h
|t− tn−1|+

(‖xn+1 − xn‖+ ‖xn − xn−1‖)
2h2

|t− tn−1|2

≤ CT + 2C1h ≤ CT
(3.15)

where CT is a (renamed) positive constant which does not depend on h.
Similarly for ỹh, since an ≤ 1, for all h ∈ (0,m) and t ∈ [t0, T ], we have :

‖ỹh(t)‖ ≤ ‖xn‖+ ‖xn − xn−1‖ ≤ CT + C1h ≤ CT (3.16)

In other words, for the families of functions {x̃h}0<h<m, {ỹh}0<h<m and {x̂h}0<h<m, we deduce that
they are uniformly bounded on [t0, T ] with respect to h, i.e. :

sup
h∈(0,m)

{‖x̃h‖∞, ‖ỹh‖∞, ‖x̂h‖∞} < +∞ (3.17)
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The next Lemma shows that a uniform bound according to h, also holds for the family of the first
derivative of the interpolate functions { ˙̂xh}0<h<m .

Lemma 3.2. For any h ∈ (0,m) there exists a positive constant c1 which do not depend on h and T
such that :

sup
0<h<m

{‖ ˙̂xh‖∞} ≤ c1 (3.18)

Proof. For all h ∈ (0,m) and t ∈ [t0, T ] we have :

‖ ˙̂xh(t)‖ ≤ ‖xn − xn−1‖
h

+
(‖xn+1 − xn‖+ ‖xn − xn−1‖)

h2
|t− tn−1| ≤ 3

C1h

h
≤ 3C1 (3.19)

Since the last inequality holds true for all t ∈ [t0, T ], for all h ∈ (0,m), we deduce that the family of
functions { ˙̂xh}0<h<m is uniformly bounded with respect to h (and T ), i.e. :

sup
0<h<m

{{‖ ˙̂xh‖∞}} < +∞ (3.20)

Remark 5. In fact by Remark 3 we have that for a > 2, there exist some positive constants C2 and C3

which do not depend on γ such that for all n ≥ 1 it holds
∑n
k=1 kδk ≤ C3. From these bounds one can de-

duce that x̂h is uniformly bounded in L∞((t0,+∞);H) and ˙̂xh is uniformly bounded in L2((t0,+∞);H)
with respect to h. In the present work we do not make use of these estimates, nevertheless it may be a
useful estimation for future studies.

Finally by exploiting the structure of (3.10) and the properties of the subdifferential, we find some
uniform estimates for the second derivative of xh.

Corollary 3.1. For h ∈ (0,m) we have

sup
0<h<m

{{‖¨̂xh‖∞}} < +∞ (3.21)

Proof. By Lemma 3.1 as the family {x̃h}0<h<m is uniformly bounded with respect to h, ∂g(x̃h) is also
uniformly bounded on h ( see Lemma (A.1) in Appendix ). Since by Lemma (3.2) { ˙̂xh}0<h<m is also
uniformly bounded on h, it follows from (3.10) that {¨̂xh}0<h<m is also uniformly bounded on h, which
concludes the proof of Corollary 3.1

Remark 6. Here we must stress out the importance of the hypothesis that domF = H. This allows
to use Lemma A.1. When domF $ H we can not expect a uniform bound for the second derivative.
Such a case corresponds for example to the one when g is the indicator function of a closed convex set.
In that case as the trajectory must be in domF , a shock may occur on the boundary of domF , which
explains why we can not expect that the acceleration stays uniformly bounded ( for more details on this
phenomenon, see [5] and [20]).

3.4 Proof of Theorem 3.1
We are now ready to give the proof of Theorem 3.1. As mentioned before, we exploit the different
estimates obtained in the previous section, in order to deduce convergence of the interpolate functions
to a solution of the problem (DI).

Proof. Let T > t0. By Corollary 3.1, we deduce that x̂h is uniformly bounded in W 2,∞((t0, T );H).
Since for any λ ∈ (0, 1), W 2,∞((t0, T );H) is compactly embedded in C 1,λ([t0, T ];H) ( see Theorem 6.3
in [1] ), up to a subsequence still denoted by {x̂h}0<h<m, we have that :

x̂h −→
h→0

x̂ in C 1,λ([t0, T ];H) where 0 < λ < 1 (3.22)

Furthermore, as ¨̂xh is bounded in L∞((t0, T );H) and L∞((t0, T );H) can be identified with the dual
space of L1((t0, T );H), we also have ( that is the Banach-Alaoglu Theorem ) that, up to a subsequence
( here we extract from the subsequence considered before ) still denoted by {¨̂xh}0<h<m, :

¨̂xh ⇀
∗ u in L∞((t0, T );H) (3.23)
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where by uniqueness of the limit (in the distributional sense) we have that ¨̂x ≡ u ∈ L∞((t0, T );H).
Hence for 0 < λ < 1 , we have that x̂ ∈ C 1,λ([t0, T ];H) ∩W 2,∞((t0, T );H).

We also have that :
x̂h(t0) =

x1 + x0
2

= x0 +
v0
2
h −→
h→0

x0 (3.24)

which shows that x̂(t0) = x0.
Furthermore by construction we have that :

˙̂xh(t0) =
x1 − x0

h
= v0 −→

h→0
v0 (3.25)

which shows that ˙̂x(t0) = v0.
In fact for all i ∈ N∗, one can construct the sequences (of sequences) of functions {{xih(n)}n∈N}i∈N

as follows :

x̂1h(n) −→n→∞ x̂1 ∈W 2,∞([t0, t0 + 1])

x̂2h(n) −→n→∞ x̂2 ∈W 2,∞([t0, t0 + 2])

...

x̂ih(n) −→n→∞ x̂i ∈W 2,∞([t0, t0 + i])

(3.26)

in a way that every time we extract a subsequence {x̂i+1
h(n)}n∈N from the subsequence considered before

{x̂ih(n)}n∈N , for every i ∈ N∗. By diagonal extraction we consider the sequence of functions {x̂nh(n)}n∈N.
We then define the sequence of functions {wn}n∈N in [t0,+∞), as the W 2,∞([t0 + n,+∞)) extensions
of x̂nh(n), for all n ∈ N. By this construction there exists a function x̂ : [t0,+∞) −→ H such that the
sequence of functions {wn}n∈N converges to with respect to the W 2,∞

loc ([t0,+∞)) norm. This shows that
for λ ∈ (0, 1) and a compact set K ⊂ [t0 +∞), x̂ ∈W 2,∞

loc ((t0,+∞);H) ∩ C 1,λ(K;H).
In addition by definition of x̃h, ỹh and x̂h for all h ∈ (0,m), for all t ∈ [t0, T ], we have :

‖x̃h(t)− x̂h(t)‖ = ‖xn+1 −
xn + xn−1

2
− xn − xn−1

h
(t− tn)− xn+1 − 2xn + xn−1

2h2
(t− tn)2‖

≤ ‖xn+1 − xn‖+ 2‖xn − xn−1‖+
‖xn+1 − xn‖

2

≤ 7C1h

2

(3.27)

so that ‖x̃h − x̂h‖∞ ≤
7C1h

2
−→
h→0

0 (3.28)

In the same way :
‖x̃h − ỹh‖∞ ≤ 2C1h −→

h→0
0 (3.29)

which implies that :
x̃h −→

h→0
x̂ and ỹh −→

h→0
x̂ in L∞((t0, T );H) (3.30)

In addition as ∇f is L-Lipschitz in every bounded set, we also have :

∇f(yh) −→
h→0
∇f(x̂) in L∞((t0, T );H) (3.31)

By (3.22), (3.23), (3.30) and (3.31), when h → 0, we deduce that the Right-Hand-Side of (3.11)
converges to: ∫ T

t0

〈¨̂x(t) +
b

t
˙̂x(t) +∇f(x̂(t)), z − x̂(t)〉φ(t)dt (3.32)

In addition by lower semi-continuity of g we also have that for all t ∈ [t0, T ] :

g(x̂(t)) ≤ lim inf
h→0

g(x̃h(t)) (3.33)
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Finally by taking h→ 0 in (3.11), for all φ ∈ C 1
c ((t0, T );R+) and z ∈ H, we obtain :∫ T

t0

(g(x̂(t))− g(z))φ(t)dt ≤
∫ T

t0

〈¨̂x(t) +
b

t
˙̂x(t) +∇f(x̂(t)), z − x̂(t)〉φ(t)dt (3.34)

Since this last inequality holds true for all φ ∈ C 1
c ((t0, T );R+) and all the integrated functions are

in L1((t0, T );H), for all z ∈ H, we have that :

g(x̂(t))− g(z) ≤ 〈¨̂x(t) +
b

t
˙̂x(t) +∇f(x̂(t)), z − x̂(t)〉 a.e. in [t0, T ] (3.35)

Since the last inequality stands for all T > t0, it holds almost everywhere in [t0,+∞). By definition
of the subdifferential we finally obtain :

¨̂x(t) +
b

t
˙̂x(t) +∇f(x̂(t)) + ∂g(x̂(t)) 3 0 a.e. in [t0,+∞) (3.36)

where x̂ ∈ C 1,λ([t0, T ];H) ∩W 2,∞((t0, T );H) for all T > t0, which is equivalent to (DI) and concludes
the proof of the Theorem (3.1).

4 Asymptotic behavior of the trajectory

4.1 Energy estimates
In this section for a given a solution x ∈W 2,∞

loc ((t0,+∞);H) of the inclusion (DI) and a minimizer of F
which we denote as x∗, we are interested in asymptotic properties of the trajectory {x(t) : t ∈ [t0,+∞)}.
W denote W (t) = F (x(t))− F (x∗).

For λ ≥ 0 and ξ ≥ 0 we define the following energy-function :

Eλ,ξ(t) = t2W (t) +
1

2
‖λ(x(t)− x∗) + tẋ(t)‖2 +

ξ

2
‖x(t)− x∗‖2 (4.1)

This function can be seen as the negative entropy up to the balanced distance ξ
2‖x(t)− x∗‖2. This

functional was considered in [32] and in [6] in order to deduce some fast convergence asymptotic behavior
for W (t) and ‖ẋ(t)‖ as well as the convergence of the trajectory to a minimizer x∗ . Here in the same
way, one can obtain the same fast convergence properties for a solution of (DI). The difficulty comes
from the fact that the solution is not everywhere differentiable, hence we can not differentiate directly
E . Nevertheless the regularity of the solution is sufficient to deduce the same bound estimates for W (t)
and ‖ẋ(t)‖ as in [6].

First, we recall the definition of an absolutely continuous function that we will use later ( see for
instance Example 1.13 in [22]).

Definition 4.1. Let [a, b] be an interval in [t0,+∞). A function G : [a, b] −→ R is said to be absolutely
continuous if for every ε > 0, there exists δ > 0 such that for every finite collection {[ai, bi]}i∈J of
disjoint subintervals of [a, b], we have∑

i∈J

(
bi − ai

)
< δ =⇒

∑
i∈J
|G(bi)−G(ai)| < ε (4.2)

Equivalently a function G : [a, b] −→ R is absolutely continuous if there exists a function v ∈ L1(a, b),
such that

G(t) = G(s) +

∫ t

s

v(τ)dτ ∀a ≤ s ≤ t ≤ b (4.3)

and in that case we have that G is differentiable a.e. in (a,b) with Ġ(t) = v(t) a.e. in (a, b).

Remark 7. From the definition of absolute continuity ( in particular (4.3) ), it follows that an absolutely
continuous function with non-positive derivative a.e. in (a,b) is non-increasing.

Next we give the following Lemma which can be found in [17] ( Lemme 3.3 ) and allows us to " use
the chain rule for differentiation" and show the non-increasing property of the energy E in [t0,+∞).
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Lemma 4.1. Let T > t0 and F be a convex, lower semi-continuous, proper function and x ∈W 1,2((t0, T );H).
Let also h ∈ L2((t0, T );H), such that h ∈ ∂F (x(t)) a.e. in (t0, T ). Then the function F ◦x : [t0, T ] −→ R

is absolutely continuous in [t0, T ] with :

d

dt

(
F (x(t))

)
= 〈z, ẋ(t)〉 ∀z ∈ ∂F (x(t)) a.e. in (t0, T ) (4.4)

In fact, for any T > t0, if x is a solution of (DI) in W 2,∞((t0, T );H), we have in particular that
x ∈W 1,2((t0, T )) and that the function h(t) = −ẍ(t)− b

t ẋ(t) is in L2((t0, T );H).
In view of Lemma 4.1, W (t) is absolutely continuous in [t0, T ] with :

Ẇ (t) = 〈z, ẋ(t)〉 ∀z ∈ ∂F (x(t)) a.e. in (t0, T )

In addition as ˙̂x ∈ W 1,∞((t0, T );H), it is in particular Lipschitz continuous in (t0, T ) ( see char-
acterization of W 1,∞ space, for example Theorem 4.1 in [26] or Theorem 4.5 in [23] ), therefore it is
absolutely continuous in [t0, T ] (this follows from definition of absolute continuity). As a consequence
we have the following proposition.

Proposition 4.1. Let T > t0. The energy Eλ,ξ is absolutely continuous on [t0, T ] with :

d

dt
Eλ,ξ(t) ≤ (2−λ)tW (t) +

(
ξ+λ(λ+ 1− b)

)
〈ẋ(t), x(t)−x∗〉+ (λ+ 1− b)t‖ẋ(t)‖2 a.e in (t0, T ) (4.5)

Proof. By definition Eλ,ξ is an absolutely continuous as sum of absolutely continuous functions. In
addition, by Lemma 4.1, let z ∈ ∂F (x(t)) such that (DI) holds. We have

d

dt
Eλ,ξ(t) = 2tW (t) + t2〈z, ẋ(t)〉+ 〈(λ+ 1)ẋ(t) + tẍ(t), λ(x(t)− x∗) + tẋ(t)〉

+ ξ〈x(t)− x∗, ẋ(t)〉 a.e in (t0, T )
(4.6)

By using that x(t) is a solution of (DI), we obtain :

d

dt
Eλ,ξ(t) = 2tW (t)− λt〈z, x(t)− x∗〉+

(
ξ + λ(λ+ 1− b)

)
〈ẋ(t), x(t)− x∗〉

+ (λ+ 1− b)t‖ẋ(t)‖2 a.e in (t0, T )

(4.7)

Finally by using that z ∈ ∂F (x(t)) by definition of the subdifferential, we deduce that :

d

dt
Eλ,ξ(t) ≤ (2−λ)tW (t) +

(
ξ+λ(λ+ 1− b)

)
〈ẋ(t), x(t)−x∗〉+ (λ+ 1− b)t‖ẋ(t)‖2 a.e in (t0, T ) (4.8)

which concludes the proof of Proposition 4.1

Corollary 4.2. For any ξ = λ(b− λ− 1) and 2 ≤ λ ≤ b− 1, the energy-function Eλ,ξ is non-increasing
in [t0,+∞)

Proof. By relation (4.5) of Proposition 4.1, if we choose ξ = λ(b − λ − 1) and 2 ≤ λ ≤ b − 1, as b ≥ 3,
we have that :

d

dt
Eλ,ξ(t) ≤ 0 a.e in (t0, T ) (4.9)

Since E is absolutely continuous on [t0, T ] with non-positive derivative a.e. in (t0, T ), we deduce that
E is non-increasing in [t0, T ]. Since this is true for every T > t0, in view of continuity of E , we have that
E is non-increasing in [t0,+∞).

Remark 8. Here we must point out that the absolute continuity of E is essential, since by (4.9), and
supposing only continuity of E , one cannot conclude that E is non-increasing.

In view of the previous Lemma and the non-increasing property of E , as in [6], we have the following
Theorem.

Theorem 4.1. Let x ∈W 2,∞
loc ((t0,+∞);H) a solution of (DI) and x∗ a minimizer of F . Then if b ≥ 3,

there exist some positive constants C1, C2 > 0, such that for all t ∈ [t0,+∞), it holds :

W (t) ≤ C1

t2
and ‖ẋ(t)‖ ≤ C2

t
(4.10)
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In addition if b > 3, we have :∫ +∞

t0

tW (t)dt < +∞ and
∫ +∞

t0

t‖ẋ(t)‖2dt < +∞ (4.11)

Proof. Let b ≥ 3. As mentioned before for λ = 2 and ξ = λ(b − λ − 1) = 2(b − 3) ≥ 0, the energy
E2,2(b−3) is non-increasing in [t0,+∞), hence for all t ∈ [t0,+∞) we have :

t2W (t) ≤ E2,2(b−3)(t) ≤ E2,2(b−3)(t0) (4.12)

This shows thatW (t) converges asymptotically to 0 which is equivalent to the convergence of F (x(t))
to F (x∗). In view of this convergence property, together with coercivity of F we deduce that ‖x(t)−x∗‖
is bounded. Hence by definition of E , we have also that for all t ∈ [t0,+∞), it holds :

t2‖ẋ(t)‖2 ≤ E2,2(b−3)(t0) + C sup
t≥t0
‖x(t)− x∗‖2 (4.13)

for a positive constant C > 0. This concludes the first part of the Theorem.
For the second part, if T > t0 and b > 3, choosing λ = b− 1 and ξ = λ(b−λ− 1) = 0, by integrating

(4.5) in [t0, T ], we obtain :

(b− 3)

∫ T

t0

tW (t)dt ≤ Eb−1,0(t0)− Eb−1,0(T ) ≤ Eb−1,0(t0) (4.14)

In a similar way if we choose λ = 2 and ξ = λ(b − λ − 1) = 2(b − 3) > 0, by integrating (4.5) in
[t0, T ], we obtain :

(b− 3)

∫ T

t0

t‖ẋ(t)‖2dt ≤ E2,2(b−3)(t0)− E2,2(b−3)(T ) ≤ E2,2(b−3)(t0) (4.15)

Since (4.14) and (4.15) hold for every T > t0, we can conclude the second part of Theorem 4.1.

Corollary 4.3. Let x ∈ W 2,∞
loc ((t0,+∞);H) be a solution of (DI) and x∗ a minimizer of F . If b ≥ 3

then x ∈W 2,∞
loc ((t0,+∞);H) ∩W 1,∞((t0,+∞);H)

Proof. As mentioned before from Theorem 4.1 we have that F (x(t)) converges asymptotically to F (x∗),
so it is bounded in [t0,+∞). Since it is coercive we deduce that ‖x(t)‖ is also bounded in [t0,+∞).In
addition from (4.10) of Theorem 4.1, we have that ‖ẋ(t)‖ is also bounded in [t0,+∞), which concludes
the proof.

4.2 Fast asymptotic convergence to a minimimum
The last Theorem asserts that for b ≥ 3, W (t) and ‖ẋ(t)‖2 is of order of O

(
t2
)
asymptotically. Never-

theless for b > 3, this order can be improved to one of o
(
t−2
)
. In fact, as before, the regularity of the

solution allows to proceed as the analysis carried out in the differential case( where F is differentiable)
in [28].

Theorem 4.2. Let b > 3, x ∈W 2,∞
loc ((t0,+∞);H) a solution of (DI) and x∗ a minimizer of F . Then

lim
t→∞

t2W (t) = 0 and lim
t→∞

t‖ẋ(t)‖ = 0 (4.16)

In other words : W (t) = o
(
t−2
)
and ‖ẋ(t)‖ = o

(
t−1
)

Proof. First of all, we consider the following energy function :

U(t) = t2W (t) +
t2

2
‖ẋ(t)‖2 ≥ 0 ,∀t ∈ [t0,+∞) (4.17)

Let T > t0. U is absolutely continuous on [t0, T ] as sum of absolutely continuous functions. In addition
by Lemma 4.1 for a z ∈ ∂F (x(t)) such that (DI) holds, we have :

d

dt
U(t) = t2〈z, ẋ(t)〉+ t2〈ẍ, ẋ(t)〉+ 2tW (t) + t‖ẋ(t)‖2 a.e. in (t0, T ) (4.18)
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By using (DI) and b > 3, we find

d

dt
U(t) = 2tW (t) + (1− b)t‖ẋ(t)‖2 ≤ 2tW (t) a.e. in (t0, T ) (4.19)

If we consider the positive part of d
dtU(t), i.e. [ ddtU(t)]+(t) = max{0, ddtU(t)(t)}, for all t ≥ t0, we

obtain : [
d

dt
U(t)

]
+

≤ 2tW (t) a.e. in (t0, T ) (4.20)

By Theorem 4.1 for b > 3, the term 2tW (t) is integrable on [t0, T ) for all T > t0, and so is
[
d
dtU(t)

]
+

.

We define the function Θ(t) = U(t)−
∫ t
t0

[
d
dsU(s)

]
+

ds. By definition, Θ is an absolutely continuous

function on [t0, T ] with negative derivative a.e. in (t0, T ), hence it is non-increasing in [t0, T ]. Since
this is true for every T > t0, in view of continuity of Θ, we deduce that it is non-increasing in [t0,+∞).
This together with the fact that the function Θ is bounded from below on [t0,+∞), implies that when
t→ +∞, Θ(t) converges to its infimum Θ∞ = inf

t≥t0
{Θ(t)}

As a consequence we have that U(t) is also convergent when t→ +∞ with :

lim
t→+∞

U(t) = lim
t→+∞

Θ(t) +

∫ +∞

t0

[
U̇(t)

]
+
dt ∈ R (4.21)

Finally since b > 3, by Theorem 4.1 on a :∫ +∞

t0

1

t
U(t) dt =

∫ +∞

t0

tW (t) dt+
1

2

∫ +∞

t0

t‖ẋ(t)‖2 dt < +∞ (4.22)

As
∫ +∞
t0

1
t dt = +∞ and U(t) is convergent when t → +∞ , we deduce that U(t) converge to zero,

when t → +∞. This together with the positivity of t2W (t) and t2

2 ‖ẋ(t)‖2 allow us to conclude the
Theorem.

4.3 Convergence of the trajectory to a minimizer
Lastly, the W 2,∞

loc ((t0,+∞);H) regularity of the solution allows us also to prove the convergence of the
trajectory towards a minimizer, using the same argument as in [6]. More precisely we have the following
Theorem.

Theorem 4.3. Let x ∈ W 2,∞
loc ((t0,+∞);H) a given solution to (DI). For b > 3, we have that the

trajectory {x(t)}t≥t0 converges asymptotically to a minimizer x∗ of F .

For the proof of Theorem 4.3 we use the continuous version of Opial’s Lemma for which we omit the
proof ( for more details see [31] or Lemma 4.1 in [7]) :

Lemma 4.2. Let S ⊂ H be a non-empty set and a function x : [t0,+∞), such that the following
conditions hold:

1. lim
t→+∞

‖x(t)− x∗‖ ∈ R , for all x∗ ∈ S

2. Every weak-cluster point of x(t) belongs to S

Then we have that x(t) converges weakly to a point of S as t→ +∞.

Remark 9. We will invoke the previous Lemma with S = arg minF . In fact Opial’s Lemma holds true
for a general separable Hilbert space H, but in our case as H is finite-dimensional, we also deduce strong
convergence of x(t) to a point of S.
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Proof. In order to apply Opial’s Lemma, we define : ψ(t) = 1
2‖x(t) − x∗‖. Let T > t0. As x ∈

W 2,∞
loc ((t0,+∞);H) we have in particular that ẋ is differentiable almost everywhere in (t0, T ) with

derivative ẍ, so that :

ψ̇(t) = 〈ẋ(t), x(t)− x∗〉 and ψ̈(t) = ‖ẋ(t)‖2 + 〈ẍ(t), x(t)− x∗〉 a.e. in (t0, T )

By using (DI), for a z(t) ∈ ∂F (x(t)) such that (DI) holds, we obtain :

ψ̈(t) +
b

t
ψ̇(t) = ‖ẋ(t)‖2 + 〈ẍ(t) +

b

t
ẋ(t), x(t)− x∗〉

= ‖ẋ(t)‖2 − 〈z(t), x(t)− x∗〉

≤ ‖ẋ(t)‖2 −W (t) ≤ ‖ẋ(t)‖2 a.e. in (t0, T )

(4.23)

where in the first inequality we used that z(t) ∈ ∂F (x(t)) and in the second that W (t) ≥ 0.
Hence by multiplying both sides by tb we obtain :

tbψ̈(t) + btb−1ψ̇(t) ≤ tb‖ẋ(t)‖2 a.e. in (t0, T ) (4.24)

By integrating over [t0, s] ⊂ (t0, T ) we find :

ψ̇(s) ≤
tb0ψ̇(t0)

sb
+

1

sb

∫ s

t0

tb‖ẋ(t)‖2dt ≤ C0

sb
+

1

sb

∫ s

t0

tb‖ẋ(t)‖2dt (4.25)

where C0 is a positive constant. If we consider the positive part of ψ̇, we have :

˙[ψ]+(s) ≤ C0

sb
+

1

sb

∫ s

t0

tb‖ẋ(t)‖2dt (4.26)

Hence, by applying Fubini’s Theorem, by integrating over [t0, T ], we have that :∫ T

t0

˙[ψ]+(s)ds ≤ C0

∫ T

t0

1

sb
+

∫ T

t0

1

sb

∫ s

t0

tb‖ẋ(t)‖2dtds

= (b− 1)C0(t1−b0 − T 1−b) +

∫ T

t0

tb‖ẋ(t)‖2
(∫ T

t

s−bds
)
dt

≤ C0 + (b− 1)

∫ T

t0

t‖ẋ(t)‖2dt

(4.27)

Since, by Theorem 4.1, for b > 3, the right-hand member of this inequality is finite for every T > t0, we
deduce that : ∫ +∞

t0

˙[ψ]+(s)ds < +∞ (4.28)

Hence if we consider the function θ(t) = ψ(t) −
∫ t
t0

˙[ψ]+(s)ds ∀t ∈ [t0,+∞), we have that θ is
non-increasing and bounded from below on [t0,+∞), so it converges to its infimum θ∞ = inf

t≥t0
{θ(t)}.

As a consequence we obtain that :

lim
t→∞

ψ(t) = θ∞ +

∫ +∞

t0

˙[ψ]+(s)ds ∈ R (4.29)

This shows that the first condition of Opial’s Lemma is satisfied.
For the second condition, let x̃ be a weak-cluster point of the trajectory x(t), when t → +∞. By

lower semi-continuity of F , we have that :

F (x̃) ≤ lim inf
t→∞

F (x(t)) (4.30)

By Theorem 4.1 we have that lim
t→∞

F (x(t)) = F (x∗), where x∗ is a minimizer, so that x̃ ∈ arg minF ,
which shows that the second condition of Opial’s Lemma is satisfied, therefore we can conclude the
proof by applying Opial’s Lemma.
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5 Conclusion and future directions
In this work we showed that the differential inclusion (DI) admits a solution which is regular enough
to ensure that the analysis carried out in [6] can be extended to the case when F is not differentiable.
This framework corresponds to the one considered in the discrete setting (i.e when the function g is not
differentiable.) for FISTA algorithm (see for example [15] and [21]).

Apart from establishing a uniqueness-result for the solution of (DI), another arising question is if
similar results of fast asymptotical convergence of Theorem 4.1 still hold true, if we "allow" the function
F having a possible domain domF ( H. This case comes naturally by considering the function g as
the indicator function of a closed-convex set. As mentioned before in that case the trajectory exhibits "
shocks " which technically correspond to non-boundedness of its second derivative. As a by product we
cannot expect that the solution enjoys a W 2,+∞

loc ((t0,+∞);H) regularity. Nevertheless as shown in [5]
a solution of the (HBF)-inclusion (1.1), has some convergence properties to a minimizer of F . It would
be interesting if this analysis could be extended, in order to obtain the fast convergence properties of a
solution of (DI)

Another challenging question is the tuning of the parameter b. In particular in Corollary 4.3 we
showed that for b ≥ 3, the solution of (DI) admit some further global regularity (W 1,+∞((t0,+∞);H))
other that the local one (W 2,+∞

loc ((t0,+∞);H)). It would be interesting to know if such global regularity
also holds for 1 < b ≤ 3.

Finally it would be interesting to extend these results for a perturbed version of (DI), by a pertur-
bation term p(t) to which we have to impose some integrability properties. In the same (perturbed)
framework, it is also interesting to study a slightly different differential inclusion by replacing the vis-
cosity term b

t by a function which behaves asymptotically as 1
td

where d ∈ (0, 1). This would be the
continuous counter-part of the inertial forward-backward algorithm introduced in [12]. The interest of
this case is the investigation of a better trade-off between the speed of the convergence and the integra-
bility of the perturbed term p(t) ( for more information on this issue we address the reader to a recent
work of Balti and al [13])

A Appendix
A.1. Proof of Lemma 2.1

Proof. ( see proof of Lemma 2.2 in [15] )
In order to prove this lemma, we define the quadratic approximation of F in a point y ∈ H with

step 0 < γ ≤ 1
L such that for all x ∈ H :

Sγ,y(x) = f(y) + 〈x− y,∇f(y)〉+
1

2γ
‖x− y‖2 + g(x) (A.1)

We can observe that Sγ,y is a function majorating F and is equal to F in point y ∈ H
In particular for any y ∈ H, we have :

F (T (y)) ≤ Sγ,y(T (y)) (A.2)

so that for any x ∈ H it follows that :

F (x)− F (T (y)) ≥ F (x)− Sγ,y(T (y))

= f(x)− f(y)− 〈T (y)− y,∇f(y)〉 − 1

2γ
‖T (y)− y‖2 + g(x)− g(T (y))

≥ 〈x− T (y),∇f(y) + z〉 − 1

2γ
‖T (y)− y‖2 ( where z ∈ ∂g(T (y)))

=
1

γ
〈x− T (y), y − T (y)〉 − 1

2γ
‖T (y)− y‖2

=
1

2γ
(−‖T (y)− y‖2 + 2〈x− y, T (y)− y〉)

=
1

2γ
(‖T (y)− x‖2 − ‖y − x‖2)
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where in the second inequality we used the convexity of f and the definition of ∂g(T (y)) 6= {∅} (because
g is proper and convex.)
For the second equality we used the following characterization :

T (y) = Proxγg(y − γ∇f(y)) iff y − γ∇f(y)− T (y) = γz with z ∈ ∂g(T (y))

iff z =
1

γ
(y − T (y))−∇f(y)

A.2. Proof of Proposition 2.2

Proof. ( see proof of Corollary 2 in [21] )
By Corollary 2.1 we have that for all n ≥ 1 :

anδn ≤ a1δ1 + γ(w1 − wn) ≤ γw1 (A.3)

since a1 = 0. Hence from (A.3) we deduce that there exists a constant C1 which do not depend in γ
such that for all n ∈ N :

δn ≤ C1γ (A.4)

which concludes the first part of this Proposition with C1 = w1 + w0 > 0.
For the second part, if we apply the Lemma 2.1 to the points y = yn and x = (1− 1

tn+1
)xn + 1

tn+1
x∗,

with γ ∈ (0, 1/L] so that we have :

N2wN+1 +

N∑
n=1

[
(a− 2)(n+ a) + 1

]
wn ≤

(v1 − vN )

γ
(A.5)

From this inequality as a > 2 it follows that vn ≤ v1 , for all n ≥ 1. On the other hand, by applying
2.1 to x = xn and y = yn, as in Corollary 2.1 we have that :

δn+1 −
(
n− 1

n+ a

)2

δn ≤ γ(wn − wn+1) (A.6)

By multiplying by (n+ a)2 and summing on n ∈ {1, . . . , N} we find :

(N +a)2δN+1 +

N∑
n=1

(
(n+a−1)2− (n−1)2

)
δn ≤ γ

(
(a+ 1)w1 +

N∑
n=2

(
(n+a)2− (n+a−1)2

)
wn

)
(A.7)

By (A.5) and as a > 2, it follows from (A.7) that :

N2δN+1 +

N∑
n=1

nδn ≤ γ
(
(a+ 1)w1 +

N∑
n=2

(2n+ 2a− 1)wn
)
≤ γ(c1 +

c2
γ

) = γc1 + c2 ≤ C < +∞ (A.8)

where c1, c2 and C are positive constants which do not depend on the step γ.
Finally by relation (A.8) and (A.5), the sequences n(xn+1−xn) and vn are bounded, so, by definition

of {un}n∈N, it follows that {un}n∈N is also bounded, hence by definition of {un}n∈N, we deduce that
{xn}n∈N is also bounded by a constant ( noted as ) C2 > 0, which is independent of the step γ, given
that γ < 1

L .

A.3. Subdifferential properties

The following Lemma shows that the subdifferential of a convex function defined in Rd, preserves
the boundedness of sets.

Lemma A.1. (see Proposition 4.14 in [22])
Let g : Rd −→ R be convex function and let K be a bounded set in Rd. Then the set :

A =
⋃
x∈K

∂g(x)

is bounded.
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Proof. By contradiction we assume that there exists a subsequence in A noted as {zn}n∈N such that
zn ∈ ∂f(xn) for all n ∈ N and zn −→ +∞, where {xn}n∈N is bounded (xn ∈ K for all n ∈ N).

From boundedness of {xn}n∈N we deduce that up to a subsequence still noted as {xn}n∈N we have
that xn −→ x ∈ K. For all n ∈ N we define the sequence {en}n∈N as

en =

{
zn
‖zn‖ if zn 6= 0

1 otherwise

It is clear that ‖en‖ ≤ 1, hence there exists a subsequence noted again as {en}n∈N such that en −→ e ∈
R.

From the definition of subdifferential, as zn ∈ ∂f(xn), we have that :

g(xn + en)− g(xn) ≥ 〈zn, en〉 = ‖zn‖ ∀n ∈ N (A.9)

By taking the limit to n → +∞ from continuity of g ( since it is convex on an open set in a
finite dimensional space ) we obtain that the Left-Hand-Side of the previous inequality converges to
g(x+ e)− g(x) which is finite. On the other side by hypothesis we have that ‖zn‖ diverges to infinity,
which leads to a contradiction.
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