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Abstract 

 

Due to the high interest of appropriate characterization of PCM and hybrid PCM composites, 

different research centres and universities are using several material characterization techniques 

not commonly used with PCM, to study the structure and morphology of these materials. 

Likewise, physico-chemical stability is a crucial parameter for the performance of latent storage 

materials during time and its evaluation has been done by using molecular spectroscopy, 

chemiluminiscence or calorimetric tests. Atomic force microscopy and nanoindentation are also 

reported to characterize hybrid PCM composites. Other chemical aspects studied are related 

with the compatibility of the PCM and its container and also considered in this compilation of 

characterization work.  

  

Keywords: Phase change material (PCM), characterization, morphological and structural 

characterization, physico-chemical stability, mechanical properties 

 

1. Introduction 

 

Characterization of PCM and hybrid PCM composites is of great interest for the scientific 

community, because it is of extreme importance for the deployment of such materials into the 

market. In a previous paper [1] special attention was paid to the characterization of 

thermophysical properties showing the difficulties of using commercial equipment with 

composite materials and/or samples size above few milligrams.  

  

Although the thermopysical properties are the main selection criteria for the use of PCM, other 

important properties such as chemical stability, crystalline structure or mechanical properties 

are extremely important to predict the performance of the hybrid PCM composites. This paper 

includes examples for the analysis of morphological and structural characterization of hybrid 

PCM composites, physico-chemical stability and mechanical properties.  

 

Characterization of hybrid materials has different approaches depending on the scale (nano- and 

micro- to bulk and macro-scale). The morphological and structural characterization gives 

information on crystalline characteristics, and how the microstructure may be affected by 

cycling the hybrid material. PCM crystalline structure is evaluated with cycles and temperature 

changes. Matrix structure or even the encapsulating coating materials may be also evaluated in 

terms of volume expansion while melting, and therefore the change in their mechanical 

properties. 
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Chemical stability of the hybrid materials is also a key issue. Cycling organic materials may 

lead to a partial degradation that is reflected then in thermal properties. Related with the 

chemical stability there is the compatibility of the composite, how it is affecting the PCM the 

matrix properties i.e. chemical, mechanical or even fire resistance properties.   

 

2. Morphological and structural characterization of hybrid PCM composites 

 

The morphological and structural characterization of hybrid PCM composites may be carried 

out using commercial and experimental devices. This paper is focussed in both types, giving 

examples of the characterization of different PCM and PCM-composites using several 

experimental procedures.  

 

2.1. X-Ray Diffraction  

 

Crystalline structure of organic and inorganic PCM and hybrid PCM composites is studied by 

X-Ray Diffraction at the Institute of Physical Chemistry Romanian Academy (Romania) [2]. 

Changes after cycling may be followed by this technique. Moreover, it is possible to calculate 

the crystallite size, and with additional data the degree of crystallinity and the time of the fastest 

crystallization. Figure 1 shows an example where the crystalline structure of a polyethylene 

glycol-epoxy (PEG-epoxy) composite is evaluated.  

 

X-ray diffractograms were collected by means of a Rigaku diffractoctomer type Ultima IV in 

parallel-beam geometry. The X-ray from a Cu tube operating at 40 kV and 30 mA. Counts were 

collected from 50 to 600 with a step size of 0.02 and a speed of 50 /min. It was assumed that the 

main contributor to the peak broadening is the finite size of the PEG chains.  

 

2.2. Optical and thermal microscopies 

 

The optical microscopy is used at the Bulgarian Academy of Sciences (Bulgaria) to control 

crystal formation, size, allocation, and modification before and after thermal cycling in PCM 

slurries. An example can be seen in Figure 2, where two morphological photos compared are of 

Clathrate hydrate slurry. 

 

“In situ” control during thermal cycling of PCM can be carried out with a thermal microscope 

(Bulgarian Academy of Sciences – Bulgaria) (Figure 3). LINKAM Scientific Instruments 

THMS600 provided with T95-Linksys PC interface and Linksys 32X system controller 

software, enabling PC control of temperature stability <0.1°C, gas flow (linear cooling speeds 
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from 0.01 to 100°C/min), data acquisition and export, as well as multiple rise/down 

programming. The sample area is 22 mm diameter. A 100 Ohm platinum resistor sensor makes 

available more accurate and stable temperature signal that can be achieved with a thermocouple. 

PixeLINK application software we use for digital image capture of the PCM slurry or PCM 

composite morphology in parallel to their thermal behaviour: 

 Temperature range of phase transition, Tonset, Tmax compared to DSC data. 

 Crystallization/nucleation phenomena in situ. 

 Stability of interfacial surfactant molecular layer in PCM emulsion slurry. 

 Droplet size, shape, distribution. 

 Temperature effect on the salt adhesion process in the graphite/Al matrix. 

 

2.3. Scanning electron microscopy  

 

Scanning electron microscopy is a useful tool to evaluate morphological characteristics of PCM 

and PCM composites at the microscale. It has been used by CERTES – France & Polymer 

Institute (France) and the Slovak Academy of Sciences (Slovakia) to evaluate PCM particles 

shape, the quality of the silver coating PCM and also the dispersion of fillers inside the 

polymeric matrix.  SEM (Jeol 6301F) fitted with an X-ray energy dispersive spectrometer 

(EDS, Oxford, Link Isis) was used and  SEM images like the one presented in Figure 4 were 

taken at 0° tilt angle, using a 10-15 kV accelerating voltage. The samples (PCM particles and 

PCM particles metalized with silver and composites) were covered previously with a thin layer 

of gold to guarantee their electrical conductivity in order to prevent drift and charging. 

 

At Riga Technical University (Latvia), a simple method was used for preparing samples for 

determination of the shell thickness of PCM microcapsules. The slurry of microcapsules was 

dried in the open air. The dried specimen was broken and fracture was exposed to SEM 

observation (Figure 5).  Riga Technical University also used SEM to investigate damage 

resistance of microcapsules in the cement-lime mixtures before and after thermal cycling. For 

example, Figure 6 shows that the microcapsules were not damaged by the mixing procedure of 

mortar and cycling for 300 times in the temperature range from +5 to 45ºC [4]. 

 

2.4. Atomic Force Microscopy  

 

At the Institute of Physical Chemistry Romanian Academy (Romania), in the study of PEG 

composites, AFM is used to evaluate the surface morphology of the P15-E. AFM Dynamic 

Force Module (intermittent contact mode), using an EasyScan 2 apparatus (Nanosurf AG, 

Switzerland) with a high resolution scanner (10 x 10 μm with vertical range of 2 μm and z-axis 
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resolution of 0.027 nm) and a X-Y linearity mean error less than 0.6%. The scan rate was about 

1-2 Hz.  The phase contrast working mode for imaging employed sharp Si tips (NCLR from 

Nanosensors™) with a radius of curvature less than 10 nm (typically 7 nm). 

 

The 1.5x1.5 μm phase image of the P15-E in the Figure 7 shows a lamellar morphology with an 

interlamellar spacing of 55 nm. The XRD calculation of the d-spacing for the 120 reflection 

shows is tantamount to 0.52784 nm.  

At the University of Barcelona (Spain) AFM is used to evaluate the morphology and 

mechanical integrity of microencapsulated PCM with temperature [5]. The aim of this study is 

to evaluate the mechanical performance of microencapsulated Micronal® DS 5001 provided by 

BASF® at different temperatures of use: 25 ºC, 45 ºC and 80 ºC, approximately. When 

microencapsulated PCM is used as aqueous slurry in active storage systems, changes are 

observed after several thermal cycles that are attributed to a partial degradation of the 

microcapsules by breakage. For this reason, it is interesting to measure the maximum force 

these particles can hold before break.  

 

Observation of Micronal particles with SEM reveals that small particles (6 μm diameter) 

aggregate in bigger particles around 150 μm). Both types of particles were indented with the 

cantilever using the following experimental conditions: 

 Aggregates (100M) 150 μm F = 3 μN   

 Single particles (10M) 6 μm  F = 1.5 μN 

 

 

In Figure 8 results of the several indentations are represented statistically as the frequency of 

each outcome for aggregates and individual Micronal particles at different temperatures.  

 

2.5. Molecular spectroscopies 

 

Raman spectroscopy is a very useful technique in studying chemical structure and morphology 

of heterogeneous materials as the PEG composites. At the Institute Physical Chemistry of the 

Romanian Academy (Romania) unpollarized Raman spectra of the P15-E composite at room 

temperature were obtained on a Jasco NRS-3300 micro-Raman spectrometer with an air cooled 

detector in a Backscattering geometry using a microscope objective of 100x. Two excitation 

laser lines, operating at 488 and 785 nm, were used with the power at the sample surface of 12.3 

and 5.2 mW, respectively. Spectra were recorded in a single subtractive configuration (gratings 

1800 gr/mm and 600 l/mm) over a wide frequency range of 100–4000 cm-1 for Ar+-ion laser and 

100–1800 cm-1 for diode laser. The fluorescent background for each spectrum of the P15-E 
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composite was subtracted by using linear segments. All corrected Raman spectra were fitted 

with Lorenzian profiles by means of Igor software. Unpolarized Raman spectrum of the P15-E 

composite and its spectral deconvolution is shown in Figure 9 [6]. 

 

Unpolarized solid state Raman spectra were recorded over 10-900 cm-1 and 200-1800 cm-1 

using a RM-1000 RENISHAW Raman Microscope, equipped with a charge coupled device 

(CCD) detector, and a Leica microscope with a 50x objective, in backscattering geometry. The 

emission line at 514.532 nm of an Ar+ laser was used to excite the samples. The diameter of the 

laser spot on the sample surface amounted to 2-3 m providing a spectral resolution better than 

2 cm-1. A THMS-600 cell (LINKAM) was used for temperature control of the samples from 25-

600ºC with an accuracy of the 0.1ºC. Raman spectra collected at different temperatures were 

temperature-reduced to account the first order Bose-Einstein distribution factor from the 

experimental spectra. As is shown in Figure 10, the images and band at 2500-3500cm-1 indicate 

the influence of temperature at the phase change by cycling. 

 

At the University of Barcelona (Spain) Fourier Transformed Infrared Spectroscopy (FT-IR) 

with an ATR accessory was used to characterise wood-PCM composites prepared at Riga 

Technical University (Latvia) [7]. In this study, black alder wood (Alnus Glutinosa) was 

impregnated with paraffins RT21 and RT27 - PCMs manufactured from Rubitherm GmbH. 

Samples were also coated with a polystyrene based coating to avoid leakage. Introduction of 

PCM in wooden matrix gives rise to absorption bands in the wavenumber region of 3000 - 2800 

cm-1. These bands correspond to methyl and methylene group stretching, as RT21 and RT27 are 

saturated hydrocarbons with molecular formula CnH2n+2. Wood adds characteristic absorption 

bands of cellulose, hemicellulose and lignin to the wood/PCM composite spectra. Bands of 

polystyrene usually appear of composite layers closer to surface or ends of the sample. 

Homogeneity of impregnated PCM was evaluated by comparing spectra of wood/PCM 

composite cut in several slices. Differences between slices of one sample are illustrated in 

Figure 11.  

 

At Çukurova University (Turkey), PCM samples are subjected to melting/freezing thermal 

cycles carried out to determine their thermal and chemical stability. The number of thermal 

cycles varies depending on the application of PCM. FTIR analysis is used to test the chemical 

stability. The basic approach is to carry out FTIR analysis before and after thermal cycling and 

to compare the characteristic peaks obtained in the spectra. Figure 12 shows FT-IR spectra of 

the non-cycled and cycled (200, 400, 600 cycles) Capric acid-Myristic acid (CA-MA) binary 

mixture as PCM [8]. As seen in the figure, all peaks fit into one another at the same frequency 



  7

band. This means that repeated thermal cycles did not cause any degradation in the chemical 

structure of PCM the mixture. 

 

3. Physico-chemical Stability 

 

3.1. Chemiluminiscence  

 

Chemiluminiscence results from the conversion of chemical energy into light which takes place 

in many elementary reactions of more complex reaction mechanisms. During oxidation the 

molecules of a reaction product which are formed in an excited state are either carbonyl 

compounds or singlet oxygen. These products are formed during recombination of peroxy 

radicals. 

 

The equipment unifies knowledge acquired in the study of chemiluminescence of organic 

substrates since 1960 by groups of researchers in Australia, Russia, United Kingdom, USA and 

the former Czechoslovakia (Polymer Institute of Slovak Academy of Sciences). It is suitable for 

the detection and measuring of thermal oxidation of polymers or thermal decomposition of 

preoxidized polymers containing hydroperoxides from ambient temperature to 240 °C. The 

standard atmosphere is ensured by flow of gas at maximum rate of 150 ml/min. Extreme 

sensitivity, which is achieved by almost zero background noise, enables to measure the 

oxidation of polymers already at 40 °C and the tendency towards oxidation of organic substrates 

even in the so-called "induction period" may be well estimated. 

 

The final form for the chemiluminescence intensity is expressed as the sum of two processes 

composing the resulting light emission. The degradation of the PEG composites developed at 

the Institute Physical Chemistry of the Romanian Academy (Romania) [6], was studied and the 

two processes are related to the rate of initiation of polyethylene glycol (PEG) degradation via 

pre-exponential factors and activation energies. All the kinetic parameters, i.e. pre-exponential 

factor, activation energy, and average kinetic rate, are calculated for 150 °C. Modelling of the 

kinetics is shown in Figure 13. 

 

3.2. Chemical stability related to fire testing  

 

For testing of PEG-epoxy composite P15-E, a modified set up in comparison to the ASTM E84 

Standard Test Method for Surface Burning Characteristics of Building Materials was used at the 

Institute of Physical Chemistry of the Romanian Academy (Romania), where a reduced size 

specimen with 150 mm long, 75 mm wide and 25 mm thick was placed between two plaster 
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sheets of 125 mm thickness. To avoid direct contact of the fire with the sample the two plaster 

panels were 20 mm longer than the rectangular specimen, as is shown in Figure 14 left. Thus, 

indirect slow heating at the bottom side of the material cuboid was used. The temperature on 

both sides of the sample was monitored by means of two K thermocouples in time (Figure 14 

right). The bottom side temperature of the specimen did not exceed 100ºC during the 20 minute 

span of the test in order to monitor the thermal degradation of the PCM component, i.e. PEG 

1500, leaving unaffected the thermosetting component (the cured epoxy resin) prone to 

degradation at higher temperatures. 

 

Degradation of PCM composites after the fire testing was evaluated using FTIR with coupled 

ATR Spectra of the FP15-E and RP15-E samples along with their Gaussian deconvolutions 

within 1200-975 cm-1 and 3700-2600 cm-1 ranges. The least varying peak at 1467 cm-1 (CH2 

deformation) was chosen for spectra normalization of the spectra. The IR spectra emphasize 

these changes produced inside the material.  

 

Figure shows the Gaussian deconvoluted IR spectra of the RP15-E and FP15-E samples in the 

1200-2400 cm-1 range, where the peaks of ester groups appear after the fire testing, that can be 

attributed to the thermo-oxidative degradation of the PEG. 

 

3.3. Compatibility between PCM and container materials 
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Chemical compatibility between the PCM, the shape stabilized PCM, PCM slurries and the 

materials containing them are usually carried out following protocols of corrosion tests (for 

example, at the University of Lleida and the University of Zaragoza, Spain). For inorganic PCM 

corrosion of metallic containers is given as a rate of corrosion. Results on this can be found in 

Cabeza et al. and Oró et al. [9-13]. Otherwise when plastic containers are considered, migration 

of PCM within the container and water sorption through the plastic wall is usually evaluated by 

gravimetric analysis after cycling the PCM. Lázaro et al. [14], Castellón et al. [15], and Oró et 

al. [13] reported some studies of compatibility of plastics with PCM.  

 

The methodology used includes that once the samples were weighted, they were immersed 

inside glass test tubes containing the PCM formulations. Then, the glass tubes were covered 

with plastic paraffin to avoid contact with environmental agents. The evolution of corrosion rate 

in time was evaluated. Visual evaluation was done seeking for bubbles, precipitates, surface 

changes and pitting process. pH measurements with litmus paper were also carried out. Before 

re-weighted, samples were cleaned and dried. While the metal samples were polished with 

abrasive paper and then dried, the polymer samples were cleaned with soft paper and dried with 

compressed air. 

 

Results of compatibility of PCM with metals are given on a manufacturers recommendation 

(Table 1) and are shown in Table 2. Figure 16 shows some samples after the experimentation. 

 
On the other hand, in order to evaluate the polymeric materials, mass change Δm(%) was 

calculated. The mass changes could be positive or negative, depending if the polymer absorbs or 

is diluted by the PCM, respectively. 

 

Results show that polymers here analysed presented no significant mass gain (Table 3). Hence, 

those materials are suitable and recommended to be used as PCM container with the PCM 

studied in these papers. Polymers are materials commonly used as containers in other 

application due to their low price, low density and easy shaping. 

 

3.4. Rheological behaviour  

 

A TA Instruments AR-G2 device (a controlled stress rheometer) is used at the University of 

Zaragoza (Spain) to study the rheological behaviour of the materials [16]. Depending on the 

objective, different studies can be developed. For those materials that will be pumped in real 

applications, the viscosity vs. share rates and the viscosity vs. temperature curves are obtained. 

For those materials that will remain at rest, viscosity vs. temperature curves are obtained with 
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share rates close to zero. These last measurements can be complemented with measurements 

made in oscillatory mode. Figure 17 shows examples of these results obtained for octadecane at 

the University of Zaragoza. 

 

3.5. Thermal stability investigation  

 

A calorimeter was designed at the Warsaw University of Technology (Poland) for the 

performance of fast melting and solidification (cycling) of phase change materials and 

investigation of the stability of their thermophysical properties [17]. Since the volume of sample 

container equals to 200 cm3, results are representative for real elements with PCM which are 

used in thermal storage units. Temperature range is limited to 20-150C, mainly because the 

cooling system used in the set-up.  

 

The scheme of the main part of the calorimeter is shown in Figure 18, and it is used to test the 

thermal stability of PCM.     

 

Cycling tests consists of two consecutive phases, which are repeated from several to several 

hundred times, depending of the thermal behaviour of the material. In order to check whether 

material is stable or not, temporal temperature variations during melting and solidification are 

recorded and analysed. In Figure 19 temperature vs. time for selected cycles of the tests 

performed on the hydrate Na2S2O35H2O are presented. Since the temperature characteristics 

change substantially in subsequent cycles, this material is not stable. In 28th cycle melting is not 

observed, that means that the hydrate decomposed into the salt and water. If material is stable 

all recorded characteristics look very similar to that for the first cycle.   

 

3.6. Physical stability testing of slurries 

 

Microencapsulated paraffin based phase change slurry (PCS) from BASF has been 

characterized at the Fraunhofer Institute for Solar Energy Systems (Germany). The initial slurry 

containing 40 %wt. of capsules was diluted to a capsule fraction of 20 %wt. by adding water. 

As the density between microencapsulates and water is different, a thickener was added to slow 

down the separation speed. The enthalpy measured by Micro DSC III from Setaram reveals a 

melting range between 16 and 18.5 ºC, a melting enthalpy of about 40 kJ/K and a hysteresis for 

the solidification curve of 2 K.  

 

After characterization the PCS was tested with a storage test facility. It contains plate type heat 

exchangers, centrifugal pumps, a 500 L storage tank and sensors to measure all relevant volume 
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flows and temperatures (Figure 20). The heat which is transferred over the heat exchanger from 

water into the PCS is stored in the tank. Therefore, the volume flow rate through and the 

temperature difference over the heat exchanger on the thermostat side (red in the schematic 

drawing – Figure 20) was measured. The heat losses of the storage have been determined with 

previous experiments using water instead of PCS. For the measurements the storage is operated 

in different temperature intervals. In the first experiment the intervals have been kept always at 

2 K and the temperature level was increased in 2 K steps starting from 12 °C (Figure 21 left). In 

a second experiment the temperature intervals have been increased from 2 K to 6 K and the 

stored heat was compared with that reached by using water within the same temperature 

intervals (Figure 21 right). 

 

 

 

 

 

 

4. Mechanical properties 

 

4.1. Mechanical characterization at nanometric scale 

 

The grid indentation technique has been employed to isolate the mechanical properties of a 

composite material or graphite foam and salt at the University of Barcelona (Spain) in 

collaboration with TREFFLE laboratory (France). This technique is a powerful tool for 

examining the properties of constituent phases independently of each other in composite 

material microstructures without the need to observe the residual imprints. Moreover, the 

mechanical properties (hardness and Young’s modulus) for individual phases can be isolated, as 

well as their surface volume fractions at nanometric scale. This technique and the statistical 

analysis by the deconvolution process allow representing the mechanical properties for each 

phase as a normal density function [18]. It can also be employed to other composite materials 

containing mixture of constituent phases distributed randomly. In Figure 22 is represented the 

Young’s modulus distribution simulated using the CDF fitting parameters. To complete the 

mechanical characterization, a macro structure mechanical characterization like micro 

compression tests must be done.  

 

4.2. Loss of mechanical properties of polymers in contact with paraffin. Evaluation using 

nanoindentation   
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Nanoindentation technique is adequate to evaluate mechanical changes in the surface and in the 

internal properties of polymers when exposed to paraffin for a long time. Moreover, the 

variation of the mechanical parameter with depth of indentation gives also valuable information 

that may be suitable for design purposes. In this study, carried out at the University of 

Barcelona (Spain) [19], polypropylene PP unfilled and filled with Mg(OH)2 (40 phr) were 

submerged in melted paraffin Rubitherm®: RT-25 at different temperatures for 32 days. 

Stiffness and hardness of polypropylene decreases due to contact with paraffin, and the effect is 

more significant with increasing temperature. Table 4 summarises some of the results. 

 

5. Conclusions 

 

This paper presents different methods to characterize structural and morphological properties of 

PCM. Molecular spectroscopy, chemiluminiscence and calorimetric test have been presented to 

study the physico-chemical stability of PCM and hybrid PCM. Atomic force microscopy and 

nanoindentation are also reported to characterize hybrid PCM composites. Other chemical 

aspects studied are related with the compatibility of the PCM and its container and also 

considered in this compilation of characterization work.  

 

The laboratories authoring this paper have participated in the European COST Action TU0802, 

developing a stable network of scientists that today exchange not only samples to be 

characterized, but also students and researchers to potentiate the research carried out. 
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Figure 22. Young’s modulus distribution simulated using the CDF fitting parameters for the D 

sample [18]. 
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