
HAL Id: hal-01517384
https://hal.science/hal-01517384

Submitted on 3 May 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Composing data and control functions to ease virtual
networks programmability

Messaoud Aouadj, Emmanuel Lavinal, Thierry Desprats, Michelle Sibilla

To cite this version:
Messaoud Aouadj, Emmanuel Lavinal, Thierry Desprats, Michelle Sibilla. Composing data and con-
trol functions to ease virtual networks programmability. IEEE/IFIP Network Operations and Man-
agement Symposium (NOMS 2016) : Mini-Conference , Apr 2016, Istanbul, Turkey. pp. 461-467.
�hal-01517384�

https://hal.science/hal-01517384
https://hal.archives-ouvertes.fr

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 17012

The contribution was presented at NOMS 2016 :
http://noms2016.ieee-noms.org/

To cite this version : Aouadj, Messaoud and Lavinal, Emmanuel and Desprats,
Thierry and Sibilla, Michelle Composing data and control functions to ease
virtual networks programmability. (2016) In: IEEE/IFIP Network Operations
and Management Symposium (NOMS 2016) : Mini-Conference, 25 April 2016 -
29 April 2016 (Istanbul, Turkey).

Any correspondence concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

Composing data and control functions to ease
virtual networks programmability

Messaoud Aouadj, Emmanuel Lavinal, Thierry Desprats, Michelle Sibilla
University of Toulouse, IRIT

118 Route de Narbonne, F-31062 Toulouse, France

Email: {FirstName.LastName}@irit.fr

Abstract—This paper presents a new domain specific lan-
guage, called AirNet, to design and control virtual networks. The
central feature of this language is to rely on network abstractions
in order to spare operators the trouble of dealing with the
complex and dynamic nature of the physical infrastructure. One
novelty of this language is to integrate a network abstraction
model that offers a clear separation between simple transport
functions and advanced network services. These services are
classified into three main categories: static control functions,
dynamic control functions and data functions. In addition, we
provide an easy and elegant way for programming these functions
using the decorator design pattern. The AirNet language is
supported by a runtime system handling, in particular, the
virtual-to-physical mapping. Despite the fact that it is still in
a prototype stage, this runtime has been successfully tested on
several use cases.

I. INTRODUCTION

Software Defined Networking (SDN) is one of the latest
attempts that aims to make current networks more flexible,
so that they can quickly adapt to today’s evolving needs.
Unfortunately, current SDN controllers are difficult to use in
practice, mainly because they provide only low-level program-
ming interfaces that: i) prevent network operators from writing
separate control modules that can be composed and ii) require
operators to deal directly with the complex and dynamic nature
of the physical infrastructure. By allowing the use of network
abstractions, network virtualization has emerged as the most
appropriate solution to address these limits.

Currently, there are two main approaches to abstract the
physical infrastructure: i) the overlay network model which
consists in overlaying a virtual network of multiple switches
on top of a shared physical infrastructure [1] and ii) the
single switch abstraction model [2] which abstracts the entire
network view into a single logical switch. In previous work
[3], we have shown that these two models present some
drawbacks, among which: the one big switch model forces
network administrators to always use a single router to abstract
their physical infrastructure, while the overlay network model
does not consider any distinction or logical boundaries between
in-network functions and packet transport functions, despite
the fact that these two auxiliary policies solve two different
problems.

In this paper, we present AirNet, a new high-level language
for programming SDN platforms, whose main novelty is to in-
tegrate an abstraction model that explicitly identifies two kinds
of virtual units: i) Fabrics to abstract packet transport functions

and ii) Edges to support, on top of host-network interfaces,
richer in-network functions (firewall, load balancing, caching,
etc.). Thus, unlike existing work, AirNet’s abstraction model
allows to ease the configuration, control and management of
the physical infrastructure, while also allowing fine-grained
control in order to be able to respond to different types of
constraints, whether physical or logical. Additionally, we have
designed and implemented a hypervisor that supports this
model and achieves its mapping on a physical infrastructure.

The remainder of this paper is organized as follows: in
section II, existing works are briefly presented. In section III
we start by presenting our network abstraction model, then we
give an overview of AirNet’s key elements. Its implementation
is described in section IV and a program example is exposed
through a complete use case in section V. Finally, we conclude
and shortly present ongoing work.

II. RELATED WORK

Early works have addressed issues related to the low-level
nature of programming interfaces and their inability to build
control modules that compose. The FML language [4] is one of
the very first, it allows to specify policies about flows, where
a policy is a set of statements, each representing a simple if-
then relationship. Frenetic [5] is a high-level language that
pushes programming abstractions one-step further. Frenetic is
implemented as a Python library and comprises two integrated
sub-languages: i) a declarative query language that allows
administrators to read the state of the network and ii) a general-
purpose library for specifying packet forwarding rules.

Additional recent proposals introduced features that allow
to build more realistic and sophisticated control programs.
Indeed, languages such as Procera [6] and NetCore [7] offer
the possibility to query traffic history, as well as the controller’s
state, thereby enabling network administrators to construct
dynamic policies that can automatically react to conditions like
authentication or bandwidth use.

Traffic isolation issues were also addressed in works like
FlowVisor [8] and Splendid Isolation [9]. FlowVisor is a
software slicing layer placed between the control and data
plane. This slicing layer divides the data plane into several
slices completely isolated, where each slice has its own and
distinct control program. Following the same idea, Gutz et al.
proposed splendid isolation which is a language that allows, on
one side, to define network slices, and on the other, to formally
verify isolation between these slices.

Recently, Monsanto et al. proposed the Pyretic language
[10], which introduced two main programming abstractions
that have greatly simplified the creation of modular control
programs. First, they provide, in addition to the existing
parallel composition operator, a new sequential one that allows
to apply a succession of functions on the same packet flow.
Second, they enable network administrators to apply their
control policies over abstract topologies, thus constraining
what a module can see and do.

Although these related work provide advanced network
control languages, none of them make an explicit distinction
between transport and in-network functions, property that we
think is essential for the program’s modularity and reusability.

III. THE AIRNET LANGUAGE

In this section, we present AirNet’s programming pattern
and its key instructions, which are summarized in Fig. 1.
Each AirNet program contains three major parts. The first part
deals with the design of the virtual network. We have chosen
a fully declarative approach: one primitive for each virtual
unit that has to be added to the network (addHost, addEdge,
etc.). The second part contains control policies that will be
applied over the defined virtual network (in the following
subsections, we describe in more details the primitives used
to specify and compose these control policies). Finally, the
third part is a separate initialization module through which the
administrator defines the mappings existing between virtual
units and switches present at the physical level (associating IP
addresses to hosts, or mapping an edge to multiple physical
switches are examples of such mapping instructions).

Virtual Network Design:

addHost(name)

addNetwork(name)

addEdge(name, ports)

addFabric(name, ports)

addLink((name, port), (name, port))

Edge Primitives:

filters: match(h=v) | all_packets

actions: forward(dst) | modify(h=v) | tag(label) | drop

network functions: @DynamicControlFct | @DataFct

Fabric Primitives:

catch(flow) | carry(dst, requirements=None)

Composition Operators:

parallel composition: "+"

sequential composition: ">>"

Fig. 1. AirNet’s key primitives

A. Edge & Fabric network abstraction model

Explicitly distinguishing between edge and core functions
was also used by Casado et al. in a proposal for extending
current SDN infrastructures [11]. We propose to integrate this
concept in our network abstraction model (Fig. 2), thereby
lifting it up at the language level. Network operators will
thus build their virtual networks using three types of network
abstractions:

• Edges which are general-purpose processing devices
used to support the execution of in-network functions.

• Fabrics which are more restricted processing devices
used to deal with packet transport issues.

Fig. 2. A simple virtual network using the edge-fabric model

• Hosts and Networks which are abstractions used to
represent sources and destinations of data flows.

As a consequence, the programming paradigm that we are
advocating through this edge-fabric abstraction model is as
follows: edges will receive incoming flows, apply appropriate
control policies that have been previously defined by network
operators (using specific primitives that we will present in the
next section), then redirect flows towards a fabric. From this
point, it is the fabric’s responsibility to carry flows to another
border edge in order to be delivered to its final destination
(host or network).

B. Edge primitives: filters and actions

Edge primitives are divided into three main groups: Filters,
Actions and Network Functions. The language’s main filter is
the match(h=v) primitive that returns a set of packets that have
a field h in their header matching the value v. Actions are
applied on sets of packets that are returned by installed filters.
Drop, forward and modify are standard actions found in most
network control languages. As for the tag action, it attaches
a label onto incoming packets, label that is used by fabrics to
identify and process a packet.

As a simple example, consider the following policy applied
to the virtual network of Fig. 2, that matches all in web flows
(independently of the destination address) on edge IO and
forwards them to the fabric with a in web flows tag:

match(edge="IO", tp_dst=80) >>

tag("in_web_flows") >> forward("Fab")

This policy uses the match instruction to capture all in
web flows (i.e., TCP destination port equals to 80), then it
tags these flows as in web flows by sequentially combining
the match with a tag instruction. Finally, the result is passed
to the forward action that transfers the packet to the output
port leading to the fabric.

C. Edge primitives: network functions

As we have just seen, filters and actions allow network
operators to write simple and static control applications. How-
ever, we believe that a control language should provide more
powerful instructions in order to allow operators to write
sophisticated and realistic control applications that can meet a
variety of requirements. To fulfill this goal, we have identified
two types of advanced network functionalities:

1) Functions that implement complex processing that
cannot be performed by the language’s basic set
of actions (i.e., forward, modify, drop). Encryption,
compression or transcoding are examples of such
functions.

2) Functions that implement a decision making process
capable of generating, at runtime, new policies that
change the overall control program behavior. A typi-
cal example is a forwarding decision emanating from
some deep packet analysis that cannot be specified
through the match instruction.

We have integrated these two types of functions to AirNet
by using the decorator design pattern. Programmers will there-
fore be able to transform their own Python functions by simply
applying these decorators, thereby being able to compose them
with other AirNet primitives to build advanced policies.

The first type of function uses the DataFct decorator
and relies on entire network packets to accomplish its task
and return the modified packets. The second type of function
uses the DynamicControlFct decorator and can rely either
on entire network packets or network statistics to generate,
at runtime, new policies. Thus, each time a new packet or
statistic is available, it is passed to the decorated function,
which behaves like a callback function that returns, in the end,
either a modified packet or a new policy.

@DataFct(limit=number, split=[h=v])

@DynamicControlFct(data="packet", limit=number, split=[h=v])

@DynamicControlFct(data="stat", every=seconds, split=[h=v])

As shown above, the DataFct decorator takes always two
parameters: the first one is limit, it defines how many packets
(from the matched flow) must be redirected to the network
function. If limit is set to None, it means that all packets
need to be redirected to the network function. The second
parameter is split, it allows to discriminate between packets
that are sent to the network function. The split parameter is
a list of headers (e.g, split=["nw_src","tp_dst"]) that
is used by our runtime as a key to identify subflows on
which the limit parameter applies. If split is set to None, it
means that the limit parameter applies on the entire flow. As
for the DynamicControlFct decorator, the data parameter
specifies whether to retrieve entire network packets or statistics
related to the number of received bytes and packets. If network
packets are used then the limit and split parameters apply
(alike data functions), whereas for statistics, the limit parameter
is replaced by a polling period specified thanks to the every
parameter.

In the remainder of this section we will give a few usage
examples of data and dynamic control functions.

Let us assume that on edge IO, on top of forwarding
web flows, a network operator wants to do some advanced
processing on the packet’s payload before forwarding it to the
fabric, in this case compression. This policy can be specified
by relying on a specific compress function and by sequentially
composing it with the other edge primitives:

match(edge="IO", tp_dst=80) >>

compress() >> tag("in_web_flows") >> forward("Fab")

The compress function can be simply defined as follows:

from tools import cpr

@DataFct(limit=None, split=None)

def compress(packet):

cpr(packet)

return packet

Here, the parameters limit and split are set to None,
meaning that all packets of the flow must be redirected to
the compress function and that no discrimination is needed.
Also, it is important to stress that the network function must
return the modified packet since its result is an input for the
next instruction in the composition chain.

Regarding dynamic control functions, we will take a first
example of a simplified web application firewall that is imple-
mented within the waf function:

match(edge="IO", tp_dst=80) >> waf()

As shown below, the waf function analyses the first packet
of a flow and returns a new policy: if it detects malware,
a policy dropping all packets from that malicious network
address is returned, otherwise, a forwarding policy is returned
(note that the split parameter is used here to discriminate
packets based on the network source address; the waf function
will thus apply for each first packet coming from a different
source address).

from tools import DPI

@DynamicControlFct(data="packet", limit=1, split=["nw_src"])

def waf(packet):

ip = packet.find("ip")

my_match = match(nw_src=ip.srcip, tp_dst=80)

if DPI(packet):

return my_match >> tag("in_web_flows") >> forward("Fab")

else: return my_match >> drop

D. Fabric primitives

Fabrics provide two main primitives that are catch and
carry. The first primitive captures an incoming flow on one
of the fabric’s ports. Data flows are identified based on a label
that has been inserted beforehand by an edge. The second one
carry transports a flow from an input port to an output port; it
also allows to specify some forwarding requirements such as
maximum delay to guarantee or minimum bandwidth to offer.

Back to the previous virtual network example (cf. Fig.2),
we suppose that the administrator wishes to handle both
incoming web and ssh flows. The following program represents
the transport policy carrying these input flows from edge IO
to edge LB, and vice versa. Since these flows have the same
destination, we used the parallel operator to compose the catch
primitives and thus have a more concise policy (although we
could have also used one policy for each type of flow):

(catch(fabric="Fab", src="IO", flow="in_web_flows") +

catch(fabric="Fab", src="IO", flow="in_ssh_flows")) >>

carry("LB")

(catch(fabric="Fab", src="LB", flow="out_web_flows") +

catch(fabric="Fab", src="LB", flow="out_ssh_flows")) >>

carry("IO")

IV. IMPLEMENTATION

In this section we give a brief description of our imple-
mentation of the AirNet language which consists of a domain-
specific language embedded in Python, as well as a runtime
system executed on top of an SDN controller. At the moment,
the runtime system, which we name “AirNet Hypervisor”,
is only a prototype, nevertheless it has been successfully
tested on several use cases (using various virtual and physical
topologies), including the ones mentioned in this article, using
the POX controller and the Mininet network emulator.

A. Filters and actions

The excution of any AirNet program passes through two
main phases. The first one is completely independent of the
physical infrastructure and deals mainly with composition
issues between the different virtual policies. Conversely, the
second one is highly correlated to the the physical infrastruc-
ture since it generates OpenFlow [12] rules that have to be
installed on real network devices.

At the very beginning of the first phase, edge policies
are combined, sequentially and in parallel, to form an edge
composition policy. One difficulty of this process lies in the
overlapping rules that can exist. To resolve this problem, rules
are placed into containers called classifiers that allow us to
order the rules by priority and solve match intersection issues.
Indeed, when classifiers are generated, rules are combined,
and if an intersection exists between two rules, a new one
is created, with a match corresponding to the result of the
intersection, and a set of actions containing the union of the
two original rules actions.

Regarding fabric policies, they are also composed together
to form a fabric composition policy. In this case, this is
a simple process that constructs one forwarding table per
fabric, containing incoming flows and their respective edge
destination.

The second phase consists in compiling rules stored into
classifiers according to the target physical infrastructure and
the operator’s mapping instructions. For each edge rule that
applies on an virtual edge, the runtime fetches the edge’s
corresponding physical switches, then transforms this virtual
rule into one or several physical rules. This transformation
includes, for instance, replacing symbolic identifiers present
in the program by the corresponding low-level parameters.

As for fabric rules, it is not a trivial algorithm since we
cannot just rely on the fabric’s forwarding table to install flow
rules, mainly because an edge can map to more than one
physical switch, and hosts that are connected to this edge can
be in reality connected to different physical switches. Thus,
we need to split flows that are carried to an egress edge into
several flows according to the final destination. In other words,
we only deliver (following a shortest path algorithm) to border
switches the flows that are intended for a destination directly
connected to that switch, and not all the flows arriving to the
virtual egress edge.

B. Network functions

In this section we present, through a set of algorithms writ-
ten in Python, how network functions work and the main ideas
behind their implementation. Given that network functions
cannot be executed on standard OpenFlow switches, we have
implemented them within the controller. Note that this two-
tiered architecture is completely transparent to administrators.

We can divide the life cycle of a network function within
the controller into three main phases: i) initialization at de-
ployment time, ii) processing incoming packets at runtime
before the limit parameter has been reached, and iii) processing
incoming packets at runtime once the limit is attained (note that
the every parameter is handled almost in the same manner).

1) First phase: initialization

This first phase has two main objectives. The first one
is to install data path rules sending packets and statistics to
the controller, and the second one is to create data structures
named buckets that will receive and process this data at runtime
on the controller. The algorithm in Fig. 3 describes the main
steps of this phase.

def init_net_functions():

for net_rule in net_function_rules:

create_bucket(net_rule)

actions = set()

for act in net_rule.actions:

if (not isinstance(act, NetworkFunction)) and

(not isinstance(act, forward)):

actions.add(act)

actions.add(forward(’controller’))

ctrl_rule = Rule(net_rule.match, net_rule.tag, actions)

enforce_rule(ctrl_rule)

Fig. 3. Initialization phase for network functions

The controller rule is created by keeping the same match
filter and flow tag as the network function rule. As for the
set of actions, it is copied from that same rule except for the
network function action that is replaced by a forward action
to the controller.

2) Second phase: incoming packets

After the initialization phase, each time a packet arrives
at a switch and matches a controller rule, it will be directly
forwarded to that controller. The AirNet runtime system will
then execute the general algorithm exposed in Fig. 4. It first
looks up the appropriate bucket that is going to handle the
packet (i.e., the bucket’s match covers the packet header) and
uses it to call the network function included in the policy.
Applying a network function will process the packet and return
the results. In case of a data function, the result is a modified
packet that will be re-injected into the network and transported
to its final destination following the existing policies. In case
of a dynamic control function, the result consists in first, a
new policy that will be compiled and enforced on the physical
infrastructure, and second, re-injecting the incoming packet
into the network, thus transporting it according to the newly
generated policies as well as the existing ones.

If the limit parameter is set on the network function then
the bucket counts the number of incoming packets and calls
the appropriate function when that limit is reached (cf. next
section). Note that if the split parameter is also set, then it is
necessary to have a packet counter for each micro-flow, which
is obtained by applying the split arguments on the packet’s
header, and appending the result with the rule’s match.

3) Third phase: limit reached

When a flow limit is reached, it means that the network
function must not be applied anymore. In order to do so, we
have implemented the remove_net_function that deletes
the network function from the rule’s action set, while leaving
the other basic actions (i.e., modify, tag and forward). The
runtime then regenerates edge classifiers and compares them
with the old classifiers using the get_diff_lists function.
This step aims to identify the differences that exist between
what is already installed onto the physical infrastructure and

def process_packet_in(switch_id, packet_match, packet):

bucket = get_bucket_covering(packet_match)

bucket.apply_network_function(switch_id, packet)

if bucket.split is None:

bucket.nb_packets += 1

if bucket.nb_packets == bucket.limit:

flow_limit_reached(bucket.match)

else:

micro_flow = get_micro_flow(packet)

try:

bucket.nb_packets[micro_flow] += 1

except KeyError:

bucket.nb_packets[micro_flow] = 1

if bucket.nb_packets[micro_flow] == limit:

micro_flow_limit_reached(micro_flow)

Fig. 4. Processing incoming packets for network functions

the new rules that were generated after removing the depre-
cated network function. Finally, these lists are enforced onto
the physical infrastructure via adequate OpenFlow messages.
These steps are exposed in Fig. 5.

def flow_limit_reached(flow):

for rule in edge_policies.rules:

if rule.match == flow:

remove_net_function(rule)

new_classifiers = to_physical_rules(edge_policies)

updates = get_diff_lists(old_classifiers, new_classifiers)

install_diff_lists(updates)

Fig. 5. Limit is reached for all packets of a network function

def micro_flow_limit_reached(micro_flow):

for rule in edge_policies.rules:

if rule.match.covers(micro_flow):

new_rule = copy.deepcopy(rule)

new_rule.match = micro_flow

remove_net_function(new_rule)

enforce_rule(new_rule)

Fig. 6. Limit is reached for a subset of packets of a network function

For micro-flows (cf. Fig. 6), the process is a bit different
since the network function has reached its limit only for
a micro-flow (depending on the split parameter) and not
for all flows. Thus, we only have to install one new rule
that handles this micro-flow, while maintaining the general
controller rule. To this end, the runtime starts by fetching
the network function rule that covers the deprecated micro-
flow, it creates a copy of it, changes its match with the micro-
flow match and removes the network function action (keeping
the other actions). Finally, it enforces this new rule onto the
physical infrastructure with a higher priority than the controller
rule (thus guaranteeing that packets matching the micro-flow
rule will be handled using this new rule while the other packets
will still remain redirected to the controller).

V. USE CASE

In this section, we present a complete use case which
consists in programming a dynamic load balancer. The goal is
to show how a realistic AirNet program is built and executed
from start to end. As a proof of concept, the use case has been
implemented and tested on the Mininet network emulator.

Virtual network design: As with any AirNet program, the
first step is to define a virtual topology that meets our high-
level goals. Here, we reuse the virtual topology presented in
Fig. 2.

Policy functions: The second part of the program deals
with control policies definition. In this use case, we have
grouped these policies into three functions, one per virtual
device. The first function encapsulates policies that need to be
installed on the IO edge. It configures the behavior of the edge
as a simple input/output device, meaning that it will only match
flows and redirect them either inside or outside the network.

def in_out_policy(self):

i1 = match(edge="IO", src="Net.A", nw_dst=pub_WS,

tp_dst=80) >> tag("in_web_flows") >> forward("Fab")

i2 = match(edge="IO", src="Net.B", nw_dst=pub_WS,

tp_dst=80) >> tag("in_web_flows") >> forward("Fab")

i3 = match(edge="IO", dst="Net.A",

nw_src=pub_WS, tp_src=80) >> forward("Net.A")

i4 = match(edge="IO", dst="Net.B",

nw_src=pub_WS, tp_src=80) >> forward("Net.B")

return i1 + i2 + i3 + i4

Concerning the load balancing policy, it will be imple-
mented on the LB edge. Its goal is to intercept web flows (i.e.,
HTTP flows sent to the web server’s public address), and pass
them to a dynamic control function. This dynamic function will
install at runtime rules that change the destination addresses
(i.e., IP and MAC) of these flows to one of the backend severs,
while ensuring a workload distribution over the two servers
using a simple Round-Robin algorithm (cf. network function
rrlb in the i1 policy below). The load balancer needs also
to modify the responses in order to restore the public address
instead of the private ones (policies i2 and i3).

def load_balancing_policy(self):

i1 = match(edge="LB", dst=pub_WS, tp_dst=80) >>

self.rrlb()

i2 = match(edge="LB", src="WS1") >>

modify(src=pub_WS) >> tag("out_web_flow") >>

forward("Fab")

i3 = match(edge="LB", src= "WS2") >>

modify(src=pub_WS) >> tag("out_web_flow") >>

forward("Fab")

return i1 + i2 + i3

The rrlb function is triggered for each first packet coming
from a different IP source address, since the parameter limit is
set to “1”, and the parameter split is set to “nw src”. Below,
we can see that the rrlb function extracts the match filter from
the received packet, then uses it to install a rule for the other
packets that belong to the same flow as the retrieved packet.
The forwarding decision is based on the actual value of a
token: if it is one, then the flow is sent to the first backend
server, else it is sent to the second one.

@DynamicControlFct(data="packet", limit=1, split=["nw_src"])

def rrlb(self, packet):

my_match = match.from_packet(packet)

if self.rrlb_token == 1:

self.rrlb_token = 2

return my_match >> modify(dst="WS1") >> forward("WS1")

else:

self.rrlb_token = 1

return my_match >> modify(dst="WS2") >> forward("WS2")

The last policy concerns the fabric. Here, we need a simple
transport policy that carries in web flows to the egress edge,
and out web flows to the ingress edge. The following extract
shows the definition of this transport policy:

Fig. 7. Target physical infrastructure

def fabric_policy(self):

t1 = catch(fabric="Fab", src="IO",

flow="in_web_flows") >> carry("LB")

t2 = catch(fabric="Fab", src="LB",

flow="out_web_flows") >> carry("IO")

return t1 + t2

Experiments: The use case is tested by first launching
Mininet, the POX controller and the AirNet hypervisor, and
then by generating web requests from our web clients (three
clients: one in Net.A and two in Net.B). Regarding the
physical infrastructure, we relied on the topology depicted
in Fig. 7 and we have chosen a virtual-to-physical mapping
showed within Table I (lines 1 and 3).

In the first phase, our hypervisor compiles the high-level
policies and generates OpenFlow rules that are pushed onto
the switches through the controller (all this process is part of
the proactive phase). The OpenFlow entries that are generated
are match, output and drop actions. In addition, due to the rrlb
dynamic control function, OpenFlow entries that send packets
to the controller via packet-in messages are also generated.

Next, we executed several wget requests on the web
server’s public address from the hosts connected to s1 and
s2. All the requests and their responses were correctly routed
through the network, allowing the web clients to retrieve
the requested HTML files on the back-end web servers. The
requests were balanced on the two web servers according to the
round robin algorithm implemented in the rrlb dynamic control
function (these packets arriving at runtime at the controller are
handled in the reactive phase).

Discussion: Table I shows the number of rules that have
been installed on each physical switch, during both the proac-
tive and reactive phases.

The switches s1 and s2 have three OpenFlow rules
each: two forwarding rules (web flows to and from networks
192.168.1.0/24 on s1 and 172.16.0.0/16 on s2) and one drop
rule for all other traffic. As for s8, it contains four rules: one
that redirects the first packet of each web flow towards the
controller, two to handle traffic coming from WS1 and WS2 and
one drop-all rule. Regarding the fabric’s switches, s3, s4 and
s5 have each five rules installed: two to handle the incoming
web flows towards the server’s public IP address, two rules
to handle the responses from the private web servers, and one
drop-all rule for any other unidentified flow. Since s6 and s7

are not located on the shortest path, only one drop-all rule has
been installed on these switches.

Overall, 27 physical rules have been automatically installed
by the AirNet hypervisor (during the proactive phase), while
only 9 policies have been specified on the virtual network.
Note that this ratio would have been even greater if we were
dealing with a more complex physical infrastructure including
a greater number of hosts and switches.

TABLE I. NUMBER OF POLICIES AND RULES FOR THE USE CASE

Virtual device IO Fabric LB Total

Policies 4 2 3 9

Physical switch s1 s2 s3 s4 s5 s6 s7 s8 Total

Rules (init. phase) 3 3 5 5 5 1 1 4 27

Rules (runtime, 3 clients) 3 3 5 5 5 1 1 7 30

Additionally, during the reactive phase, the number of rules
changes dynamically on s8 since the LB edge containing the
rrlb function is mapped on that switch. Each time a host sends
a request to the web server’s public address, the first packet of
the flow is redirected from s8 to the controller that executes
the rrlb function. As a result, a new rule is installed on s8

to forward the flow to one of the two back-end web servers.
Since we have used three clients in our tests, in the end, seven
rules are installed on s8.

Although some issues are still under development, these
first results are encouraging and demonstrate the feasibility of
the approach. Notably, this use case shows that AirNet allows
to significantly simplify network programmability by relying
on high-level policies and network functions that can be easily
composed and reused, without considering the large amount of
underlying physical rules.

Another benefit is that the administrator no longer needs to
deal manually with intersection issues between policies, and
possible side-affects resulting from the application of a policy.
For instance, in this use case, the fact of having applied a
modify action on the servers responses to change their IP
source address from WS1 and WS2 to pub_WS implies that
rules installed on path [s5, s4, s3] must use the public
IP address while rules installed on s8 must use the private
ones. This kind of issue is automatically solved by the AirNet
hypervisor, avoiding a complicated and error-prone process.

VI. CONCLUSION

This paper described the design and the implementation
of AirNet, a new high-level domain specific language for
programming virtual networks. We used network virtualization
as a main feature in order to both build portable control
programs independent of the physical infrastructure and to
spare administrators the trouble of dealing with low-level
parameters, thus complying with the SDN promise to make
network programming easier. The main novelty in AirNet is to
integrate an abstraction model that offers a clear separation be-
tween functions that represent network basic packet transport
capacities and functions that represent richer network services.
In addition, AirNet provides, through the decorator design
pattern, an easy and intuitive way for programming advanced
network functions, allowing operators to extend the language
according to their own requirements. Finally, we described our
prototype of AirNet hypervisor, which has been successfully
tested over several use cases, some of them presented in this
article.

Currently, we are still testing the AirNet hypervisor and fin-
ishing some implementation issues such as handling dynamic
events emanating from the physical topology. Also, we are
working on the language’s formal model in order to be able
to guarantee the policies correctness.

REFERENCES

[1] M. Casado, T. Koponen, R. Ramanathan, and S. Shenker, “Virtualizing
the Network Forwarding Plane,” in PRESTO. ACM, 2010.

[2] E. Keller and J. Rexford, “The “Platform As a Service” Model for
Networking,” in Proc. of the 2010 Internet Network Management

Workshop (INM/WREN’10). USENIX Association, 2010.

[3] M. Aouadj, E. Lavinal, T. Desprats, and M. Sibilla, “Towards a
virtualization-based control language for SDN platforms,” in Proc. of

the 10th Int. Conf. on Network and Service Management (CNSM), 2014.

[4] T. L. Hinrichs, N. S. Gude, M. Casado, J. C. Mitchell, and S. Shenker,
“Practical declarative network management,” in Proc. of the 1st ACM

Workshop on Research on Enterprise Networking. ACM, 2009.

[5] N. Foster, R. Harrison, M. J. Freedman, C. Monsanto, J. Rexford,
A. Story, and D. Walker, “Frenetic: A network programming language,”
SIGPLAN Notices, vol. 46, no. 9, 2011.

[6] A. Voellmy, H. Kim, and N. Feamster, “Procera: A language for high-
level reactive network control,” in Proc. HotSDN. ACM, 2012.

[7] C. Monsanto, N. Foster, R. Harrison, and D. Walker, “A compiler
and run-time system for network programming languages,” SIGPLAN

Notices, vol. 47, no. 1, 2012.

[8] R. Sherwood, G. Gibb, K.-K. Yap, G. Appenzeller, M. Casado, N. McK-
eown, and G. Parulkar, “Can the production network be the testbed?”
in Proc. OSDI’10. USENIX Association, 2010.

[9] S. Gutz, A. Story, C. Schlesinger, and N. Foster, “Splendid isolation:
A slice abstraction for software-defined networks,” in Proc. HotSDN

Workshop. ACM, 2012.

[10] C. Monsanto, J. Reich, N. Foster, J. Rexford, and D. Walker, “Compos-
ing Software Defined Networks,” in USENIX Symposium, NSDI, 2013.

[11] M. Casado, T. Koponen, S. Shenker, and A. Tootoonchian, “Fabric: A
Retrospective on Evolving SDN,” in Proc. of the First Workshop on

Hot Topics in Software Defined Networks (HotSDN’12). ACM, 2012.

[12] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: Enabling innovation
in campus networks,” SIGCOMM, 2008.

