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ABSTRACT

In this paper we propose a novel framework for compres-

sive sampling reconstruction of biomedical ultrasonic images

based on the Approximate Message Passing (AMP) algo-

rithm. AMP is an iterative algorithm that performs image

reconstruction through image denoising within a compressive

sampling framework. In this work, our aim is to evalu-

ate the merits of several combinations of a denoiser and a

transform domain, which are the two main factors that deter-

mine the recovery performance. In particular, we investigate

reconstruction performance in the spatial, DCT, and wavelet

domains. We compare the results with existing reconstruction

algorithms already used in ultrasound imaging and quantify

the performance improvement.

Index Terms— ultrasonic images, Compressive Sam-

pling, nonconvex optimization, IRLS, AMP, image denoising

1. INTRODUCTION

Ultrasonography is a highly attractive medical imaging

modality that does not require any ionizing radiation or ex-

posure of the patient to artificial electromagnetic fields. The

new demands such as telemedicine applications and real time

3D imaging inevitably entail a significantly increased amount

of data and/or longer acquisition time under the contempo-

rary ADC architecture based on Nyquist sampling theorem,

that argues that a band-limited analog signal can be perfectly

recovered as long as the sampling rate is at least twice higher

than its maximum frequency.

In 2006, Donoho [1] and Candes et al.[2, 3] introduced a

novel theory called Compressed Sensing or Compressive

Sampling (CS), giving theoretical proofs that sampling even

below the Nyquist rate can lead to accurate reconstruction

by exploiting signals sparsity or compressibility. Compres-

sive sensing is based on measuring a significantly reduced

number of samples than what is dictated by the Nyquist the-

orem. This has also potential benefits in ultrasound imaging

since it can facilitate reduced storage space and transmission

bandwidth due to the inherent compression achieved. With

the advent of new technologies in signal processing, the chal-

lenges that ultrasound (US) imaging is currently facing, are

expected to be overcome by CS framework. The objective of

this paper is to propose enhanced CS recovery algorithms for

compressively sampled US images, compared to previously

proposed algorithms. The proposed method is based on the

Approximate Message Passing (AMP) algorithm, a CS re-

covery technique that turns the reconstruction problem into

an iterative denoising approach [4–6]. This paper focusses

on the selection of a relevant sparsifying basis and a robust

denoiser in order to maximize the performance of AMP in

ultrasound CS reconstruction. The rest of the manuscript is

organized as follows. In the following section, we provide

a brief overview of CS and of the AMP algorithm. Section

slowromancapiii@ introduces the proposed AMP-based re-

construction method adapted to US images. Experimental

results are reported in Section slowromancapiv@, which also

describes the methodology employed for simulations. Fi-

nally, section slowromancapv@ is devoted for the summary,

main conclusion, and future work directions.

2. BACKGROUND

2.1. Compressive Sampling model

Introduced in [1–3], CS proposes theoretical guarantees for

“perfect” recovery of an N-sample signal, having a K-sparse

representation in a given basis, from M linear measurements,

with K < M ≪ N . The direct CS model is as follows:

y = Θx = ΦΨα (1)

where x is a N × 1 discrete signal, α is a N × 1 signal having

K non-zero elements and y is an M ×1 vector containing the

compressed measurements. Θ of size M ×N is the measure-

ment matrix, written as the product between a random matrix

Φ (e.g., formed by M Gaussian [7] or Bernoulli [8] vectors

with N samples) and Ψ that represents the N ×N sparsifying

transform (e.g. the transforms usually used in image com-

pression). CS framework states that α can be recovered from

the measurements y through the non linear optimization pro-

cess in (2), provided that the measurement matrix Θ respects
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Fig. 1: Coefficient distribution of a standard ultrasound image

in: (a) space, (b) wavelet and (c) DCT domains.

Horizontal and vertical axes represent the data and the number

of sample, respectively.

the restricted isometry property [9]. In other words, this prop-

erty imposes that the sampling vectors (the rows of Φ) should

be as little correlated as possible to the vectors forming the

sparsifying matrix Ψ.

α̂ = min
α

‖α‖1 subject to ΦΨα = y (2)

2.2. Basics of approximate message passing

Inspired by belief propagation techniques, the approximate

message passing (AMP) algorithm has been introduced in

[4] as an alternative to CS reconstruction techniques that

are based on minimizing (2) or similar objective functions.

At each iteration, AMP consists of two steps as shown in

equations (3) and (4).

xt+1 = ηt(Θ
∗zt + xt) (3)

zt = y −Θxt +
1

δ
zt−1〈η

′

t−1(Θ
∗zt−1 + xt−1)〉 (4)

Here, the superscript ’t’ indicates iteration index and xt is

the estimate of x at t−th iteration. ηt(·) is component-wise

shrinkage/thresholding function whose derivative is denoted

by η
′

t(·). Θ∗ corresponds to the transpose of measurement

matrix Θ. Finally, zt of size M × 1, δ, and 〈·〉 represent

the current residual (error), measurement rate M/N , and

〈x〉 = 1
N

∑N

i=1(xi), respectively. The particularity that

clearly differentiates AMP from existing iterative threshold-

ing algorithms consists in the last term of the right hand side

of (4), called Onsager reaction term in statistical physics and

derived from the theory of belief propagation. Its contribu-

tion to improving the tradeoff between sparsity and under-

sampling rate has been shown in [4]. Initially proposed for

signal reconstruction, AMP has been extended to images in

[10], by performing the denoising in the wavelet domain.

3. AMP-BASED ULTRASOUND IMAGE

RECONSTRUCTION

In this section we introduce an AMP-based ultrasound re-

construction algorithm capable of recovering the image from

compressed measurements. To do so, two crucial points are

evaluated in this paper: the sparsity of ultrasound images

and the denoising method embedded in the AMP algorithm.

Sparsity has a crucial effect on the measurement rate (M/N)
needed and hence, reconstruction performance. Therefore it

is crucial for improving recovery accuracy to find a transform

able to sparsely represent the data through image coefficients.

In the literature related to CS in US imaging, several trans-

forms have been employed, ranging from standard wavelet

or Fourier transforms to dictionary learning [11]. Figure 1

compares the ability for sparse representation of a standard

US RF image in three different domains.

According to Figure 1, it is obvious that DCT coefficients

exhibit far heavier tailed distribution than their other coun-

terparts. Consequently, it is expected that the recovery per-

formance of DCT outperforms its counterparts while using

AMP with the same denoiser. In the following, the DCT

will be denoted by the N × N matrix D, playing the role

of Ψ in (1). In this research, two types of denoisers, serving

as ηt(·) function in equations (3) and (4), are inbuilt in the

AMP algorithm: the standard Soft Thresholding (ST) and

Amplitude-scale-invariant Bayes Estimator (ABE) [12]. The

analytical expressions of the two denoisers employed and of

their derivatives are given hereafter.

ST denoiser:

η(x) = sign(x)(|x| − T )I(|x|>T )

η
′

(x) = I(|x|>T ) (5)

where T is a threshold automatically calculated at each itera-

tion following [13].
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Fig. 2: Behavior of ABE and ST denoisers compared to the

hard thresholding.

ABE denoiser:

η(x) =
(x2 − 3σ2)+

x

η
′

(x) = I(x2>3σ2)

(

1 + 3(
σ

x
)2
)

(6)

where σ2 is the noise variance, estimated at each iteration

as a function of the current residual: σ2 = 1
M

∑M

i=1(zi)
2.

The difference between the two denoisers employed may be

observed in Figure 2.

The AMP algorithm summarized in (3) and (4), when

modified to exploit the sparsity of US images in the DCT do-

main, becomes:

θt+1
x = ηt

(

(ΘD−1)∗zt + θ∗x

)

(7)

zt = y − (ΘD−1)θtx +
1

δ
zt−1

〈

η
′

t−1(ΘD−1)∗zt−1 + θt−1
x )

〉

= y −Θxt +
1

δ
zt−1

〈

η
′

t−1(ΘD−1)∗zt−1 + θt−1
x )

〉

(8)

where θtx is the DCT transform of the US image xt at iteration

t, i.e. θtx = Dxt. In (11), (ΘD−1)∗ is rewritten simply DΦ∗

due to orthogonality of D, i.e. DD∗ = I . As a result, the

input data of the denoising ηt(·) function is DΘ∗zt + θtx.

The implementation of the proposed iterative algorithm sum-

marized in (7) and (8) is based on [10]. The initialization

consists in setting xt to a zero-vector, and subsequently cal-

culate zt, i.e. residual term. From these outcomes, the noisy

measurement Θ∗zt +xt is computed and further transformed

in the DCT domain by multiplying by D. The resulting vec-

tor serves as the input data for the shrinkage function, ηt(·)
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Fig. 3: Normalised Mean Squared Error (NMSE) vs iteration

number.

in (7). Furthermore, the denoised coefficients θt+1
x are ob-

tained through denoising using ηt(·). Finally, we perform the

inverse DCT transform by multiplying by D−1 in order to

obtain the current estimate, xt+1, which is utilized to calcu-

late again the residual term zt+1 in (8). These process iterate

until a reasonable stopping criterion is satisfied.

4. SIMULATION RESULT

Table 1: Quantitative results for the reconstructed images

with the different evaluated techniques.

METHODS DOMAIN DENOISER PSNR(dB) SSIM

IRLS DCT - 16.31 0.66

AMP

TIME
SoftThreshold 9.09 0.14

ABE 8.57 0.09

WAVELET
SoftThreshold 12.46 0.28

ABE 12.38 0.25

DCT
SoftThreshold 18.56 0.54

ABE 28.82 0.80

BM3D-AMP BM3D 3D-Transform 23.95 0.86

4.1. Comparative methods

Two methods were used as benchmark to evaluate the perfor-

mance of the proposed AMP-based US image reconstruction

from compressed measurements. The first one is similar to

(2), but uses a more general lp optimization problem solved

with the iteratively reweighted least squares (IRLS) algorithm
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Fig. 4: (a) Original US RF image, Reconstructed images with (b) IRLS, (c) D-AMP, AMP-based algorithm (d)-(e) in image

domain with ST and ABE denoiser, (f)-(g) in wavelet domain with ST and ABE denoiser, (h)-(i) in DCT domain with ST and

ABE denoiser.

[13]. Based on the assumption that US signals follow an α-

stable distribution [14, 15], the method in [16] uses the char-

acteristic exponent α , calculated by fitting an α-stable distri-

bution to the DCT of US images, to estimate an optimal value

of p required for lp optimization, i.e. p = α − 0.01. This

way of choosing p has been shown to lead to better US recon-

struction performance compared to standard basis pursuit and

orthogonal matching algorithms [16, 17].

D-AMP equipped with BM3D as a denoiser, shown in [18] to

enhance CS reconstruction performance even for nonsparse

images, was the second method used for comparison. Sev-

eral configurations of the proposed AMP-based reconstruc-

tion method in US imaging have been tested, by combining

three domains (spatial, wavelet, and DCT) and two denois-

ers (ST and ABE). The wavelet transform was implemented

using the Symmlet filter with four vanishing moments.

4.2. Reconstruction results

IRLS [13, 16], D-AMP [18] and the proposed AMP-based

reconstruction algorithm using six combinations of image

representations and denoisers are evaluated on an US image

acquired with a clinical scanner (Sonoline Elegra) that was

modified for research and a 7.5-MHz linear probe (Siemens

Medical Systems, Issaquah, WA, USA), giving access to RF

data sampled at 50 MHz. Also, the algorithms were imple-

mented on HP ENVY running a 2.6GHz Intel(R) CoreTM i7-

6500C processor with 8GB RAM under the Matlab R2014a

environment. The image was cropped to 512 samples per

312 RF lines. The CS measurements have been generated by

projecting this image onto an MxN matrix whose columns

were N (0, 1
M
) distributed (hence each column vector of the

matrix has unit l2-norm). The measurement rate was fixed

at 40% (M/N = 0.4) throughout simulations. The results

are evaluated using the following quantitative metrics: peak-

signal-to-noise ratio (PSNR) and structure similarity (SSIM),

as well as by visual inspection of the reconstructed images.



Table 1 shows the numerical results and Figure 3 illustrates

the evolution of normalized mean squared error (NMSE) over

six different methods. In Figure 4, the visual inspection for

the eight compared reconstructed images (b) ∼ (i) leads us

to the conclusion that the image reconstructed by AMP with

ABE denoiser based on DCT domain was the closest to the

original image.

By contrast, AMP applied in the image domain produced

severely degraded images, because of the lack of sparsity.

Table 1 provides the overall outcomes for the quantitative

analysis for recovery performance, showing the superiority

of DCT-based AMP framework with ABE denoiser.

5. CONCLUSIONS

The purpose of this paper was to show the interest of us-

ing AMP-based CS reconstruction techniques in ultrasound

imaging. Given the sparsity of US data in the DCT domain,

the proposed AMP framework performed the denoising step

in this domain. Two different existing denoisers have been

evaluated: the soft thresholding and the amplitude-scale-

invariant Bayes estimator. The results have proven the supe-

riority of the latter in our application. The AMP framework

has also been shown to be superior to an existing US image

reconstruction framework which minimizes the lp using IRLS

algorithm.
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