
HAL Id: hal-01517461
https://hal.science/hal-01517461v1

Preprint submitted on 3 May 2017 (v1), last revised 25 Oct 2018 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Internal control of systems of semilinear coupled 1-D
wave equations

Christophe Zhang

To cite this version:
Christophe Zhang. Internal control of systems of semilinear coupled 1-D wave equations. 2017. �hal-
01517461v1�

https://hal.science/hal-01517461v1
https://hal.archives-ouvertes.fr


Internal control of systems of semilinear coupled 1-D wave
equations

Christophe ZHANG

Abstract
We prove the internal controllability of some systems of two coupled wave equations in one space

dimension, with one control, under certain conditions on the coupling. To do this we apply the
“fictitious control method” in two cases: general systems with a “non-degenerate” coupling, and a
particular case where the coupling is “degenerate”, namely a cubic coupling.

In the latter case, our proof requires to find nontrivial trajectories of the control system that go
from 0 to 0. We build these trajectories by adapting (in 1 space dimension) a construction developed
by Jean-Michel Coron, Sergio Guerrero and Lionel Rosier for the study of coupled parabolic systems.

Keywords. Wave equations, coupled systems, exact internal controllability, fictitious control method,
algebraic solvability, return method.

1 Main results and outline of proof

1.1 Control systems

Let T > 0, and 0 < a < b < L. We study the following class of systems:
utt − ν2

1uxx = f1(u, v) + h, x ∈ [0, L],
vtt − ν2

2vxx = f2(u, v), x ∈ [0, L],
u = 0 on {0, L},
v = 0 on {0, L},

(1.1)

where h is the control, f1, f2 ∈ C∞(R2), f1(0, 0) = f2(0, 0) = 0, ν1, ν2 6= 0. In what follows we shall note,
for any such ν 6= 0,

�ν := ∂tt − ν2∂xx

We will also study the following particular system:
�ν1u = h, x ∈ [0, L],
�ν2v = u3, x ∈ [0, L],

u = 0 on {0, L},
v = 0 on {0, L}.

(1.2)

These are systems of coupled semilinear wave equations, with different speeds, which we seek to control
with a single control, which takes the form of a source term in the first equation. In both cases, as we will
study solutions with Ck regularity in order to establish a controllability result with two controls, the initial
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and final conditions ((u0, u1), (v0, v1), (uf0 , u
f
1 ), (vf0 , v

f
1 )) have to satisfy some compatibility conditions. For

example, the conditions of order 1 and 2 read as:

∀β ∈ {0, L},



u0(β) = u1(β) = (uf0 )(β) = (uf1 )(β) = 0,

u′′0(β) = u′′1(β) = (uf0 )′′(β) = (uf1 )′′(β) = 0,

v0(β) = v1(β) = (vf0 )(β) = (vf1 )(β) = 0,

v′′0 (β) = v′′1 (β) = (vf0 )′′(β) = (vf1 )′′(β) = 0.

(1.3)

To write the compatibility conditions of order k ≥ 3, the idea is to first write the time derivatives of
u and v as a function of their lower order space and time derivatives.

There exists a multivariate polynomial Qfin,i such that(
d

dt

)n
(fi(u, v)) = Qfin,i (Jnt (u, v)) , i = 1, 2, (1.4)

where Jnt (u, v) denotes the n-jet of time derivatives of u and v, that is

(u, v, ut, vt, · · · , ∂nt u, ∂nt v) .

Now, define by recurrence the following family of operators:
D(i)

1 = ∂t

D(i)
2 = ∂xx + fi(·, ·),

D(i)
n = ∂xx ◦ D(i)

n−2 +Qfin−2,i
(
Jn−2
t (·, ·)

)
, for 3 ≤ n ≤ k.

(1.5)

Then, near the corners Γ := {(0, 0), (0, L), (T, 0), (T, L)}, using the equations of system (1.1) and keeping
in mind that the control h is supported away from the corners, we have{

∂nt u = D(1)
n (u, v)

∂nt v = D(2)
n (u, v)

(1.6)

Now, thanks to the boundary conditions,

∂nt u(c) = ∂nt v(c) = 0, ∀c ∈ Γ,∀n ≤ k.

Moreover, it is clear thanks to the recurrence in (1.5) that there exist multivariate polynomials P fin,i such
that:

D(i)
n (u, v) = P fin,i

(
Jnx (u, v), Jn−1

x (ut, vt), Jnt (u, v)
)
,∀n ≤ k, i = 1, 2, (1.7)

where Jnx (u, v) denotes the n-jet of space derivatives f u and v. Now, (1.6) can be written in the corners
using only u0, u1, u

f
0 , u

f
1 , v0, v1, v

f
0 , v

f
1 , which gives the following compatibility conditions of order k:

P fin,i
(
Jnx (u0, v0)(0), Jn−1

x (u1, v1)(0), (0, · · · , 0)
)

= 0,

P fin,i
(
Jnx (u0, v0)(L), Jn−1

x (u1, v1)(L), (0, · · · , 0)
)

= 0,

P fin,i

(
Jnx (uf0 , v

f
0 )(0), Jn−1

x (uf1 , v
f
1 )(0), (0, · · · , 0)

)
= 0,

P fin,i

(
Jnx (uf0 , v

f
0 )(L), Jn−1

x (uf1 , v
f
1 )(L), (0, · · · , 0)

)
= 0,

∀n ≤ k, i = 1, 2. (1.8)

The existence and unicity of solutions to these systems can be derived from TaTsien Li’s general results
on quasilinear wave equations (see [LR03] or [Li10, chapter 5, section 5.2]).

The method we present yields two internal controllability results. The first is a local result:
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Theorem 1.1. Let R > 0, and 0 ≤ a < b ≤ L, T > 0 such that

T > 2(L− b) max
(

1
ν1
,

1
ν2

)
, T > 2amax

(
1
ν1
,

1
ν2

)
. (1.9)

If
∂f2

∂u
(0, 0) 6= 0, (1.10)

then there exists η > 0 such that for initial and final conditions

((u0, u1), (v0, v1), (uf0 , u
f
1 ), (vf0 , v

f
1 )) ∈

(
BC11([0,L]) ×BC10([0,L])(0, η)

)4
where BCk(0, η) denotes the ball centered in 0 and with radius η in the usual Ck topology, satisfying (1.8)
at the order 11, there exists h ∈ C 6([0, T ]× [0, L]) such that

supp h ⊂ [0, T ]× [a, b], (1.11)

and such that the corresponding solution (u, v) ∈ C 6([0, T ]×[0, L])6 of (1.1) with initial values ((u0, u1), (v0, v1))
satisfies {

u(T, · ) = uf0 , ut(T, · ) = uf1 ,

v(T, · ) = vf0 , vt(T, · ) = vf1

and
‖(u, v, h)‖(C6)3 ≤ R. (1.12)

The second theorem concerns a system that does not satisfy (1.10). However, it is global, thanks to
the system’s homogeneity.

Theorem 1.2. Let 0 ≤ a < b ≤ L, T > 0 satisfying (1.9). There exists a constant C > 0 depending on
T such that, for any given initial and final conditions

((u0, u1), (v0, v1), (uf0 , u
f
1 ), (vf0 , v

f
1 )) ∈

(
C 11([0, L])× C 10([0, L])

)4
satisfying (1.8) at the order 11, there exists h ∈ C 6([0, T ]× [0, L]) such that

supp h ⊂ [0, T ]× [a, b], (1.13)

and such that the corresponding solution (u, v) ∈ C 6([0, T ]×[0, L])2 of (1.2) with initial values ((u0, u1), (v0, v1))
satisfies {

u(T, · ) = uf0 , ut(T, · ) = uf1 ,

v(T, · ) = vf0 , vt(T, · ) = vf1

and
‖h‖C6 ≤ C

(
‖(u0, u1, u

f
0 , u

f
1 )‖(C11×C10)2 + ‖(v0, v1, v

f
0 , v

f
1 )‖

1
3
(C11×C10)2

)
. (1.14)

1.2 Related results

Boundary controllability results for quasilinear first order hyperbolic systems, coupled or not, can be
found in Tatsien Li’s book ([Li10, chapter 3]).

As for second order systems, results of global boundary and internal controllability for the semilinear
wave equation are well known, and were first proven by Enrique Zuazua in [Zua93] and [Zua91]. These
articles introduced the use of HUM (Hilbert Uniqueness Method) to prove controllability results for
semilinear and quasilinear equations. Boundary controllability results for scalar systems with C 2 regularity
can be found in [Li10, chapter 5], and can be adapted to coupled systems, and for Ck regularity.
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Regarding controllability with a reduced number of controls, results for boundary and internal control
of linear wave systems with a reduced number of controls have been proved by Fatiha Alabau-Boussouira
([ABL13] and [AB13]) in any space dimension, using energy methods. This was used by Fatiha Alabau
Boussouira in [AB14] to prove the existence of insensitizing controls for a single wave equation, as this
is linked to the controllability of linear cascade systems in one space dimension, with the same speed in
both equations.

In the nonlinear case, Louis Tebou followed the same path for semilinear equations in [Teb11], where
he proves the controllability of cascade systems of the form:

�u+ f(u) = h+ ξ,

�v + f ′(u)v = 0,

u = 0, v(t, 0) = ∂u

∂n
χΓ0 on ∂Ω,

(1.15)

where Γ0 is a portion of the boundary, and where f is subject to a growth constraint to have global well-
posedness. To prove the controllability of such systems, the author first establishes the controllability of
a linear problem, using a form of HUM combined with Carleman estimates. Then, using the Schauder
fixed-point theorem, he establishes the controllability of the nonlinear problem.

A similar strategy of proof appears in [CGR10] for parabolic systems with cubic coupling. In this case,
as for system (1.2), the linearised system around the equilibrium (0, 0, 0) is not controllable. A classical
tool to handle this problem in finite dimension is the use of iterated Lie brackets, see for example [Isi95,
chapter 2], [NvdS90, chapter 3], and [Cor07, chapter 3]. However, this tool does not work (see for example
[Cor07, chapter 5]) for many partial differential equations, including our control system (1.2). In that
case, a method to handle this situation is the return method. It consists in looking for trajectories going
from 0 to 0 and such that the linearised system around them is controllable (return trajectories). This
method has been introduced in [Cor92] for the stabilisation of driftless control systems and in [Cor96] and
in [Cor93] for the controllability of the Euler equations of incompressible fluids. Following this method, in
[CGR10] the authors build return trajectories, using the structure of the coupling. Then, using Carleman
estimates, they prove the controllability of a family of related parabolic linear systems close to the return
trajectory, from which they deduce null-controllability using Kakutani’s fixed-point theorem.

In other cases, a phenomenon of loss of derivatives can occur when working with Ck regularities:
this can be handled with an inversion theorem of the Nash-Moser type, with a stronger condition on the
linearised system. This was done in the case for quasilinear first order hyperbolic systems, which have
been studied in [ABCO17], using the “fictitious control method”, which we will explain in the following
section. More precisely the result that has been obtained concerns systems of the form:{

ut + Λ1(u, v)(u, v) + f1(u, v) = h,

vt + Λ2(u, v)(u, v) + f2(u, v) = 0.

with
∂f2

∂u
(0, 0) 6= 0. (1.16)

1.3 The fictitious control method

The fictitious control method was introduced in [Cor92] and [GBPGa05], and successfully used in
[CL14], [ABCO17] and[CG17]. The idea is to first prove a controllability result with two controls (the
fictitious controls), then reduce the number of controls, using some sort of fixed-point theorem.

In this article, we apply it to second order hyperbolic systems, which present the same problem of loss
of derivatives as the systems in [ABCO17]. This loss of derivatives is handled by using Gromov’s notion of
algebraic solvability, which allows for differential operators to be inverted in a special under some condition
(infinitesimal inversion) on their derivative. This yields local results around the equilibrium, but we will
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also work around other trajectories than the stationary trajectory at the equilibrium, in the spirit of the
return method, paying close attention to the regularities involved. Indeed, condition (1.10) from Theorem
1.1 is identical to condition (1.16), and is crucial to solving the system algebraically (see Proposition 2.2).
If, as in Theorem 1.2, it is not satisfied, then, following the spirit of the return method, one can build
trajectories of the system along which such a condition is verified, at least on some appropriate spatial
domain.

Remark 1.1. In both cases, conditions (1.10) and (1.16) appear as a sufficient condition on the coupling
for internal controllability with a reduced number of controls. However there is no indication (except in
trivial cases like the linearised system above) that this sort of condition is necessary.

We can thus sum up our strategy of proof in three steps:

1. When necessary, find smooth trajectories around which Theorem 2.1 can be used.

2. Prove a local controllability result with two controls (fictitious controls) around the return trajectory,
using classical boundary control results.

3. Use Theorem 2.1 to reduce the number of controls to one.

This article is organised as follows: in section 2, we illustrate Gromov’s ideas on a linear example, and
then prove Theorem 1.1, which is a case where we do not need to find return trajectories. This will allow
us to present how Gromov’s ideas can be applied in a nonlinear setting. In section 3 we prove Theorem
1.2. In this case we need to find return trajectories, and the application of Theorem 2.1 around those
trajectories will require a more detailed knowledge of the supports of the return trajectory. Finally section
4 is devoted to possible improvements and further questions on this topic.

2 The non-degenerate case

As mentioned in section 1.3, we build on the method presented in [ABCO17]. One of the main
ingredients of this method is the theory of differential operators, and the notion of algebraic solvability,
which we briefly present in the subsection below. The use of algebraic solvability in the study of control
systems first appears in [Cor92], where it was used to prove the stabilisability of finite dimensional systems
without drift with time-varying feedbacks. It was first used in the context of partial differential equations
in [CL14] for the control of the Navier-Stokes equation.

But first let us give an informal explanation of our method in the case of a linear system: first we have
to rewrite the control problem using differential operators. We note D the operator associated with the
equation of our control problem. Then, the control problem, given initial and final conditions, consists in
finding (u, v) with those initial and final conditions, and a control h such that

D(u, v, h) = 0.

This corresponds to an inversion problem, but with a twist: one has to find an inverse image with the
right initial and final conditions. Now, using the solutions to forward- and backward-evolving Cauchy
problems corresponding to the initial and final conditions, one can build functions (u, v) with the right
initial and final conditions. The nonlinear version of this is done at the beginning of subsection 2.2. In
general, one can do this so that for some η > 0,

(h1, h2) := D(u, v, 0) = 0,∀t /∈ [η, T − η].

Now suppose D is invertible. We can make the following computation, the nonlinear version of which is
made in subsection 2.2:

D
(
(u, v, 0) + D−1(−h1,−h2)

)
= (h1, h2)− (h1, h2) = 0.
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This seems to yield a solution to the control problem, however we still need to check that the “corrective
term” does not change the initial and final conditions. This is where Gromov’s notion of algebraic
solvability comes into play: the right property for D is not to be invertible, but to be algebraically
solvable. That is, that the inverse can also be written as a differential operator:

D−1(−h1,−h2) =
∑
r

ar∂r(−h1) +
∑
r

br∂r(−h2)

for some functions ar, br. With this additional property, one can see that, because −h1,−h2 vanish for
t /∈ [η, T − η],

D−1(−h1,−h2) = 0,∀t /∈ [η, T − η].

Hence, (u, v, 0) + D−1(−h1,−h2) still has the right initial and final conditions.

2.1 Differential relations and Gromov’s theorem

In this section we sum up some basic notions regarding differential operators, and Gromov’s local
inversion theorem for differential operators. More details can be found in [Gro86].

In what follows, Q is the closure of a non-empty open bounded smooth subset of R2, and p, q, r ∈ N∗.
We note nr,p := 2 + p card{(α1, α2) ∈ N2 | α1 + α2 ≤ r}. Recall the definition of the r-jet of a function
z ∈ C r(Q)p:

Jrz(t, x) =
(

(t, x), z(t, x), · · · , ∂|α|z

∂tα1∂xα2
, · · · , ∂rz

∂tα1∂xα2

)
∈ Rnr,p , ∀(t, x) ∈ Q.

Definition 2.1. A map D : C r(Q)p → C 0(Q)q is a C∞ nonlinear differential operator of order r if there
exists F ∈ C∞(Rnr,p ,Rq) such that

D(z) = F (Jrz), ∀z ∈ C r(Q)p.

This clearly implies that D is C∞ (with the usual C r,C 0 topologies), and we denote by

Lz : C r(Q)p → C 0(Q)q

its Fréchet differential at z ∈ C r(Q)p.

We now define some sort of manifold, over which we can invert these operators:

Definition 2.2. A subset A of Cd(Q)p is a differential relation of order d ∈ N if there exists R ⊂ Rnd,p
such that

A = {z ∈ Cd(Q)p | ∀(t, x) ∈ Q, Jdz(t, x) ∈ R}.

It is said to be open if R is an open subset of Rnd,p . For k ∈ N, we note

Ak := A ∩ Ck(Q)p

For classical local inversion theorems, one needs the differential at one point to be invertible. Here the
requirement is somewhat stronger: we need the differential at any point to be invertible, with the extra
property that the inverse of each differential is also a linear differential operator.

Definition 2.3. Let A ⊂ Cd(Q)p be a differential relation of order d, and let D be a differential operator
of order r. We say that D admits an infinitesimal inversion of order s ∈ N over A if there exists a family
of linear differential operators of order s

z ∈ A,Mz : C s(Q)q → C 0(Q)p,

such that:
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1. For every g ∈ C s(Q)q, z 7→Mz(g) is a differential operator of order d (possibly nonlinear) and it is
a C∞-differential operator in (z, g).

2. (Algebraic solvability) For every z ∈ Ad+r,

Lz ◦Mz = IdCr+s(Q).

We can now state Gromov’s inversion theorem (see [Gro86, Section 2.3.2, main theorem]):

Theorem 2.1 (Gromov). Let A ⊂ Cd(Q)p be a non-empty open differential relation of order d, and let
D be a differential operator of order r. Assume that D admits an infinitesimal inversion of order s over
A. Let

σ0 > max(d, 2r + s), (2.1)

ν ∈ (0,∞). (2.2)

Then, there exists a family of sets Bz ⊂ Cσ0+s(Q)q and a family of operators D−1
z : Bz → A where

z ∈ Aσ0+r+s, such that:

1. (Neighbourhood property) For every z ∈ Aσ0+r+s, 0 ∈ Bz and

B :=
⋃

z∈Aσ0+r+s

{z} × Bz

is an open subset of Cσ0+r+s(Q)p × Cσ0+s(Q)q.

2. (Inversion property)
D
(
D−1
z (g)

)
= D(z) + g, ∀(z, g) ∈ B. (2.3)

3. (Normalisation property)
D−1
z (0) = z, ∀z ∈ Aσ0+r+s. (2.4)

4. (Regularity and continuity) Let σ0 ≤ σ1 ≤ η1, then for all z ∈ Aη1+r+s and g ∈ Bσ1+s
z := Bz∩Cσ1+s,

D−1
z (g) ∈ Ak, ∀k < σ1. (2.5)

Moreover,
(z, g) 7→ D−1

z (g) ∈ C 0(Aσ0+r+s × Bσ1+s
z ,Ak), ∀k < σ1. (2.6)

Finally, if η1 > σ1, then (2.5) and (2.6) hold for k = σ1.

5. (Locality) For every (t, x) ∈ Q, and for every (z1, g1), (z2, g2) ∈ B, if we have

(z1, g1)(t̃, x̃) = (z2, g2)(t̃, x̃), ∀(t̃, x̃) ∈ B((t, x), ν) ∩Q,

then,
D−1
z1

(g1)(t, x) = D−1
z2

(g2)(t, x).

Remark 2.1. The neighbourhood property allows to relate the domains of inversion for each local in-
version to each other: local inverses at two “neighbouring” points will be defined on domains that have
“neighbouring” sizes. In particular that means the domains of inversions are bound to overlap. The local-
ity property tells us that when this happens (albeit locally), the images of the local inverses agree locally.
In the linear case, this corresponds to the fact that when a function vanishes on an open set, its image by
any linear differential operator also vanishes on this open set (see the beginning of the section).
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2.2 From two controls to one: algebraic solvability
As in the linear case, we first build a trajectory (u, v) with the right initial and final conditions, but with
D(u, v, 0) potentially non-zero on some restricted domain. In terms of control theory, this amounts to
solving the control problem with two controls (the fictitious controls), with restricted supports. In fact,
for systems of the form 

∂ttu− ν2
1uxx = f1(u, v) + h1, x ∈ [0, L],

∂ttv − ν2
2vxx = f2(u, v) + h2, x ∈ [0, L],

u = 0 on {0, L},
v = 0 on {0, L},

(2.7)

where f1(0, 0) = f2(0, 0) = 0, we have the following local controllability result, which is a consequence of
boundary control results presented in [Li10, chapter , sections 5.2 and 5.3]:

Proposition 2.1. Let k ≥ 2, 0 ≤ a < b ≤ L, T > 0 such that (1.9) holds. For every 0 < δ <
min (T/2, (b− a)/2) satisfying

T − 2δ > 2(L− b+ 2δ) max
(

1
ν1
,

1
ν2

)
,

T − 2δ > 2(a+ 2δ) max
(

1
ν1
,

1
ν2

)
,

(2.8)

there exists η > 0 such that, for initial and final conditions

((u0, u1), (v0, v1), (uf0 , u
f
1 ), (vf0 , v

f
1 )) ∈

(
BCk([0,T ]×[0,L])(0, η)×BCk−1([0,T ]×[0,L])(0, η)

)4
satisfying (1.8) at the order k, there exist controls h1, h2 ∈ Ck−2([0, T ]× [0, L]) and constants C1, C2 > 0
depending on T, δ, k satisfying

supp hi ⊂ [δ, T − δ]× [a+ δ, b− δ], i = 1, 2, (2.9)

‖hi‖Ck−2 ≤ C1‖((u0, u1), (v0, v1), (uf0 , u
f
1 ), (vf0 , v

f
1 ))‖(Ck×Ck−1)4 , i = 1, 2, (2.10)

such that the corresponding solution of (2.7) with initial values ((u0, u1), (v0, v1)) satisfies{
u(T, · ) = uf0 , ut(T, · ) = uf1 ,

v(T, · ) = vf0 , vt(T, · ) = vf1 .

‖(u, v)‖(Ck)2 ≤ C2‖((u0, u1), (v0, v1), (uf0 , u
f
1 ), (vf0 , v

f
1 ))‖(Ck×Ck−1)4 . (2.11)

This result is a particular case of Proposition 3.2 which we will prove in the following section, when
dealing with a degenerate system.

For now, let R > 0, 0 ≤ a < b ≤ L, and let T > 0 be such that (1.9) holds. Let 0 < δ <
min (T/2, (b− a)/2) /2 such that (2.8) holds for 2δ (note that it also holds for δ). Define

Qδ := [δ, T − δ]× [a+ δ, b− δ],

Q2δ := [2δ, T − 2δ]× [a+ 2δ, b− 2δ],

and let Q ⊂ [0, T ]× [a, b] be a smooth closed set such that

Qδ ⊂
◦
Q.
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Define the following nonempty open differential relation of order 2:

A =
{

(u, v, h) ∈
(
C 2(Q)

)3 ∣∣∣∣ ∀(t, x) ∈ Q, ∂f2

∂u
(u(t, x), v(t, x)) 6= 0

}
.

We define the following nonlinear differential operator D : C 2(Q)3 → C 0(Q)2 of order r = 2:

D ((u, v, h)) = (�ν1u− f1(u, v)− h,�ν2v − f2(u, v)), ∀(u, v, h) ∈ C 2(Q)3,

and its differential at (u, v, h) ∈ C 2([0, T ]× [0, L])3:

L(u,v,h)(ũ, ṽ, h̃) =
(
�ν1 ũ−Df1(u, v) · (ũ, ṽ)− h̃, �ν2 ṽ −Df2(u, v) · (ũ, ṽ)

)
, ∀(ũ, ṽ, h̃) ∈ C 2([0, T ]×[0, L])3.

We now have the following result, thanks to the definition of A:

Proposition 2.2. D admits an infinitesimal inversion of order 2 over A.

Proof. Let h1, h2 ∈ C 4(Q), (u, v, h) ∈ A. Using the fact that ∂f2

∂u
(u, v) never vanishes, if we set:

ṽ = 0,

ũ = − h2
∂f2
∂u (u, v)

,

h̃ = �ν1 ũ−
∂f1

∂u
(u, v)ũ− h1,

then we have
L(u,v,h)(ũ, ṽ, h̃) = (h1, h2).

Moreover, the above formulae clearly show that (u, v, h) 7→ L(u,v,h)(ũ, ṽ, h̃) is a (nonlinear, C∞ with the
usual topology of C 2(Q)) differential operator of order 2 on C 2(Q), and (u, v, h, ũ, ṽ, h̃) 7→ L(u,v,h)(ũ, ṽ, h̃)
is also C∞.

We can now apply Theorem 2.1 with d = 2, s = 2, r = 2 σ0 = 7, ν = δ/2. This yields a collection of
open sets, which all contain 0,

Bz ⊂
(
C 9(Q)

)2
, z ∈ A11,

the open subset of
(
C 11(Q)

)3 × (C 9(Q)
)2
B =

⋃
z∈A11

{z} × Bz,

and the collection of operators
D−1
z : Bz → A, z ∈ A11.

Now, thanks to condition (1.10),
(0, 0, 0) ∈ A,

D(0, 0, 0) = (0, 0),

and
((0, 0, 0), (0, 0)) ∈ B,

so that, thanks to the neighbourhood property of Theorem 2.1, there exists ε > 0 such that(
BC11(Q)((0, 0, 0), ε)

)3 × (BC9(Q)((0, 0), ε)
)2 ⊂ B. (2.12)

9



Figure 1: Matching trajectories with two controls and with a single control on the appropriate domain.

By the continuity property of Theorem 2.1 with η1 = σ1 = σ0 = 7, there exists η > 0 such that for
‖((u, v, h), (h1, h2))‖(C11)3×(C9)2 ≤ η,

‖D−1
(u,v,h)(h1, h2)‖(C6)3 ≤ R.

Proposition 2.1 with k = 11 yields η′ > 0 such that for any initial and final conditions

((u0, u1), (v0, v1), (uf0 , u
f
1 ), (vf0 , v

f
1 )) ∈

(
BC11([0,T ]×[0,L])(0, η′)×BC10([0,T ]×[0,L])(0, η′)

)4
,

there exist two controls θ1, θ2 ∈ C 9([0, T ]× [0, L]), supported in Q2δ (condition (2.9)), that steer system
(2.7) from the given initial conditions to the given final conditions, with the corresponding trajectory
(u∗, v∗) satisfying (2.11). Together with (2.12), this implies that there exists η′ ≥ η′′ > 0 such that for
initial and final conditions

((u0, u1), (v0, v1), (uf0 , u
f
1 ), (vf0 , v

f
1 )) ∈

(
BC11([0,T ]×[0,L])(0, η′′)×BC10([0,T ]×[0,L])(0, η′′)

)4
,

the corresponding trajectory of system (2.7) satisfies

D(u∗|Q, v∗|Q, 0) =
(
h1|Q, h2|Q

)
, (2.13)

(
(u∗|Q, v∗|Q, 0), (−h1|Q,−h2|Q)

)
∈ B. (2.14)

‖((u∗, v∗, 0), (h1, h2))‖(C11)3×(C9)2 ≤ min(R, η). (2.15)
Let us now set, keeping in mind the regularity property of Theorem 2.1 with η1 = σ1 = σ0 = 7,

(u, v, h) = D−1
(u∗|Q,v

∗
|Q,0)

(
−h1|Q,−h2|Q

)
∈ A6.

Then, by the inversion property of Theorem 2.1, and (2.13),

D (u, v, h) = D(u∗|Q, v∗|Q, 0)− (h1|Q, h2|Q) = (0, 0).
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Now, let us show that (u, v, h) = (u∗, v∗, 0) on Q̊ \ Qδ′ . This will allow us to extend (u, v, h) on
([0, T ]× [0, L]) \ Q.

Let (t, x) ∈ Q̊ \ Qδ. As the hi are supported in Q2δ,

((u∗, v∗, 0), (−h1,−h2)) = ((u∗, v∗, 0), (0, 0)) on B
(

(t, x), δ2

)
∩Q. (2.16)

Thus, using the locality property of Theorem 2.1,

D−1
(u∗|Q,v

∗
|Q,0)

(
−h1|Q,−h2|Q

)
(t, x) = D−1

(u∗|Q,v
∗
|Q,0) (0, 0) (t, x), (2.17)

that is, using the normalisation property:

(u, v, h)(t, x) = (u∗, v∗, 0)(t, x). (2.18)

We can now extend (u, v, h) by setting

(u, v, h)(t, x) = (u∗, v∗, 0)(t, x), ∀(t, x) ∈ [0, T ]× [0, L] \ Q. (2.19)

Then,
supp h ⊂ [0, T ]× [a, b],

and (u, v) satisfies the same initial, boundary and final conditions as (u∗, v∗):{
(u, v)(0, · ) = (u0, v0), (ut, vt)(0, ˙) = (u1, v1)

(u, v)(T, · ) = (uf0 , v
f
0 ), (ut, vt)(T, ˙) = (uf1 , v

f
1 )

(2.20)

{
u( · , 0) = u( · , L) = 0
v( · , 0) = v( · , L) = 0

(2.21)

and {
�ν1u = f1(u, v) + h,

�ν2v = f2(u, v),
(2.22)

Finally, we get (1.12) from (2.15) and the continuity property of Theorem 2.1.
This proves Theorem 1.1.

Remark 2.2. Theorem 1.1 actually holds for coupled quasilinear equations:
∂ttu− ∂x (K1(u, ∂xu)) = f1(u, v) + h, x ∈ [0, L],
∂ttv − ∂x (K2(v, ∂xv)) = f2(u, v), x ∈ [0, L],

u = 0 on {0, L},
v = 0 on {0, L},

(2.23)

where f1(0, 0) = f2(0, 0) = 0, K1,K2 ∈ C∞(R2), and K1(0, 0) = K2(0, 0) = 0. One can check that when
one modifies the recurrence relation in (1.5) to match the new equations, the operators can still be written
using only Jnx (u, v), Jn−1

x (ut, vt) and Jnt (u, v), and thus the compatibility conditions will have the same
form as (1.8).

Indeed, in this case we can still use Li’s results for the perturbed quasilinear system, as we consider
the “perturbations” around 0. This will yield a “universal” time condition, because the propagation speeds
are close to min(

√
∂2K1(0, 0),

√
∂2K2(0, 0)) for the perturbed system. On the other hand if we work

around a nonzero trajectory (return method), the perturbed quasilinear system could present quite smaller
propagation speeds. The final time condition would then depend on the return trajectories that are found.
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Theorem 2.2. Let R > 0, 0 ≤ a < b ≤ L, T > 0 such that

T > 2(L− b) max
((√

∂2K1(0, 0)
)−1

,
(√

∂2K2(0, 0)
)−1

)
,

T > 2amax
((√

∂2K1(0, 0)
)−1

,
(√

∂2K2(0, 0)
)−1

)
.

(2.24)

If
∂f2

∂u
(0, 0) 6= 0, (2.25)

then there exists η > 0 such that for initial and final conditions

((u0, u1), (v0, v1), (uf0 , u
f
1 ), (vf0 , v

f
1 )) ∈ B(C11([0,L])×C10([0,L]))4(0, η)

compatible at the order 11, there exists h ∈ C 6([0, T ]× [0, L]) such that

supp h ⊂ [0, T ]× [a, b], (2.26)

and such that the corresponding solution (u, v) ∈ C 6([0, T ]×[0, L]) of (2.23) with initial values ((u0, u1), (v0, v1))
satisfies {

u(T, · ) = uf0 , ut(T, · ) = uf1 ,

v(T, · ) = vf0 , vt(T, · ) = vf1

and inequality (1.12) holds.

3 A degenerate case: cubic coupling

We now turn to system (1.2). Let us mention a few important specificities of this system. First,
around the equilibrium (0, 0, 0), the linearised system is obviously not controllable:

�ν1u = h,

�ν2v = 0,
u|∂Ω = 0,
v|∂Ω = 0,

(3.1)

the control h gives us no influence on the dynamics ofv.
This fact can also be described as a degenerescence: system (1.2) does not satisfy condition (1.10),

so the coupling can be seen as degenerate. Thus, the computations from the beginning of subsection 2.2
do not hold: we cannot work around the stationary trajectory 0, thus we need to find another trajectory
around which to work. More precisely, keeping in mind Proposition 2.2, we look for a return trajectory
(ū, v̄, h̄) going from 0 to 0 such that for some smooth closed set Q ⊂ [0, T ]× [a, b],we have

∀(t, x) ∈ Q, ∂f2

∂u
(ū(t, x), v̄(t, x)) = 3ū2(t, x) 6= 0. (3.2)

Additionnally, Q will have to satisfy some properties so that a result with two controls can be proved.
To find such a trajectory, we follow the same idea as in [CGR10], where return trajectories are built

for coupled heat equations with a cubic coupling. The additional derivative in time simply adds terms
and makes for heavier computations. However, condition (3.2) will account for additional work.

We will then prove and use a more general controllability result with two controls. After that, the
application of Gromov’s theorem is rather straightforward.
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3.1 A preliminary construction: elementary trajectories

In this subsection, we describe a construction of a smooth trajectory of system (1.2) that goes from 0
to 0. For now we consider condition (3.2) but without any special requirements for Q.

In what follows, we suppose, without loss of generality (by scaling the space variable) that ν2 = 1.
To build trajectories that start at 0 and return there, the idea is to use the cascade structure of the

equation: first we find a C∞([−1, 1]× [0, 1]) function v̄ such that �v̄ is the third power of a C∞([−1, 1]×
[0, 1]) function ū. By setting the right conditions at the start and end times, this gives us a return
trajectory. The corresponding control will then be �ν1 ū.

Let us recall that x 7→ 3
√
x is C∞ on R∗. So, by composition, the cubic root of a C∞ function f is

C∞ at all the points where f is non-zero. At the points where f vanishes, by Taylor’s formula, a fairly
simple sufficient condition for 3

√
f to be C∞ at those points is for f to vanish, along with its first and

second derivatives, while its third derivative is non-zero.
Now, to find functions whose image by the wave operator is a third power of a C∞ function, we

consider the solutions to the corresponding stationary problem, namely functions whose Laplacian is the
third power of a C∞ function. The solution of this problem corresponds to the following proposition,
proven (with 1/2 instead of 3/4) in [CGR10]:

Proposition 3.1 (Coron, Guerrero, Rosier). There exist δ′, δ′′, g ∈ C∞([0, 1]), G ∈ C∞([0, 1]) such that

g′′ = G,
g(z) = 1− z2 on [0, δ′′],
g(z) = e

− 1
1−z2 on [1− δ′, 1),

G(z)
(
z − 3

4

)
> 0 for z ∈ (0, 1) \

{
3
4

}
,

G(z) =
(
z − 3

4

)3
on
[

3
4 −

δ′′

2 ,
3
4 + δ′′

2

]
,

(3.3)

In a sense, this proposition gives us the simplest example of functions the second derivative of which
is the third power of a smooth function: G = g′′ vanishes exponentially in 1, and has only one vanishing
point on [0, 1), around which it has a cubic behaviour. The idea of the construction is then to perturb this
function of space and make it evolve in time, so slightly as to preserve the properties 3.3 of the stationary
problem. Let 0 ≤ a < b ≤ L, and T > 0 such that (1.9) holds.

Let 0 < δ < min(T/2, (b− a)/2) such that (3.4) holds. Set λ0 to be a function such that

λ0(t) = e
−
√

1
t(T−t) ∀t ∈

(
0, δ2

]
∪
[
T − δ

2 , T
)
,

λ0(0) = λ0(T ) = 0,
λ0(t) > 0, ∀t ∈ (0, T ),
λ0([δ, T − δ]) = {1},

(3.4)

and write λ := ελ0 for some ε to be determined.

Remark 3.1. In [CGR10], the authors take

λ(t) = εt2(1− t)2. (3.5)

In our case however, we will see that we need to fit a rectangle of the form [δ, T − δ] × [x0 − ξ, x0 + ξ]
inside the support of ū, see Figure 3. With a polynomial as in (3.5), the smaller δ > 0 gets, the smaller ξ
has to be. This in itself would not be an obstruction to prove our controllability result, but using definition
(3.4) has the advantage to fix the width of the rectangle for all δ satisfying (2.8).
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Set
f0(t) = e−

1
t(t−T ) , ∀t ∈ (0, T ),

f0(0) = f0(T ) = 0,
(3.6)

Finally, let g0 be the solution to the stationary problem (see Proposition 3.1). Let x0 ∈ (0, L), and choose
ε ≤ min(x0, L− x0). We now look for v̄ in the form

v̄(t, x) =
3∑
i=0

fi(t)gi
(
|x− x0|
λ(t)

)
. (3.7)

Note that the fact that f0 vanishes faster than λ at 0 and T compensates the singularity that occurs in
the term |x− x0|/λ(t) of the first term of the sum. We will see that the fi have a similar property, thus
ensuring that functions of the form above are indeed C∞. We also require that the gi satisfy

supp gi ⊂
[

3
4 −

δ′′

2 ,
3
4 + δ′′

2

]
, ∀i ∈ {1, 2, 3}, (3.8)

where δ′′ is as defined in Proposition 3.1, so that

supp (ū, v̄, h̄) ⊂ [0, T ]× [x0 − ε, x0 + ε]. (3.9)

Figure 2: The support of the trajectory (ū, v̄, h̄). The dashed line represents the vanishing points of �v̄
(or, equivalently, ū).

Let us then set, in order to simplify the notations for our computations:

z := |x− x0|
λ(t) ,
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V (t, x) := �v̄ = v̄tt − v̄xx,

which we note, in the new set of variables,

V(t, z) := V (t, λ(t)z).

We are now looking for functions fi and gi such that V 1
3 is of class C∞. In order to achieve this, we

will work with the new set of variables (t, z), and study V. We now need to have precise knowledge of the
behaviour of V when it vanishes.
More precisely, the aim is to write V near 3

4 as:

λ2V =
(
z − 3

4

)3
ϕ(t, z), with ϕ ∈ C∞

(
[0, T ]×

[
3
4 −

δ′′

2 ,
3
4 + δ′′

2

])
, ϕ < 0 for t 6= 0, T.

Note that ϕ has to be negative because of the minus sign in the wave operator. Hence, we look for V
satisfying

Vz
(
· , 3

4

)
= 0,

Vzz
(
· , 3

4

)
= 0,

Vzzz ≤ −Cf0 on [0, T ]×
[

3
4 −

δ′′

2 ,
3
4 + δ′′

2

]
, where C > 0.

Additionally, since we have the following condition on G:

G(z)(z − 3
4) > 0 for z ∈ (0, 1) \ {3

4},

we will make sure to have

V(t, z)
(
z − 3

4

)
< 0, ∀(t, z) ∈ (0, T )×

(
(0, 1) \

{
3
4

})
.

Let us now compute V and its first, second and third derivatives:

v̄tt =
3∑
i=0

f̈igi − 2ḟiz
λ̇

λ
g′i − fi

(
z
λλ̈− 2λ̇2

λ2 g′i − z2
(
λ̇

λ

)2

g′′i

)
,

v̄xx = λ−2f0G+
3∑
i=1

fiλ
−2g′′i .

λ2V = −(1− z2λ̇2)f0G+ λ2f̈0g0 − 2ḟ0zλ̇λg
′
0 − z

(
λλ̈− 2λ̇2) f0g

′
0 +

3∑
i=1

(
λ2f̈igi − 2ḟizλ̇λg′i

−fi
(
z
(
λλ̈− 2λ̇2) g′i − z2λ̇2g′′i

)
− fig′′i

)
= −(1− z2λ̇2)f0G+ λ2f̈0g0 − 2ḟ0zλ̇λg

′
0 − z(λλ̈− 2λ̇2)f0g

′
0 +

3∑
i=1

(
λ2f̈igi − 2ḟizλ̇λg′i

−fi
[
z(λλ̈− 2λ̇2)g′i +

(
1− z2λ̇2) g′′i ]) .

Now, for ε small enough (note that this depends on the value of δ),

1− (εzλ̇0(t))2 >
1
2 , ∀(t, z) ∈ [0, T ]× [0, 1] (3.10)
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and, using the notation λ, ∥∥∥∥∥ 1
1−

( 3
4 λ̇
)2
∥∥∥∥∥

C2([0,T ])

≤ 10. (3.11)

Now, if we impose 
g

(j)
i

(
3
4

)
= 0 ∀i ∈ {1, 2, 3}, j ∈ {0, 1, 2} (i, j) 6= (1, 2)

g
(2)
1

(
3
4

)
= 1

(3.12)

and if we define f1 by

f1 := 1
1− ( 3

4 λ̇)2

(
λ2g0

(
3
4

)
f̈0 − 23

4 λ̇λg
′
0

(
3
4

)
ḟ0 −

3
4(λλ̈− 2λ̇2)g′0(3

4)f0

)
, (3.13)

we get:

λ2V
(
· , 3

4

)
= 0.

We now compute the first derivative of V:

λ2Vz = −(1− z2λ̇2)f0G
′ + (2zλ̇2 − z(λλ̈− 2λ̇2))f0G− 2zλ̇λḟ0G+ λ2f̈0g

′
0 − 2ḟ0λ̇λg

′
0

−(λλ̈− 2λ̇2)f0g
′
0 +

3∑
i=1

λ2f̈ig
′
i − 2ḟizλ̇λg′′i − 2ḟiλ̇λg′i − fi

[
(λλ̈− 2λ̇2)g′i − 2zλ̇2g′′i

]
−fi

[
z(λλ̈− 2λ̇2)g′′i +

(
1− z2λ̇2) g(3)

i

]
= −(1− z2λ̇2)f0G

′ + (4zλ̇2 + zλλ̈)f0G− 2zλ̇λḟ0G+ λ2f̈0g
′
0 − 2ḟ0λ̇λg

′
0 − (λλ̈− 2λ̇2)f0g

′
0

+
3∑
i=1

λ2f̈ig
′
i − 2ḟiλ̇λ(zg′′i + g′i)− fi

[
(λλ̈− 2λ̇2)g′i + z(λλ̈− 4λ̇2)g′′i +

(
1− z2λ̇2) g(3)

i

]
.

Again, we impose

g
(3)
i

(
3
4

)
=
{

0 if i ∈ {1, 3},
1 if i = 2, (3.14)

and we set
f2 := 1

1− ( 3
4 λ̇)2

[
λ2g′0

(
3
4

)
f̈0 − λ̇λg′0

(
3
4

)
ḟ0 − 2λ̇λg0

(
3
4

)
ḟ0

−(λλ̈− 2λ̇2)g′0
(

3
4

)
f0 − 23

4 λ̇λḟ1 −
3
4(λλ̈− 4λ̇2)f1

] (3.15)

so that
λ2Vz

(
· , 3

4

)
= 0.

Finally,

λ2Vzz = −(1− z2λ̇2)f0G
′′ + (6zλ̇2 + zλλ̈)f0G

′ − 2zλ̇λḟ0G
′ + 6λ̇2f0G− 4λ̇λḟ0G+ λ2f̈0G

+
3∑
i=1

λ2f̈ig
′′
i − 2ḟiλ̇λ(2g′′i + zg

(3)
i )− fi

[(
2λλ̈− 6λ̇2) g′′i + z(λλ̈− 6λ̇2)g(3)

i +
(
1− z2λ̇2) g(4)

i

]
.

Again we impose

g
(4)
i

(
3
4

)
=
{

0 if i ∈ {1, 2},
1 if i = 3, (3.16)
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then, by setting:

f3 = 1
1− ( 3

4 λ̇)2

[
−(2λλ̇+ 2λ̇2)f1 − 4λλ̇ḟ1 + λ2f̈1 −

3
4(λλ̈− 6λ̇2)f2 − 23

4 λ̇λḟ2

]
(3.17)

we get:

λ2Vzz
(
· , 3

4

)
= 0.

Now all that remains is to estimate the third derivative: on [0, T ] ×
[

3
4 −

δ′′

2 ,
3
4 + δ′′

2

]
, by definition

of G, we have
λ2Vzzz = −6K 3

4
(1− z2λ̇2)f0 +R0 +R, (3.18)

with:
R0 := z(8λ̇2 + λ̈λ)f0G

′′ − 2zλ̇λḟ0G
′′ + (12λ̇2 + λλ̈)f0G

′ − 6λ̇λḟ0G
′ + λ2f̈0G

′, (3.19)

and

R :=
3∑
i=1

λ2f̈ig
(3)
i − 2ḟiλ̇λ(3g(3)

i + zg
(4)
i )− fi

[
(3λ̈λ− 12λ̇2)g(3)

i + (zλλ̈− 8zλ̇2)g(4)
i + (1− z2λ̇2)g(5)

i

]
.

(3.20)
Let us note that (3.6), combined with the properties of exponential functions, yields(

d

dt

)n
f0 = Fn(t)f0(t), ∀n ∈ N, (3.21)

where the Fn are rational fractions, the poles of which are 0 and T . Now, one can see in (3.19), (3.13),
(3.15) and (3.17) that the divergent behaviour of these fractions near 0 and T is always compensated by
the exponential behaviour of λ and its derivatives. Furthermore, differentiating the fi does not change
this fact. Hence, keeping (3.11) in mind:

R0 = ε2O(f ; t, z),

f
(n)
1 = ε2O(f0; t), ∀n ∈ N,

f
(n)
2 = ε2O(f0; t), ∀n ∈ N,

f
(n)
3 = ε4O(f0; t), ∀n ∈ N,

(3.22)

where the notation O(f ; t) (resp. O(f ; t, z)) means f times a bounded function of time on [0, T ] (resp.
time and space). Hence, near 3

4A, we have

R0 +R = ε2O(f0; t, z), (3.23)

the dominant term being f̈1(1 − z2λ̇2)g(5)
i . Consequently, using (3.18) and (3.23), for a small enough ε,

there exists a constant C > 0 such that:

λ2Vzzz ≤ −Cf0 on
[

3
4 −

δ′′

2 ,
3
4 + δ′′

2

]
. (3.24)

Thus, on [0, T ]×
[

3
4 −

δ′′

2 ,
3
4 + δ′′

2

]
, we can write, thanks to the Taylor-Laplace formula:

λ2V =
(
z − 3

4

)3
ϕ(t, z), with ϕ ∈ C∞

(
[0, T ]×

[
3
4 −

δ′′

2 ,
3
4 + δ′′

2

])
, ϕ < 0 for t 6= 0, T.
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Additionally, by definition of f0, ϕ/λ2 vanishes exponentially for t = 0, T , and (3.8) ensures that ϕ
vanishes exponentially for z = 1, so that( ϕ

λ2

) 1
3 ∈ C∞

(
[0, T ]×

[
3
4 −

δ′′

2 ,
3
4 + δ′′

2

])
.

We now have
V 1

3 ∈ C∞
(

[0, T ]×
[

3
4 −

δ′′

2 ,
3
4 + δ′′

2

])
(3.25)

Moreover, on [0, T ]×
([

0, 3
4 −

δ′′

2

)
∪
(

3
4 −

δ′′

2 , 1
])

, thanks to the constraint on the supports of the

gi, we have:
λ2V = −(1− z2λ̇2)f0G+ λ2f̈0g0 − 2ḟ0zλ̇λg

′
0 − z

(
λλ̈− 2λ̇2) f0g

′
0︸ ︷︷ ︸

ε2O(f0;t,x)

. (3.26)

As, thanks to Proposition 3.1, we have

|G| > 2 on
[
0, 3

4 −
δ′′

2

]
∪
[

3
4 + δ′′

2 , 1− δ
′
]
,

for small enough ε, we have:

|λ2V| > 0 on ]0, T [×
([

0, 3
4 −

δ′′

2

]
∪
[

3
4 + δ′′

2 , 1− δ
′
])

.

Now, let us recall that, on [1− δ′, 1),

g0(z) = e
− 1

1−z2 ,

g′0(z) = −2z
(1− z2)2 e

− 1
1−z2 ,

G(z) = g′′0 (z) = 6z4 − 2
(1− z2)4 e

− 1
1−z2 ,

So that g0/G and g′0/G are bounded near 1, allowing us to write

λ2V = −f0G+ ε2O(f0; t)O1−(G; z). (3.27)

The notation O1−(G; z) meaning G times a bounded function of space on [1− δ′, 1]. So for small enough
ε, there exists a function a with positive values on ]0, T [, such that

λ2V(t, z) ≤ −a(t)G(z) < 0, ∀(t, z) ∈ (−0, T )× [1− δ′, 1).

Finally, for all t ∈ [0, T ], V(t, · ) vanishes exponentially at z = 1, and for all z ∈ [1 − δ′, 1], V( · , z)
vanishes exponentially for t = 0, T . Hence,

V 1
3 ∈ C∞

(
[0, T ]×

([
0, 3

4 −
δ′′

2

)
∪
(

3
4 + δ′′

2 , 1
]))

. (3.28)

This, together with (3.25), proves that

V 1
3 ∈ C∞ ([0, T ]× [0, 1]) . (3.29)

Now, as x 7→ |x| is C∞ on R \ {0}, by composition we deduce from (3.29) that

V
1
3 ∈ C∞ ([0, T ]× ((0, L) \ {x0})).
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To deal with the missing point x0, let us recall that for all t ∈] − 1, 1[, for all x ∈ [0, L] such that
|x− x0| ≤ δ′′λ(t) (i.e. z ≤ δ′′),

λ2V(t, z) = −f0G+ λ2f̈0g0 − 2ḟ0zλ̇λg
′
0 − z

(
λλ̈− 2λ̇2) f0g

′
0 + z2λ̇2f0G

= 2f0 + f̈0(λ2 − |x− x0|2) + 4ḟ0
λ̇

λ
|x− x0|2 + 2

(
λ̈

λ
− 2

(
λ̇

λ

)2)
f0|x− x0|2 − 2

(
λ̇

λ

)2

f0|x− x0|2

= 2f0 + λ2f̈0 + ψ(t)|x− x0|2,
(3.30)

where ψ ∈ C∞([0, T ]), and ψ vanishes exponentially for t = 0, T , along with all its derivatives.
We now see that the terms in |x−x0| of V are actually in |x−x0|2, which compensates the singularity at 0
of the map x 7→ |x|. Thus, from the smoothness of V 1

3 we get, by composition, V 1
3 ∈ C∞ ([0, T ]× [0, L]).

Thus we have proved that, by chosing gi that verify (3.8), (3.12), (3.14) and (3.16), we get

V
1
3 ∈ C∞ ([0, T ]× [0, L]) .

Finally, we set

v̄(x, t) :=
3∑
i=0

fi(t)gi
(
|x− x0|
λ(t)

)
,

ū := (�v̄) 1
3 ,

h̄ := �ū.

where λ is defined by (3.4), the gi are some functions satisfying (3.8), (3.12), (3.14), and (3.16), and the
fi are defined by (3.6), (3.13), (3.15), and (3.17).

Let us check that we have indeed built a return trajectory: for i ∈ {0, · · · , 3}, the fi vanish at −1 and
1, along with all their derivatives. Hence,

ū(−1, · ) = v̄(−1, · ) = ūt(−1, · ) = v̄t(−1, · ) = 0,

ū(1, · ) = v̄(1, · ) = ūt(1, · ) = v̄t(1, · ) = 0.

Remark 3.2. Most of the work in the construction above comes from the vanishing points (t, (3/4)λ(t))
“in the middle of the domain”. So one could wonder, would it not be simpler to try and build a function
that only vanishes, along with all its derivatives, at the points (t, λ(t))?

Let us remind that our strategy to build the return trajectory is to start from a solution to the stationary
problem, and then make it evolve through time so as to stay “not too far away from it”. But the reason we
have vanishing points “in the middle of the domain” has to do with that same stationary problem. More
precisely, the stationary problem consists in finding functions that vanish, along with their derivatives, on
the boundary of the domain. In our case this condition corresponds to

g(z) = e
− 1

1−z2 on [1− δ′, 1]. (3.31)

We further require that the Laplacians of these functions be third powers of C∞ functions. In our case
this condition becomes

G(z)
(
z − 3

4

)
> 0,

G(z) =
(
z − 3

4

)3
on

[
3
4 −

δ′′

2 ,
3
4 + δ′′

2

]
.

Now, we could instead demand that G be non-negative (or non-positive). But then, by convexity
arguments (or Hopf’s maximum principle), we would get

g′(1) < 0,
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Which contradicts condition (3.31). But that condition is very helpful in proving the smoothness of
V 1

3 near the boundary. Giving it up would mean setting more conditions on the gi functions near the
boundary, so we would have to give up condition (3.8), and then set additional conditions on the gi to
make sure V is well defined (as λ(0) = λ(T ) = 0), preserve the sign of V or more generally its smoothness,
in particular near the boundary...Which would probably be more trouble than what we had to do at the
vanishing points (t, (3/4)λ(t)).

3.2 Covering sets and return trajectories

As mentioned at the beginning of this section, we want to work on a smooth subset of [0, T ] × [a, b]
where u 6= 0. However, to do so we need more than the elementary trajectory described above: rather,
we use the elementary trajectory as a building block for our final return trajectory. Indeed, let 0 < δ <
min ((b− a)/4, T/2) such that (2.8) is satisfied. The preliminary construction gives us a real number ε > 0
(after the right rescaling of the space variable) and, for any x0 ∈ [a+ δ+ ε, b− δ− ε], a trajectory (ū, v̄, h̄)
such that ū 6= 0 on Λε,x0 := {(t, x) | |x − x0| < (3/4)ελ0(t)}, which contains any rectangle of the form
[δ, T − δ]× [x0 − ξ, x0 + ξ] with ξ < (3/4)ε. Moreover, each of these rectangles can be fit into the interior
of a smooth closed subset of Λε,x0 .

Figure 3: The support of the preliminary construction with a rectangle fit inside the line of vanishing
points of ū.

Now there are cases (if [a, b] is too long and ε - and consequently, ξ - too small), where none of the
rectangles [δ, T − δ]× [x0 − ξ, x0 + ξ] satisfies the Geometric Control Condition (GCC). Thus we cannot
apply Proposition 2.1 with controls supported in some [δ, T − δ]× [x0− ξ, x0 + ξ], as time condition (3.52)
does not hold in these cases. So we need to build a return trajectory (ū, v̄, h̄) such that ū 6= 0 on a smooth
closed set Q containing a set Qδ that satisfies the GCC.

Now there is a simple type of set that would fit our needs for Qδ: in Section 2 we worked in [δ, T −
δ]× [a+ δ, b+ δ], but we do not need the whole rectangle in general for the GCC to be satisfied. We can
in fact work with a number of much smaller rectangles, as long as they are close enough to each other:

Definition 3.1. Let 0 < δ < min ((b− a)/4, T/2), such that (2.8) is satisfied. A δ-covering set of
[0, T ]× [a, b] for system (1.1) is a union of rectangles of the form {[δ, T − δ]× [ai, bi], 1 ≤ i ≤ N} for some
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N ≥ 1, such that
a1 = a+ δ,

bN = b− δ,

0 < (ai+1 − bi) max
(

1
ν 1
,

1
ν 2

)
< T − 2δ, 1 ≤ i ≤ N − 1.

(3.32)

Figure 4: An example of a δ-covering set.

Now the idea is to add the elementary trajectories obtained by the preliminary construction on disjoint
supports centered in xi ∈ [a+ δ + ε, b− δ − ε], that are close enough, and with a small enough ε so that
the rectangles [δ, T − δ]× [x0− ε/2, x0 + ε/2] form a δ-covering set. Take ε0 ≤ (b−a−2δ)/2 small enough
for the preliminary construction to work, and such that ε0 max (1/ν1, 1/ν2) < T − 2δ. We then define the
following sequence: take N ∈ N large enough so that

ε := b− a− 2δ
2N − 1 ≤ ε0

and define, for 1 ≤ i ≤ N ,

xi := a+ δ +
(

2i− 3
2

)
ε,

and (ūi, v̄i, h̄i) the trajectory obtained by the preliminary construction corresponding to the chosen ε,
centered in xi. Let Qi be a smooth closed subset of Λε,xi containing [δ, T − δ]× [xi − ε/2, xi + ε/2] in its
interior. Then,

Qδ :=
N⋃
i=1

[δ, T − δ]× [xi − ε/2, xi + ε/2]

is a δ-covering set,

Q :=
(⋃

i

Qi

)

is a smooth closed set such that Qδ ⊂
◦
Q, and we can define

(ū, v̄, h̄) :=
N∑
i=1

(ūi, v̄i, h̄i), (3.33)
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which is supported in [0, T ]× [a, b], and satisfies (3.2).

Figure 5: Putting elementary trajectories side by side. The rectangles form a covering set.

3.3 Local controllability with two controls and Gromov inversion

We now have our return trajectory (ū, v̄, h̄). Now let R > 0, and notice that for all κ > 0, (κū, κ3v̄, κh̄)
is also a return trajectory, with the same support. Thus, we can now suppose without loss of generality,
that

‖(ū, v̄, h̄)‖(C11)3 ≤ R

2 . (3.34)

Let u, v ∈ Ck([0, T ]× [0, L]), h1, h2 ∈ Ck−2([0, T ]× [0, L]). Let us consider the trajectory (ū+ u, v̄ + v),
controlled by (h̄+ h1, h2), we get the following control system for u and v:

�ν1u = h1,

�ν2v = u3 + 3ūu2 + 3ū2u+ h2,

u( · , 0) = 0,
u( · , L) = 0,
v( · , 0) = 0,
v( · , L) = 0.

(3.35)

This is a coupled semilinear system with a source term, and falls in the category of systems (2.7). The
aim of this section is to prove the following proposition:

Proposition 3.2. Let k ≥ 2, 0 ≤ a < b ≤ L, T > 0 such that

T > 2(L− b) max
(

1
ν1
,

1
ν2

)
, T > 2amax

(
1
ν1
,

1
ν2

)
.
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For every 0 < δ < min (T/2, (b− a)/2) satisfying (2.8), for every δ-covering set Qδ of [0, T ]× [a, b], there
exists η > 0 and constants C1, C2 > 0 depending on T, δ, k such that, for initial and final values

((u0, u1), (v0, v1), (uf0 , u
f
1 ), (vf0 , v

f
1 )) ∈

(
BCk([0,T ]×[0,L])(0, η)×BCk−1([0,T ]×[0,L])(0, η)

)4
satisfying (1.8) at the order k, there exist controls h1, h2 ∈ Ck−1([0, T ]× [0, L]) satisfying

supp hi ⊂ Qδ, i = 1, 2, (3.36)

‖hi‖Ck−2 ≤ C1‖((u0, u1), (v0, v1), (uf0 , u
f
1 ), (vf0 , v

f
1 ))‖(Ck×Ck−1)4 , i = 1, 2, (3.37)

such that the corresponding solution of (2.7) with initial values ((u0, u1), (v0, v1)) satisfies{
u(T, · ) = uf0 , ut(T, · ) = uf1 ,

v(T, · ) = vf0 , vt(T, · ) = vf1 .
(3.38)

‖(u, v)‖(Ck)2 ≤ C2‖((u0, u1), (v0, v1), (uf0 , u
f
1 ), (vf0 , v

f
1 ))‖(Ck×Ck−1)4 . (3.39)

Remark 3.3. It is clear, by Definition 3.1, that for any 0 < δ < min ((b− a)/4, T/2) such that (2.8)
is satisfied, [δ, T − δ] × [a + δ, b − δ] is a δ-covering set of [0, T ] × [a, b]. Thus Proposition 3.2 implies
Proposition 2.1.

To prove this proposition, we use the following propositions, which are particular cases of more general
quasilinear results proved in [LR03] (see also [Li10, chapter 5, sections 5.3 and 5.4]):

Proposition 3.3 (two–sided control). Let k ≥ 2, L > 0, T > 0, F ∈ C∞(R2,R2), ν1, ν2 > 0. If

T > Lmax
(

1
ν1
,

1
ν2

)
,

then there exists η > 0 and a constant C > 0 depending on T, k, such that for any initial and final values

(U0, U1, U
f
0 , U

f
1 ) ∈ B(Ck([0,L])2×Ck−1([0,L])2)2(0, η)

there exist controls H1 and H2 ∈ Ck([0, T ],R2) satisfying compatibility conditions

P fin,i
(
Jnx (U0)(0), Jn−1

x (U1)(0), (0, · · · , 0)
)

= ∂nt H1i(0),

P fin,i
(
Jnx (U0)(L), Jn−1

x (U1)(L), (0, · · · , 0)
)

= ∂nt H2i(0),

P fin,i

(
Jnx (Uf0 )(0), Jn−1

x (Uf1 )(0), (0, · · · , 0)
)

= ∂nt H1i(T ),

P fin,i

(
Jnx (Uf0 )(L), Jn−1

x (Uf1 )(L), (0, · · · , 0)
)

= ∂nt H2i(T ),

∀n ≤ k, i = 1, 2. (3.40)

such that the solution to the vector system

∂ttU −
(
ν2

1 0
0 ν2

2

)
∂xxU = F (U), x ∈ (0, L)

U(t, 0) = H1,

U(t, L) = H2,

U(0) = U0,

Ut(0) = U1,

(3.41)

satisfies {
U(T ) = Uf0 ,

Ut(T ) = Uf1 ,

‖U‖Ck ≤ C‖(U0, U1), (Uf0 , U
f
1 )‖(Ck×Ck−1)2 . (3.42)
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Proposition 3.4 (one-sided control). Let k ≥ 2, L > 0, T > 0, F ∈ C∞(R2,R2), ν1, ν2 > 0. If

T > 2Lmax
(

1
ν1
,

1
ν2

)
,

then there exists η > 0 and a constant C > 0 depending on T, k, such that for any initial and final values

(U0, U1, U
f
0 , U

f
1 ) ∈ B(Ck([0,L])2×Ck−1([0,L])2)2(0, η)

there exists a control H ∈ Ck([0, T ],R2) satisfying compatibility conditions

P fin,i
(
Jnx (U0)(0), Jn−1

x (U1)(0), (0, · · · , 0)
)

= ∂nt Hi(0) (resp. 0),

P fin,i
(
Jnx (U0)(L), Jn−1

x (U1)(L), (0, · · · , 0)
)

= 0 (resp.∂nt Hi(0)),

P fin,i

(
Jnx (Uf0 )(0), Jn−1

x (Uf1 )(0), (0, · · · , 0)
)

= ∂nt Hi(T ) (resp. 0),

P fin,i

(
Jnx (Uf0 )(L), Jn−1

x (Uf1 )(L), (0, · · · , 0)
)

= 0 (resp.∂nt Hi(T )),

∀n ≤ k, i = 1, 2. (3.43)

such that the solution to the vector system

∂ttU −
(
ν2

1 0
0 ν2

2

)
∂xxU = F (U), x ∈ (0, L),

U(t, L) = 0 (resp. U(t, L) = H(t)),
U(t, 0) = H, (resp. U(t, 0) = 0),
U(0) = U0,

Ut(0) = U1,

(3.44)

satisfies {
U(T ) = Uf0 ,

Ut(T ) = Uf1 ,

‖U‖Ck ≤ C‖(U0, U1), (Uf0 , U
f
1 )‖(Ck×Ck−1)2 . (3.45)

Proof of Proposition 3.2. Let us note

Qδ =
⋃

1≤i≤N
[δ, T − δ]× [ai, bi],

for some N ≥ 1. for every 1 ≤ i ≤ N − 1, let 0 < δi < min((bi+1 − ai+1)/2, (bi − ai)/2) such that

T − 2δi > (ai+1 − bi + 4δi) max
(

1
ν1
,

1
ν2

)
. (3.46)

Thanks to Propositions 3.3 and 3.4, Definition 3.1 and conditions (2.8) and (3.46), there exists η > 0 such
that for initial and final values

((u0, u1), (v0, v1), (uf0 , u
f
1 ), (vf0 , v

f
1 )) ∈

(
BCk([0,L])(0, η)×BCk−1([0,L])(0, η)

)4
satisfying (1.8),

• There exist boundary controls u(i)
1 , u

(i)
2 ∈ Ck([0, T − 2δ]) at bi− δi and ai+1 + δi that steer (u, v) on

[bi − δi, ai+1 + δi] from (y0, y1)|[bi−δi,ai+1+δi] to (z0, z1)|[bi−δi,ai+1+δi].
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Figure 6: Using boundary control results outside of the covering set.

• There exist two boundary controls u1, u2 ∈ Ck([0, T − 2δ]) at a+ 2δ and b− 2δ that steer (u, v) on
[0, a + 2δ] from (y0, y1)|[0,a+2δ] to (z0, z1)|[0,a+2δ], and from (y0, y1)|[b−2δ,L] to (z0, z1)|[b−2δ,L] while
satisfying the boundary conditions of the system at 0 and L.

We note δ0 = δN := δ, and (u∗, v∗) the corresponding trajectory on [0, a+ 2δ]∪ [b− 2δ, L]∪
⋃

1≤i≤N−1
[bi −

δi, ai+1 + δi]. Then, (3.45) and (3.42) imply

‖(u∗, v∗)‖Ck ≤ C‖(u0, u1), (v0, v1), (uf0 , u
f
1 ), (vf0 , v

f
1 )‖(Ck×Ck−1)4 (3.47)

for some constant C > 0.
On the other hand, for η > 0 small enough, for initial and final conditions

((u0, u1), (v0, v1), (uf0 , u
f
1 ), (vf0 , v

f
1 )) ∈

(
BCk([0,T ]×[0,L])(0, η)×BCk−1([0,T ]×[0,L])(0, η)

)4
,

for 1 ≤ i ≤ N the forward evolving solutions
(
u

(i)
f , v

(i)
f

)
of the vector equations

�ν1u = f1(ū+ u, v̄ + v)− f1(ū, v̄),
�ν2v = f2(ū+ u, v̄ + v)− f2(ū, v̄),

(u, v)(t, ai) = (u, v)(t, bi) = (0, 0),
(u, v)(0, · ) = (u0|[ai,bi], v0|[ai,bi]),

(u, v)t(0, · ) = (u1|[ai,bi], v1|[ai,bi]).

,

are defined on [0, T − 2δ] × [ai, bi]. Let us also note
(
u

(i)
b , v

(i)
b

)
the backward evolving solutions of the
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vector equations on [0, T − 2δ]× [ai, bi]

�ν1u = f1(ū+ u, v̄ + v)− f1(ū, v̄),
�ν2v = f2(ū+ u, v̄ + v)− f2(ū, v̄),

(u, v)(t, ai) = (u, v)(t, bi) = (0, 0),

(u, v)(T − 2δ, ·) = (uf0|[ai,bi], v
f
0|[ai,bi]),

(u, v)t(T − 2δ, · ) = (uf1|[ai,bi], v
f
1|[ai,bi]).

Then we define (ũ, ṽ) by

(ũ, ṽ) =
(
u

(i)
f , v

(i)
f

)
φ+

(
u

(i)
b , v

(i)
b

)
(1− φ), on [ai, bi],∀i ≤ N,

where φ is a time cut-off function such that

φ(0) = 1, φ(T − 2δ) = 0.

Note that, by well-posedness of the Cauchy problems, there exists C ′ > 0 such that the norm of (ũ, ṽ)
satisfies

‖(ũ, ṽ)‖(Ck)2 ≤ C ′‖(u0, u1), (v0, v1), (uf0 , u
f
1 ), (vf0 , v

f
1 )‖(Ck×Ck−1)4 . (3.48)

Finally, let us define (u∗∗, v∗∗) by smoothly extending (u∗, v∗) on
⋃

1≤i≤N
[ai + δi−1, bi − δi] with

‖(u∗∗, v∗∗)‖(Ck)2 ≤ C ′′‖(u∗, v∗)‖Ck , (3.49)

where C ′′ is a constant depending on the ai, bi. Then, we define (u, v) by

(u, v) = ξ(u∗∗, v∗∗) + (1− ξ)(ũ, ṽ),

where ξ is a space cut-off function satisfying

ξ = 1 on [0, a+ δ] ∪ [b− δ, L] ∪
⋃

1≤i≤N−1
[bi, ai+1],

ξ = 0 on
⋃

1≤i≤N
[ai + δi−1, bi − δi].

Then, by construction, we have
u(0, · ) = u0, v(0, · ) = v0,

ut(0, · ) = u1, vt(0, · ) = v1,

u(T − 2δ, · ) = uf0 , v(T − 2δ, · ) = vf0 ,

ut(T − 2δ, · ) = uf1 , vt(T − 2δ, · ) = vf1 ,

and

supp (�ν1u− f1(ū+ u, v̄ + v)− f1(ū, v̄)) ⊂ Qδ,
supp (�ν2v − f2(ū+ u, v̄ + v)− f2(ū, v̄)) ⊂ Qδ,

Finally, (3.47), (3.48) and (3.49) imply that there exists a constant C2 > 0 such that (3.39) holds, and,
by continuity of the fi, noting

hi := �νiu− fi(ū+ u, v̄ + v)− fi(ū, v̄), i = 1, 2,

there exists a constant C1 > 0 such that (3.37) holds.
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Now, we define
A =

{
(u, v, h) ∈

(
C 2(Q)

)3 | ∀(t, x) ∈ Q, u(t, x) 6= 0
}
,

which is clearly nonempty, and

∀(u, v, h) ∈ C 2(Q)3,D(u, v, h) =
(
�ν1u− h,�ν2v − u3) .

Then, we have the following proposition, similar to Proposition 2.2:

Proposition 3.5. D admits an infinitesimal inversion of order 2 over A.

Moreover, thanks to (3.33) and (3.2),

Proposition 3.6.
(ū, v̄, h̄)|Q ∈ A.

Now, we can use Theorem 2.1: there exists η > 0 such that for initial and final conditions

((u0, u1), (v0, v1), (uf0 , u
f
1 ), (vf0 , v

f
1 )) ∈

(
BC11([0,L])(0, η)×BC10([0,L])(0, η)

)4
the corresponding trajectories of system (3.35) with two controls u∗, v∗, h1, h2 are small enough in (C 11)2×
(C 9)2 norm so that D can be inverted locally around (ū + u∗, v̄ + v∗, h̄), and so that, by the continuity
property, (u, v, h) := D−1

(ū+u∗,v̄+v∗,h̄)(θ1, θ2) satisfies

‖(u− ū, v − v̄, h− h̄)‖(C6)3 ≤ R

2 . (3.50)

Together with (3.34), this yields
‖(u, v, h)‖(C6)3 ≤ R. (3.51)

This proves the following local controllability result:

Theorem 3.1. Let R > 0, and 0 ≤ a < b ≤ L, T > 0 such that

T > 2(L− b) max
(

1
ν1
,

1
ν2

)
, T > 2amax

(
1
ν1
,

1
ν2

)
. (3.52)

There exists η > 0 such that for given initial and final conditions

((u0, u1), (v0, v1), (uf0 , u
f
1 ), (vf0 , v

f
1 )) ∈

(
BC11([0,L])(0, η)×BC10([0,L])(0, η)

)4
satisfying (1.8), there exists h ∈ C 6([0, T ]× [0, L]) satisfying

supp h ⊂ [0, T ]× [a, b].

such that the corresponding solution (u, v) ∈ C 6([0, T ]×[0, L]) of (1.2) with initial values ((u0, u1), (v0, v1))
satisfies {

u(T, · ) = uf0 , ut(T, · ) = uf1 ,

v(T, · ) = vf0 , vt(T, · ) = vf1

and (3.51) holds.

Now let (u0, u1, v0, v1, u
f
0 , u

f
1 , v

f
0 , v

f
1 ) ∈

(
C 11([0, L])× C 10([0, L])

)4 such that (1.8) is satisfied. Let us
note

M := ‖(u0, u1, u
f
0 , u

f
1 )‖(C11×C10)2 + ‖(v0, v1, v

f
0 , v

f
1 )‖

1
3
(C11×C10)2 ,
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and α := η

2M . Then,

‖αu0‖C11 ≤ η, ‖αu1‖C10 ≤ η, ‖αuf0‖C11 ≤ η, ‖αuf1‖C10 ≤ η,

‖α3v0‖C11 ≤ η, ‖α3v1‖C10 ≤ η, ‖α3vf0 ‖C11 ≤ η, ‖α3vf1 ‖C10 ≤ η,

and these functions satisfy (1.8). We can now apply Theorem 3.1, and for any support and time T > 0 com-
patible with that support, we get (u, v, h) with initial and final conditions (αu0, αu1, αu

f
0 , αu

f
1 , α

3v0, α
3v1, α

3vf0 , α
3vf1 )

such that 
�ν1u = h,

�ν2v = u3,

u|∂Ω = 0,
v|∂Ω = 0.

Then we also have 
�ν1α

−1u = α−1h,

�ν2α
−3v = (α−1u)3,

α−1u(0) = α−1u(L) = 0,
α−3v(0) = α−3v(L) = 0,

Thus, α−1h steers (u0, u1, v0, v1) to (uf0 , u
f
1 , v

f
0 , v

f
1 ) in T .

Finally, to get estimate (1.14), recall (3.51)

‖h‖C6 ≤ R,

hence, in terms of the original control system,

‖α−1h‖C6 ≤ α−1R

≤ 2R
η

(
‖(u0, u1, u

f
0 , u

f
1 )‖(C11×C10)2 + ‖(v0, v1, v

f
0 , v

f
1 )‖

1
3
(C11×C10)2

)
.

This proves Theorem 1.2.

3.4 A general criterion for internal controllability
Let us now give a general definition, which gives the main criterion our return trajectories must fulfill to
apply our method:

Definition 3.2. A suitable return trajectory for time T > 0 is a trajectory (ū, v̄, h̄) ∈ C 11([0, T ]× [0, L])3

of system (1.1), such that
ū(0, ·) = 0, v̄(0, ·) = 0,
ūt(0, ·) = 0, v̄t(0, ·) = 0,
ū(T, ·) = 0, v̄(T, ·) = 0,
ūt(T, ·) = 0, v̄t(T, ·) = 0,

supp (ū, v̄, h̄) ⊂ [0, T ]× [a, b],

D(ū, v̄, h̄) = (0, 0),

and such that there exists 0 < δ < min (T/2, (b− a)/2) satisfying (2.8), a δ-covering set Qδ, a smooth
closed set Q such that Qδ ⊂

◦
Q such that

∀(t, x) ∈ Q, ū(t, x) 6= 0.
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We can now give a general statement to sum up our work on system (1.2):

Proposition 3.7. Let 0 ≤ a < b ≤ L, and T > 0 such that (1.9) holds. Suppose condition (1.10) does
not hold. If one can find a suitable return trajectory, then system (1.1) is locally controllable in time T
for

(
C 11 × C 10)4 initial and final conditions, with C 6 trajectories, and with a C 6 control supported in

[0, T ]× [a, b].

4 Further questions

4.1 Regularity

Our method requires somewhat specific regularities: C 11 (C 10 for the time-derivative) for the initial
and final data. As is often the case when using a Nash-Noser scheme, these regularities are probably not
optimal. However, if we require for example Ck regularity for the control, k ≥ 2, the initial and final data
have to be at least one notch smoother. Indeed, note

w := ut − ν1ux,

and consider to the following computation, where one requires the control and the trajectories to be Ck:

d

dt
w(t, x− ν1t) = wt − ν1wx

= wt + ν1wx − 2ν1wx
= h(t, x− ν1t)− 2ν1(utx − ν1uxx)

= h(t, x− ν1t)− 2ν1
d

dt
ux(t, x− ν1t),

hence, for a fixed t > 0 and for characteristics going from {0} × [0, L] to {t} × [0, L],∫ t

0
h(s, x− ν1s)ds = ut(t, x− ν1t)−u1(x)− ν1ux(t, x− ν1t) + ν1u

′
0(x)−2ν1(ux(t, x− ν1t)−u′0(x)). (4.1)

Now the left-hand side of (4.1) is of class Ck, so we need to upgrade the regularity of u0 to Ck+1, and that
of u1, x 7→ ux(t, x) and x 7→ ut(t, x) to Ck. This shows a partial derivative loss (in the space dimension)
between the trajectory and the control, and, taking t = T , a derivative loss between the initial and final
data for u, and the control.

For linear cascade systems with smooth coefficients, the same procedure can be repeated on the second
equation to establish similar losses of derivatives, showing that because u has increased spatial regularity,
the initial and final data for v have to be Ck+2 × Ck+1. Note that with two controls, this would not be
the case, as each control “absorbs” the loss of derivatives in each equation.

Furthermore, it would be interesting to consider other iteration schemes such as the one presented in
[Cor07], section 4.2.1, where one considers the following linear system:{

�u = f1(0, 0) + gv1(a, b)v + gu1 (a, 0)u+ h

�v = f2(0, 0) + gv2(0, b)v + gu2 (a, b)u,
(4.2)

where, for i ∈ {1, 2},

gui (u, v) =


fi(u, v)− fi(0, v)

u
for u 6= 0

∂ufi(0, v) for u = 0.

gvi (u, v) =


fi(u, v)− fi(u, 0)

v
for v 6= 0

∂vfi(u, 0) for v = 0.
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Then, by superposition one can restrict to the study of{
�u = h

�v = gu2 (a, b)u.
(4.3)

But ultimately, this only shifts the problem of the Ck regularity gap between data and control, although
we now have a linear system instead of a semilinear one.

On the other hand, it is now well known that in some cases, results that were obtained using the Nash-
Moser iteration scheme can also be obtained through more classical iteration schemes, see for example the
works of Matthias Gunther ([G8̈9], [G9̈1]). It would be interesting to know if a similar do-over is possible
for our result.

Finally, it would be interesting to investigate a Hk version of this result, using other versions of the
Nash-Moser implicit function theorem.

4.2 Other degenerate couplings

Our scheme of proof also allows to prove a controllability result for systems of the form
�ν1u = G(u, v) + h, G ∈ C∞(R2),
�ν2v = u3,

u|∂Ω = 0,
v|∂Ω = 0.

(4.4)

Indeed, this simply adds a term in the definition of h̄ when we build our return trajectory. However,
h̄ is no longer supported in [0, T ] × [a, b]. The other steps remain unchanged, as the additional G term
does not prevent the differential operator D from being algebraically solvable. So we get a local internal
controllability result with the same time conditions, but no condition on the support of the control.
Finally, if G is homogeneous of degree 1, we can use the scaling argument to deduce a global result.

In addition to adding a coupling term to the first equation, we can also change the power of the
coupling term in the second equation. There are two cases:

1. Even powers As such, our method cannot work for even powers: indeed, u2k has nonnegative values.
In particular, by the same convexity argument as in Remark 3.2, solutions to the stationary problem
cannot vanish smoothly in 1. So the perturbative approach would allow us to build smooth return
trajectories only if u (and thus h) is spatially supported in all of [0, L].
Another way of answering this question would be to switch to complex values, as is done in the
appendix of [CGR10] for the quadratic case.

2. Odd powers Thanks to Proposition 3.7, we know that the part that requires the most work is the
construction of return trajectories: say the power of the coupling is 2k + 1, k ∈ N∗, in order to
control all the derivatives of v up to 2k + 1, we would have to look for v in the form

2k+1∑
i=0

fi(t)gi

(
|x− b+a

2 |
λ

)
.

This would call for ever longer computations, and for now there is no indication that there might
or might not be new difficulties with these additional terms.
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4.3 Boundary controllability

In this article we have explored a method to prove internal controllability with one control. However,
to our knowledge there is no result for boundary controllability with one control for the type of system we
have been studying. Although boundary controllability is relatively easy to establish for simple equations,
or when there are the same number of controls and equations, we cannot use results on the inversion of
differential operators to reduce the number of controls.
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