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Beamforming of ultrasound images modelled as

stable random variables
Teodora Szasz, Adrian Basarab, and Denis Kouamé

Abstract—This paper presents a new beamforming method for
ultrasound medical imaging based upon the statistical charac-
terization of the ultrasound signals by α-stable distributions.
The proposed method was evaluated on ultrasound simulated
and in vivo thyroid data. In simulation, an improvement in
contrast ratio of 2.84 dB, 11.52 dB, and 13.33 dB was obtained
compared with minimum variance, delay-and-sum, and least
squares beamformers respectively. Applied on in vivo data and
compared to delay-and-sum and least squares, our method
increases the contrast ratio between the tumor and the healthy
tissue by 1.28 dB, respectively 1.54 dB.

Index Terms—medical ultrasound, beamforming, α-stable sta-
tistical distribution, ℓp-norm regularization.

I. INTRODUCTION

Beamforming (BF) techniques play a major role in the

quality of the US images. The most commonly used BF

method is the classical delay-and-sum (DAS) (e.g., [1]). DAS

BF consists firstly in focusing the raw channel data received

by the elements of the US probe to compensate the delays due

to the time-of-flight differences. Then the resulting signals are

weighted and further summed up to form one RF signal. The

applied weights form the apodization window in reception.

Despite its benefits related to its real-time capabilities, DAS

BF provides low spatial resolution and contrast. To improve

the resolution and the contrast of US images, multiple ap-

proaches were developed by adaptively estimating the apodiza-

tion windows using the raw channel data. These techniques

are trying to obtain a minimum variance (MV) beamformer

based on the estimated covariance matrix. In US imaging,

this type of BF methods is facing two main problems: the

first, related to the poor conditioning of the covariance matrix

and the second, related to the broadband nature of the raw

signals. To overcome these issues, several approaches have

been proposed, such as diagonal loading (e.g. [2]), spatial

or frequency smoothing of the covariance matrices [3], or

iterative methods [4].

In [5] we have reformulated BF in US imaging as a linear

inverse problem, associating the raw channel data to the RF

signals to be recovered. Numerical optimization routines have

been employed to invert the resulting linear model based on

standard regularization terms such as ℓ1-norm, ℓ2-norm, and

elastic net [6]. While US signal processing has widely relied

for many years on the assumption of Gaussianity [7], the

authors in [8] were the first to show that RF echoes can be

more accurately modelled by a power-law shot noise model.

Later, this result has been confirmed by other research groups.

For example, the statistical properties of the RF signals were

related, based on the generalized central limit theorem, to α-

stable distributions [9].

Fig. 1. Main elements used to describe the proposed BF model.

In this paper we propose to take into account the non-

Gaussianity properties of the RF signals in the BF process

(see e.g., [9]). To the best of our knowledge, this is the

first attempt of specifically consider an α-stable distribution

while beamforming the received echoes in US imaging. Thus,

the direct linear model proposed in [5] is herein inverted

using a more general ℓp pseudo norm regularization, with p

automatically related to the parameter α estimated from the

data [10]. Given that p may take values smaller than 1, the

resulting non-convex objective function was minimized in this

work by the half-quadratic optimization algorithm [11].

II. ACQUISITION SETUP

Fig. 1 presents the main elements used to derive the direct

model on which is based the proposed BF method.

We consider, without loss of generality, an M -element US

probe that is sequentially transmitting P US beams. The beams

can be focused, divergent, or plane waves. The reflected echoes

are recorded with the same US probe and are time-delayed,

so that time-of-flight differences are compensated. Depending

on the exploration depth and on the sampling frequency, each

recorded signal, after delay compensation (i.e., focalization),

has N time samples. Henceforth, unless otherwise specified,

all the developments are done for a given depth n (or sample

n of the received signal, see Fig. 1), with n = 1, · · · , N .

For each emission p = 1, · · · , P , we consider that Mp

elements (1 ≤ Mp ≤ M ) are receiving the echoes. Note that

in the case when all elements of the US probe are active in

reception, M1 = M2 = · · · = Mp = M . Let us denote by

yp ∈ C
Mp×1 the raw channel data received by the Mp sensors,

corresponding to depth n. In this situation, the classical DAS

BF can be expressed as:

y(p) =

∑Mp

i=1 wiy
(i)
p

∑Mp

i=1 wi

, (1)



where y
(i)
p is the ith element signal of yp, wi are fixed BF

weights (e.g., Hanning or Hamming windows) and y(p) is the

DAS BF signal of the pth emission corresponding to the pth

element of vector, y ∈ C
P×1. Note that we consider in (1) the

standard case, where the horizontal (lateral) grid density of the

DAS BF image corresponds to the number of US emissions.

In other words, the data received for one emission serves at

beamforming one position in the scanning grid. The positions

to be beamformed with our method are highlighted by the

symbol x and the positions corresponding to DAS BF are

drawn by the symbol © in Fig. 1. As we will explain in the

next section, the proposed BF method will consider a further

laterally refined scanning grid, as shown by the x symbols in

Fig. 1.

III. BEAMFORMING OF US IMAGES MODELLED AS STABLE

RANDOM VARIABLES

A. Signal model

Let us denote by x the signal at depth n to be beamformed

with the proposed method. We denote by K the size of this

vector (K ≥ P ) as schematically highlighted in Fig. 1. Note

that the total number of sensors M , the number of emissions

P , and the number of lateral positions, K, on the scanned grid

employed by the proposed method, are independent of each

other. For a given depth n, the model relating the received

signal (raw channel data) yp ∈ C
Mp×1 to the desired signal

x can be written as follows [5]:

yp = (AH
p AT )x+ gp, (2)

where Ap ∈ C
M×Mp and AT ∈ C

M×K are standard steering

matrices relating the US probe element positions to the lateral

positions on the scanline. More precisely, the form of Ap

is considering that the K reflectors to be beamformed are

impinging on Mp elements through their reflected pulses,

while AT is relating the positions of the M elements to

the K reflectors, under the assumption that the elements are

impinging on the reflectors. We denoted by gp the additive

white Gaussian noise affecting the raw channel data and with

(·)H the conjugate transpose. In the following, without loss

of generality, we will consider that all US probe elements are

active in reception, i.e., A1 = A2 = · · · = Ap = A.

To reduce the dimensionality of the raw channel data, we

applied beamspace processing [12], a common tool in array

processing. It has been shown that in addition to reducing

computational complexity sensitivity, beamspace processing

allows improving the signal-to-noise ratio (SNR) [13]. Thus,

while DAS only beamforms one position on the scanline for

each emission, yp ∈ C
Mp×1 in (2) becomes a scalar after

applying DAS BF. Finally, arranging all these scalars in a

vector denoted by y ∈ C
P×1, the system of equations in (2)

becomes:

y = (AHAT )x+ g, (3)

where AT ∈ C
M×K , A ∈ C

M×P , x ∈ C
K×1, and g ∈ C

K×1

have the same definition as in (2).

In the following, let us denote Φ = AHAT , Φ ∈ C
P×K .

Thus, the direct model considered by our BF process becomes:

y = Φx+ g. (4)

Note that the system to invert is underdetermined, and more

generally the inverse problem to solve is ill-posed, thus re-

quiring regularization in order to obtain a valid solution.

B. α-stable distributions model

As explained previously, our BF solution is based on the

hypothesis of α-stable distributed US signals. We remind that

the characteristic function of a symmetric α-stable (SαS)

distribution has the form:

E(θ) = exp (jθδ − γ|θ|α), (5)

where α ∈ (0, 2] is the characteristic index, δ ∈ (−∞,∞)
is the location parameter, and γ ∈ R

+ is the spread of the

distribution. We emphasize that the stable law is a generaliza-

tion of the Gaussian distribution, thus for α = 2 the stable

distribution is reduced to the Gaussian distribution.

Interestingly, due to the stability property of this distribution

and to the linear model that relates x to y (4), we can conclude

that if x is supposed to follow an SαS, then y can also be

modelled by an SαS with the same parameter α [10]. This

observation has an important practical interest, allowing us to

estimate the parameter α corresponding to x from the observed

vector y. In this work, we have used the method in [14] to

estimate the parameter α from the discrete measurements y.

C. Model inversion via ℓp-norm regularization

We have recently shown, in a different application context

(compressive sampling), that the ℓp-norm regularization is well

adapted to reconstruct SαS-distributed signals [10]. Moreover,

it has been shown that the optimal choice for parameter p

is smaller but as close as possible to α [10], typically p =
α − 0.01. Following, this result, we propose herein to solve

the BF problem in (4) by solving the following minimization

problem:

x̂ = argmin
x

(‖y −Φx‖22 + λ‖x‖pp), (6)

where λ is the regularization parameter balancing the tradeoff

between the fidelity to the data and the regularization term.

Depending on the sparsity degree of the scanned medium,

the value of p, directly related to α estimated from y (i.e.,

p = α−0.01), can take values smaller than 1. In this case, the

function (6) to be minimized becomes non-convex. Several

solutions to solve such non-convex problems exist in the

literature. In this work, we used the half-quadratic optimization

algorithm proposed in [11], where a non-quadratic optimiza-

tion problem is viewed as multiple quadratic problems. The

main steps of the proposed BF approach, for a particular depth

n, are described in the pseudo-code below:

IV. RESULTS AND DISCUSSION

To evaluate the proposed BF method (denoted hereafter by

α-stable BF), we used both simulated and in vivo data. The

simulated data contains 3 point reflectors at 50 mm in depth

and an anechoic cyst structure of 10 mm radius at 80 mm

in depth, embedded in speckle noise typical for US images.

The simulated US probe had 64 elements, with the pitch of



Algorithm 1: α-stable beamforming at depth n.

Input: Raw channel data, yp ∈ C
Mp×1.

Output: α-stable beamformed data, x ∈ C
K×1.

1) Apply DAS BF to yp using (1) ⇒ y ∈ C
P×1.

2) Estimate α from y.

3) Calculate p as: p = α− 0.01.

4) Solve (6) using half-quadratic optimization ⇒ x̂.

TABLE I
CR, CNR, AND FWHM VALUES FOR SIMULATED DATA BEAMFORMED

IMAGES IN FIG. 2

BF Method CR[dB] CNR FWHM [mm]

DAS 58.22 6.40 1.55

MV 66.90 5.98 0.92

LS 56.41 6.08 1.29

α-stable 69.74 7.65 0.32

256 µm, the height of 5 mm, and the center frequency of 3

MHz. The emissions corresponded to 52 steered plane waves

(for the proposed method) and 260 steered plane waves (for

DAS/MV BF methods), for angles between -30◦ and 30◦.

The raw channel data was obtained using the state-of-the art

ultrasound simulator Field II [15].

The in vivo data represents the thyroid gland from a subject

with a malignant tumor. The acquisition was done with a clin-

ical Sonoline Elegra ultrasound system modified for research

purposes, equipped with a Siemens Medical Systems 7.5L40

P/N 5260281-L0850 linear array transducer, emitting series of

focalized waves.

Two of the most commonly used image quality metrics

were calculated (the contrast-to-noise ratio - CNR and the

contrast ratio - CR [dB]). Based on the mean values in a

region R1 (for simulated data it corresponds to a region

inside the anechoic cyst structure and for in vivo data to a

region inside the tumor) and a region R2 (for both types of

data it is a region in the homogeneous surrounding speckle,

at the same depth with the region R1), CR is defined as

CR = |µR1
− µR2

|, where µR1
and µR2

are the mean values

of intensities in region R1, respectively R2. CNR is defined

as CNR =
|µR1

−µR2
|

√

σ
2

R1
+σ

2

R2

, where σR1
and σR2

are the standard

deviations of intensities in R1, respectively R2. The results

of simulated data were compared with standard DAS and MV

method in [16]. Moreover, we have also compared our results

to those obtained with the same BF model as the one proposed

herein, but using a standard Tikhonov regularization (i.e. p

equal to 2 in (6)) [17]. This method has been named LS

(least-squares) BF. Since the in vivo data was acquired with a

clinical scanner, the raw channel data necessary to apply MV

was not accessible. Thus the results on in vivo data were only

compared with standard DAS and LS BF methods.
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Fig. 2. Results of (a) DAS, (b) MV, (c) LS (Tikhonov), and (d) α−stable
BF methods on simulated data with point reflectors and an anechoic cyst
structure. The image quality metrics: CR, CNR, and FWHM are given in the
Table I.
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Fig. 3. (a) Lateral profiles at 50 mm of the DAS, MV, LS, and α-stable BF
methods in Fig. 2; (b) the value of α versus the axial distance in Fig. 2.

A. Simulated data with point reflectors and an anechoic cyst

structure

Fig. 2 presents the BF results of the simulated data contain-

ing 3 point reflectors and an hypoechoic cyst. The green circle

represents the true border of the cyst. We can observe that

DAS BF (Fig. 2(a)) is not able to resolve the dimensionality

of the circular cyst. The cyst appears narrower than its original

dimension, due to the low resolution provided by DAS. MV

(Fig. 2(b)) and LS BF (Fig. 2(c)) provide better resolved

results, i.e. the dimension of the cyst is closer to its real

dimension. However, when using α-stable BF (Fig. 2(d)) we

obtain better result in terms of spatial resolution, contrast,

and resolution of the dimensionality of the scanned structures,

compared with DAS, MV, and LS. The gain in contrast can

be observed in the Table I, where α-stable BF provides an

improvement of 11.52 dB compared with DAS and of 2.84

dB compared with MV. Note that DAS and MV used raw

channel data resulting from 5 times more US emissions than

our method (i.e. 260 plane waves), such as the density of the

BF grid was the same for all beamformers.

Fig. 3(a) depicts the lateral profiles at depth 50 mm (passing

through the 3 point reflectors) obtained with the aforemen-

tioned BF methods. As expected, the 3 points reflectors

are better resolved by α-stable beamformer, having narrower

mainlobe and lower sidelobes compared with the other BF



TABLE II
CR AND CNR VALUES FOR THE in vivo THYROID BEAMFORMED IMAGES

IN FIG. 4

BF Method CR[dB] CNR

DAS 2.98 0.16

LS 2.72 0.22

α-stable 4.26 0.24
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Fig. 4. Results of (a) DAS, (b) LS, and (c) α−stable BF methods on in vivo

data of thyroid with malignant tumor (highlighted by the black arrow). The
image quality metrics: CR and CNR are given in the Table II.

methods (we used FWHM - full width at half maximum,

in Table I, as quantitative indicator). Fig. 3(b) illustrates the

dependence of estimated parameter α on the structures at each

depth of image in Fig. 2. We can observe that the minimum

value of (α = 0.7) is reached at depth 50 mm, where the 3

point reflectors are positioned, imposing sparse conditions to

the scanned medium. Moreover, a value of α ≈ 2 is reached

at the depths containing only homogeneous speckle structures,

thus following a Gaussian distribution. The ability of α to

adapt to the characteristics of the scanned medium is of high

interest, as it allows p to automatically adapt to its best value

in the optimization process.

B. In vivo data: thyroid with malignant tumor

The results of the BF of the thyroid data with a malignant

tumor can be observed in the Fig. 4. The tumor (highlighted

by the black arrow in Fig. 4(a)) is located in the left lobe of the

thyroid, in the proximity of the carotid artery (the hypoechoic

(dark) circular structure). The values of CR and CNR metrics

are presented in the Table II. Regarding the detection of the

tumor, we can observe that by using DAS BF (Fig. 4(a)) it is

difficult to delimit the region of the tumor because of the poor

contrast and resolution of the image. The visual detection is

improved when using LS BF (Fig. 4(b)). Furthermore, due to

the increase in contrast, the edges of the tumor can be better

visualized when using α-stable BF (Fig. 4(c)), compared with

DAS and LS BF. Note that the raw channel in vivo data was not

accessible (only DAS RF beamformed image was available),

which may explain some banding artifacts visible on the α-

stable final image (Fig. 4(c)).

V. CONCLUSION

In this paper, we proposed a new BF method, by generaliz-

ing the previously proposed BF model in ultrasound imaging.

Our method uses an ℓp-norm regularization to solve the inverse

problem on which our model is based. Moreover, p is automat-

ically calculated by relating it to the α-stable statistics of US

images. Thus, our method, in contrast to minimum variance

approaches, does not require any hyperparameter tuning and

could also be of interest in other application domains such

as direction of arrival estimation. Future work will include

the evaluation of other acquisition strategies (e.g., ultrasound

emissions in random directions) or the consideration of joint

regularization terms for the joint reconstruction of several

scanlines.
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