
HAL Id: hal-01517375
https://hal.science/hal-01517375v1

Submitted on 3 May 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

IDF: A framework for the incremental development and
conformance verification of UML active primitive

components
Thomas Lambolais, Anne-Lise Courbis, Hong-Viet Luong, Christian Percebois

To cite this version:
Thomas Lambolais, Anne-Lise Courbis, Hong-Viet Luong, Christian Percebois. IDF: A framework
for the incremental development and conformance verification of UML active primitive components.
Journal of Systems and Software, 2016, vol. 113, pp. 275-295. �10.1016/j.jss.2015.11.020�. �hal-
01517375�

https://hal.science/hal-01517375v1
https://hal.archives-ouvertes.fr


  

 

To link to this article : DOI : 10.1016/j.jss.2015.11.020 
URL : http://doi.org/10.1016/j.jss.2015.11.020 

To cite this version : Lambolais, Thomas and Courbis, Anne-Lise and 
Luong, Hong-Viet and Percebois, Christian IDF: A framework for the 
incremental development and conformance verification of UML active 
primitive components. (2015) Journal of Systems and Software, vol. 113. 
pp. 275-295. ISSN 0164-1212 

Open Archive TOULOUSE Archive Ouverte (OATAO)  
OATAO is an open access repository that collects the work of Toulouse researchers and 
makes it freely available over the web where possible.  

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/ 
Eprints ID : 17014 

Any correspondence concerning this service should be sent to the repository 

administrator: staff-oatao@listes-diff.inp-toulouse.fr 



IDF: A framework for the incremental development and conformance
verification of UML active primitive components

Thomas Lambolais a, Anne-Lise Courbis a,∗, Hong-Viet Luongb, Christian Percebois c

a Laboratoire LGI2P, école des mines d’Alès, Site de Nîmes, Parc Scientifique Georges Besse, 30 035 Nîmes cedex 1, France
bM2M-NDT, 1 rue de Terre Neuve, Miniparc du Verger, bâtiment H, Les Ulis, 91 940, France
c IRIT, équipe Macao, université Paul Sabatier, 118 Route de Narbonne, 31 062 Toulouse, cedex 9, France

Keywords:

State machine refinement

Incremental development

Conformance relations

a b s t r a c t

Modelling component behaviour is widely recognised as a complex task during the specification and design

phases of reactive systems. Our proposal for treating this problem involves an incremental approach that

allows UML state machines to be built using a composition of two types of development: model extension

for adding services or behaviours, and refinement for adding details or eliminating non-determinism. At each

step of the development process, the currentmodel is verified for compliancewith themodel obtained during

the previous step, in such a way that initial liveness properties are preserved. The novelty of this work lies in

the possibility to combine and sequence both refinement and extension developments. This iterative process

is usually not taken into account in conventional refinement relations. This set of development techniques

and verification means are assembled into a framework called IDF (Incremental Development Framework),

which is supported by a tool, under the acronym IDCM (Incremental Development of Compliant Models),

developed herein in addition to the Topcased UML tool.

1. Introduction

Reactive systems are intrinsically difficult to model since they re-

quire designers to address the concepts of parallelism, communica-

tion, synchronisation, abstraction and non-determinism. Such sys-

tems permanently interact with their environment, at speeds deter-

mined by this environment (Halbwachs, 1992). Our work concerns

the specification and design phases, both of which are intended to

define unambiguous behavioural models that characterise the inter-

actions taking place between the system under design and its en-

vironment. This paper focuses on model specifications for compo-

nents, whose behaviour can be modelled by UML state machines.

Such components are designed to be integrated into architectures in

order to model complex systems. In this context, component model

development is emphasised over architectural concerns. It is sug-

gested in this paper that modelling complexity can be best handled

through an incremental approach, whereby the behavioural specifi-

cation of a system is defined step-by-step. We are seeking an incre-

mental design to encompass two development directions: adding de-

∗ Corresponding author. Tel.: +33 4 66 38 70 22.

E-mail addresses: thomas.lambolais@mines-ales.fr (T. Lambolais), anne-

lise.courbis@mines-ales.fr (A.-L. Courbis), hv.luong@m2m-ndt.com (H.-V. Luong),

christian.percebois@irit.fr (C. Percebois).

tails, which is a typical refinement view leading from abstract tomore

concretemodels; and adding new behaviours, services or functionali-

ties, which constitutes an extension mechanism. For these two direc-

tions, the development approach is to be accompanied by evaluation

techniques so as to verify whether the added details or behaviours

actually preserve those previously defined.

We are thus proposing an iterative development process that

achieves agile modelling, by combining such a development ap-

proach with formal evaluation means. The historical account of ag-

ile methods, provided by Larman and Basili (2003), points out that

in 1969 B. Randell and F.W. Zurcher argued that: “The basic approach

recognizes the futility of separating design, evaluation and documen-

tation processes in software design. The design process is structured

by an expanding model [...] It is tested and further expanded through

a sequence of models that develop an increasing amount of function

and detail. Ultimately, the model becomes the system.”

Many works have been proposed by the formal community to of-

fer verification support for system development or UMLmodel devel-

opment, including the verification of temporal logic properties using

model checking techniques and refinement techniques based on the-

orem proving. Nevertheless, we will show that few evaluation means

are suited for what we expect from an incremental development. To

the best of our knowledge, no work has yet to formalise and imple-

ment the incremental development and verification of behavioural

UML models. In previous works (Luong et al., 2008), we have shown



how to implement a conformance relation between two UML state

machines. Then, we have studied and implemented specific relations

based on conformance and suitable for incremental development

(Luong, 2010; Courbis et al., 2012). New topics addressed in details

in this paper are the following:

• an analysis of expected properties of relations used to compare

models during their development;
• a survey of conventional refinement relations with respect to

these properties;
• the set of relations we have implemented, which constitutes the

core of IDF (Incremental Development Framework), along with

their complexity analysis;
• the soundness of the transformation of state machines into LTS;
• a presentation of the tool called IDCM (Incremental Development

of Compliant Models) we have developed to support IDF.

The present article will be divided into ten sections, including this

introduction. Section 2will introduce the incrementalmodelling con-

cepts through an example in order to highlight in Section 3 the fun-

damental properties of IDF relations. These parts will help explain

why representative works in this field, as showcased in Section 4,

lacks the comprehensiveness to cover all incremental development

requirements. Section 5 will then display the formal relations that al-

lowmodels to be comparedwith one another, in drawing attention to

relations that are relevant to fulfilling incremental modelling require-

ments. Furthermore, we demonstrate that their composition allows

a strategy free incremental development of models. Section 6 will

present the implementation of IDF relations. Section 7 will detail the

process of transforming UML state machines into LTS prior to their

analysis, and Section 8 will expand on the example from Section 2

regarding how incremental relations are applied and will yield re-

sults of the model verification step. Section 9 will present IDCM per-

formance results on experimental models. Section 10 will close the

article by a discussion of the strengths and weaknesses of IDF and a

presentation of our perspectives.

2. Incremental development: introductory example

This section characterises incremental development and illus-

trates its main concepts by way of example. The core mechanisms

for designing complex systems consist ofmodel refinement andmodel

extension. We are seeking to support a design process by formal be-

havioural relations that enable the designer to compare early on

models obtained at two different steps. According to our process,

models are built and verified step-by-step. In focusing on reactive

system features, such behavioural comparisons point in particular

to the preservation of liveness properties. This is specific to our ap-

proachwhich differs from usual verificationworks whichmainly deal

with safety properties.

We observe safety and liveness properties by means of the inter-

actions of the system with its environment: accept an event (signal

or operation reception), or perform an action requiring a signal send

or operation call. A trace is a partial sequence of interactions start-

ing from the initial state. The following informal definitions are in

accordance with the more general definitions and topological char-

acterisation given in Alpern and Schneider (1985, 1987). Although

this safety/liveness topology may seem old, this is a complete classi-

fication with respect to linear-time (LT) properties: Schneider (1987)

demonstrated that any LT property is a conjunction of safety and live-

ness properties.

Safety properties. A safety property states that some interactions are

forbidden for the system after some given traces. This specifies that

some traces must not be included in the set of system traces, e.g. “the

system must not deliver any good if the customer has not paid yet”.

Safety properties are satisfied by systems whose behaviours are out-

side of ‘must-not behaviours’ in Fig. 1. P is a safety property if and

MUST MAY MUST NOT
liveness safety

Possible behaviours Forbidden behavioursMandatory behaviours

Fig. 1. Liveness and safety properties through ‘must’, ‘may’ and ‘must not’ behaviours.

only if every violation of P occurs after a finite execution of the sys-

tem (Kupferman and Vardi, 2001). P can only be satisfied after infinite

executions. Hence, testing approaches can only identify some safety

failures.

Liveness properties. A liveness property states that the system will

eventually react as it should after some given traces. This specifies

that some traces are included in the system trace set, and that af-

ter these traces, expected actions will eventually be offered, possi-

bly after an unbound delay, e.g. “the system will refund the user if

he pushes the cancel button”. Liveness properties correspond to the

‘must behaviour’ set in Fig. 1. We consider that deadlock freedom is

a liveness property (Corporation, 2013; Brinksma and Scollo, 1986)

since a system is deadlocked when it rejects any input event. P is a

liveness property if and only if every violation of P never occurs after

a finite execution. Hence, testing approaches cannot identify liveness

failures. Moreover, even if a liveness property P is satisfied after a fi-

nite execution σ , one should verify that all replayed executions σ sat-

isfy property P, since we cannot assume that the considered system

is deterministic. Testing approaches can neither state liveness prop-

erty satisfaction. We can nevertheless analyse liveness preservation

on models. When reasoning on models, liveness properties can only

be established under some fairness assumption.

Fairness assumption. Fairness assumption means that the system is

not allowed to continuously favour certain choices at the expense of

others (Puhakka and Valmari, 2001). The fairness assumption implies

that the system will eventually accept an event occurring infinitely

often. Harmless divergences are possible infinite paths of internal ac-

tions from which, by fairness hypothesis, the system will eventually

exit. On the contrary, critical divergences (or livelocks) are infinite

path of internal actions from which the system cannot exit.

2.1. Informal vending machine specification

As an example, let’s consider the specification of a vending ma-

chine as given below. This specification containsmandatory parts, e.g.

“the machine must refund the customer if the ordered goods are not

obtained”, as well as possible parts, such as options, e.g. “goods could

be cookies”, or services which should be offered most of the time but

cannot be guaranteed, e.g. “the system delivers drinks, unless it has

not been supplied by cups and drinks”. Its basic requirements cor-

respond to the most common uses, e.g. “the machine is designed to

deliver drinks”, while secondary requirements would include main-

tenance functions.

Informal specification of a vending machine

The system delivers goods once the customer has inserted the
proper credit into the machine. Goods are mainly drinks but could
also be cookies. A technician can shut down the machine with a spe-
cial code. When used by a customer, the system runs continuously.
One important feature is that the system must not cheat the user: if
the customer has not inserted enough money, changes his mind or if
the system is empty, the machine is to refund the user.



Customer

Deliver goods

Give change

<< include >> Deliver a good

do / giveChange

MoneyBack

<< component >>

<< active >>

InitialMachine

do / paySelectDeliver

required interface R1{

takeGood operation;

takeChange operation;

}

private paySelectDeliver activity;
private giveChange activity;

1

/takeGood

/takeChange

Fig. 2. (a) Use case diagram 1. (b) The InitialMachine active component and associated state machine.

2.2. Initial requirements and models

The incremental development adopts an agile approach. As stated

by Scott Ambler (Ambler, 2008), “requirements only need to be good

enough: agile software developers do not need a perfect requirement

specification, nor a complete one, ... keep refining and completing re-

quirements.” At first, only simplified and partial user requirements of

the vending machine are considered. These are partial inasmuch as

only some external functions appear, e.g. maintenance functions do

not appear. Moreover, we define hypotheses which are requirements

on the environment. The system has to hold requirements, provided

that hypotheses on the environment are satisfied. The incremental

approach will progressively remove some hypotheses. Hereafter, we

model these requirements by use case diagrams and active compo-

nents whose behaviour is defined by a state machine. The goal of use

case diagrams is to identify the boundaries of the system and to pre-

cise the environment related entities. Use case diagrams are useful to

see at a glance the designer intents: they highlight new interactions

developed at every step which have to be taken into account in the

associated state machine.

Hypotheses

H1 The technician does not shut down the machine.

H2 The customer has enough coins.

H3 There is an unbounded stock of coins to give change.

H4 The customer does not change his mind.

H5 Only one generic type of coin is available.

H6 Good prices are undefined.

H7 The machine is only used by one customer at a time.

Originating requirements

R1 The machine, when supplied, delivers the selected good(s).

R2 The machine can be used as many times as customers pays.

R3 The machine does not cheat the customer.

At this point, the machine may be empty if either the cups or cof-

fee is not available. Since the machine cannot cheat the customer,

it must provide him with a refund in this case. The use case di-

agram in Fig. 2a distinguishes customer from machine and iden-

tifies two main functions: delivering goods, and returning change.

The second function includes refunds if the machine fails to deliver

a good. Other actors, such as the technician or an energy source,

don’t appear. Maintenance operations are not taken into account.

Nevertheless, there is no hypothesis stating that the machine is al-

ways supplied by goods, so that the service “Deliver goods” may

fail.

Use case diagram 1 does not indicate that the machine may be

used several times (R2): all goods may be delivered at once. Fig. 2b

<< refines >>

1  InitialMachine

2  VendingMachine

3  CoffeeMachine

4  AnticipatingMachine

5 CancellableMachine

<< extends >>

<< refines >>

<< refines >>

Fig. 3. Outline of the incremental development process of the coffee machine.

presents a simplified active component and its associated state

machine, demonstrating that goods are delivered one at a time

and moreover that the machine may be used as often as desired.

This is a state-oriented description based on activities conducted

within these states. The upper compartment of the component

compiles declarations relative to operations, signals and activities.

At this level of abstraction, the provided interface is not detailed.

The procedure required to eventually obtain a good is not detailed

at this step. Interactions with the customer only appear through

the takeGood and takeChange operations. Both paySelectDeliver and

giveChange activities are assumed to lead to termination. There

are two transitions from state Deliver a good to state MoneyBack,

both of them triggered by the same completion event, one with

a takeGood effect and the other without any effect. Hence, this

InitialMachine is not deterministic. Non determinism is an abstraction

means which enables us, here, to describe a machine which may

not be able to deliver a good, without exactly specifying how it

fails.

The incremental developments presented herein are diagrammed

in Fig. 3; they consist of three refinements and one extension. This

diagram reveals the designer’s intentions. The “refines” and “ex-

tends” relationships are respectively stereotypes of the UML reali-

sation and specialisation relationships. Hence, refinement between

state machines is a very specific relation between an abstract state

machine and one of its realisations, whereas the extension be-

tween state machines corresponds to a precise notion of speciali-

sation and inheritance. At this point, the figure does not indicate



Customer

Deliver

goods

Give 

change

Insert

coins

Select

good

Prepare 

and deliver 

good

<< include >>

<< include >>

<< include >>

<< include >>

Compute

change

<< include >>

provided interface I2{

{coin, good} new detailed operations;

}

private prepareGood activity;

private computeChange activity ;

private empty operation;

VendingMachine refines InitialMachine
2

AcceptCoin

ProposeGood

/takeGood

coin

coin

Deliver a good

do / prepareGood

GoodDelivery

good

coin

/takeChange

MoneyBack

do / computeChange

when(empty)

Fig. 4. (a) Use case diagram 2. (b) VendingMachine active component and state machine.

whether the refine and extend relations are actually satisfied or

not. Sections 5 and 8 will support the procedure for verifying these

relations.

2.3. Refinements

The refinement steps are intended to add details and decrease

non-determinism in order to obtain a model closer to the descrip-

tion of a possible implementation model. This development can be

visualised along a vertical axis ranging from an abstract to a concrete

view.

First refinement. Originating requirements R1–R3 from the previous

section lack of precision; they are detailed as follows. Each require-

ment Ri is refined by Ri.1 to Ri.ni , where Ri.j may also be refined. The

set of hypotheses remains unchanged.

Refined requirements 1

R1.1 The machine accepts coins from the

customer.

R1.1.1 The machine accepts coins until the

product is selected.

R1.1.2 The machine can accept an unlimited

number of coins.

R1.2 The machine offers a selection of goods.

R1.3 The machine delivers, when supplied,

the selected good.

R2.1 The machine initiates a new transaction

once the current one is finished.

R3.1 The machine returns change to the

customer.

R3.1.1 If the customer pays more than what is

necessary, the machine returns the

appropriate change.

R3.1.2 If the machine is empty, it refunds the

customer in full.

The corresponding refined use case diagram is shown in Fig. 4a;

interactions with the customer appear in Fig. 4b. The VendingMachine

component presents two notions, which we have led to identifying a

special syntax:

(i) the refinement declaration of a component. Here, the designer

wants VendingMachine to refine InitialMachine. At this step, the

refinement clause is a declaration of intent, for subsequent ver-

ification;

(ii) the introduction of newly provided and required interfaces. The

operations coin and good of provided interface I2 introduced

in Fig. 4b are said to be new detailed operations, since they

are refinements of unobservable interactions taking place in

the InitialMachine machine. The fact that these operations are

declared as new detailed operations will lead to hiding them

when comparing the behaviour of VendingMachine to that

of InitialMachine. The coin and good operations represent the

means by which a customer controls the VendingMachine: they

can be observed at the detailed level of this first refinement,

though they are not visible at the first abstract level of details

in Fig. 2b.

The change event when(empty) corresponds to an internal, and

thus uncontrollable event.

Required properties for incremental development. This first refine-

ment exhibits some of the incremental properties we are seeking

to verify: VendingMachine must preserve the liveness properties of

InitialMachine. The fairness assumption states that the loop transition

with event coin on state AcceptCoinwill not be continuously selected

which guarantees that state ProposeGood will be reached. The live-

ness properties of InitialMachine comprise: (i) the machine does not

possess any livelock, since the paySelectDeliver and giveChange activ-

ities are assumed to terminate; and (ii) the machine does not dead-

lock, i.e. completion events are eventually triggered and the machine

can offer goods indefinitely. In VendingMachine, the paySelectDeliver

activity is refined by a sub-state machine in the Deliver a good state,

which has been designed to terminate.

The prepareGood and computeChange activities and the empty op-

eration are all private. Once again, the absence of a livelock relies

upon their termination. We expect VendingMachine to be a correct

refinement of InitialMachine. This will be verified in Section 8 using

the formal relations proposed in Section 5.

Second refinement. According to this refinement, the machine is spe-

cialised as a coffee machine, and two types of coins are proposed. A

coffee is assumed to cost 50p. Hypotheses H5 and H6 are refined into



Customer

Deliver

coffees

Give 

change

Insert

coins

Select

Prepare 

and deliver 

coffee

<< include >>

<< include >>

<< include >>

<< include >>

Compute

change

<< include >>

Insert 

coins10p

Insert 

coins50p

/takeChange

AcceptCoin

/takeCoffee

coin1p[ELSE]

Deliver a good

do / prepareCoffee

CoffeeDelivery

coffee

coin1p, coin5p

coin1p[enough]

when(empty)

CoffeeMachine refines VendingMachine3

provided interface I3 refines I2{

{coin1p, coin5p} operations refine coin;

coffee operation refines good;
}

required interface R3 refines R1{

takeCoffee operation refines takeGood;

}

private enough operation;

private prepareCoffee activity;

ProposeCoffee

coin5p

MoneyBack

do / computeChange

Fig. 5. (a) Use case diagram 3. (b) CoffeeMachine active component and state machine.

H5.1 and H6.1, while requirements R1.2 and R1.3 are refined into R1.2.1
and R1.3.1.

Refined hypotheses

H1–H4 < unchanged >

H5.1 Coins are either 10p or 50p.

H6.1 A coffee costs 50p.

H7 < unchanged >

Refined requirements 2

R1.1.1 The machine accepts 10p and 50p coins.

R1.1.1.1 The machine accepts coins until the product is selected.

R1.1.1.2 The machine can accept an unlimited number of coins.

R1.2.1 The machine only offers coffee.

R1.3.1 The machine delivers coffee.

The new use case diagram is presented in Fig. 5a, and b shows the

component and state machine.

Required properties for incremental development. In order to compare

CoffeeMachine to VendingMachine, the two interfaces must be viewed

at the same abstraction level. Hence, the new coin1p and coin5p oper-

ations are both replaced by coin, and the coffee operation is replaced

by good. All liveness and safety properties of VendingMachinemust be

preserved.

Third refinement. The requirements remain unchanged, but the de-

signer is seeking to improve the way themachine reacts when empty.

The AnticipatingMachinemachine in Fig. 6 is designed to run more ef-

ficiently.

Required properties for incremental development. Although

AnticipatingMachine is declared as a refinement of CoffeeMachine,

this refinement should allow detecting a number of errors. First,

AnticipatingMachine does not preserve the safety properties of

CoffeeMachine since it may initially offer takeChange without any

user interaction. This aspect can be observed by considering the

AcceptCoin state with the completion event when(empty) followed

Accept coin

ProposeCoffee

Deliver a good

when (empty)

AnticipatingMachine refines CoffeeMachine

OutOfStock

coin1p, coin5p

< Same interfaces as CoffeeMachine >

coin5p

coin1p[ELSE]

coin1p[enough]

Money back/takeChange

do / computeChange

do / prepareCoffee

CoffeeDelivery

coffee

/takeCoffee

4

coin1p, coin5p

after(10s)

Fig. 6. AnticipatingMachine active component and state machine.

by the OutOfStock state with the completion event after(10s). Sec-

ond, AnticipatingMachine does not preserve all the liveness properties

since it may initially refuse any coin1p or coin5p actions.

2.4. Extension

Let’s now forward hypotheses H2 and H4. We want to ensure that

the customer is refunded in case he changes his mind or is short of

money. Requirement R3.2 is newly added.

Extended requirement 1

R3.2 The customer can cancel the transaction and has to be refunded.



<< include >>

Customer

Deliver 

coffees

Give 

change

Insert

coins

Select

Prepare 

and deliver 

coffee

<< include >>

<< include >>

<< include >>

<< include >>

Compute

change

<< include >>

Insert 

coins10p

Insert 

coins50p

Cancel

/takeChange

AcceptCoin

/takeCoffee

coin1p[ELSE]

Deliver a good

do / prepareCoffee

CoffeeDelivery

coffee

coin1p, coin5p

coin1p[enough]

when(empty)

CancellableMachine extends

CoffeeMachine

5

ProposeCoffee

coin5p

MoneyBack

do / computeChange

provided interface  I5  extends I3{

cancel new extended operation;

}

cancel

Fig. 7. (a) Use case diagram 4. (b) CancellableMachine active component and state machine.

The corresponding use case diagram, component and state ma-

chine are shown in Fig. 7.

Required properties for incremental development. CancellableMa-

chine is designed as a correction of AnticipatingMachine. It is

declared as an extension of CoffeeMachine. In the following, traces

are denoted using ‘.’ between actions and ‘∗’ for unbounded occur-

rences of actions. CancellableMachine offers new traces, such as

cancel.takeChange or coin∗.cancel.takeChange, though it must still ac-

cept previous behaviours. The liveness properties of CoffeeMachine

must be satisfied by CancellableMachine.

2.5. Increment

We also need a third relation when a development directly in-

cludes both extension and refinement. In the above example, in-

Table 1

Common properties of the extension, refinement and increment relations.

P1: Preorder relations — They are both reflexive and transitive.

P2: Non-symmetric — Non-symmetric relations offer more

possibilities in iterative developments.

P3: Liveness preservation — The relations ensure that the new

model accepts what the former model was required to

accept. This includes new deadlocks and livelocks

detection.

P4: Fairness — Liveness preservation is set up in accordance

with the fairness assumption.

P5: Composability — The composition of extension and

refinement relations preserves the properties of the

incremental relation.

Table 2

The refinement relation must satisfy properties P1–P5 as well as the two properties

P6 and P7 .

P6: Safety preservation — The relation detects new sequences of operations.

P7: Reduction — The relation allows removing optional behaviours.

stead of refining VendingMachine into CoffeeMachine and extending

the latter into CancellableMachine,wemay have directly incremented

VendingMachine into CancellableMachine. This third relation is called

“increments”. This relation must be larger than extension and refine-

ment relations. Moreover, it must contain any combination of exten-

sion and refinement relations in such a way that the final model is

expected to be one of a possible system implementation compliant

with the initial specification. Hence, we shall need a precise notion of

implementation that will be defined in Section 5.

3. Incremental development: required properties of IDF relations

An incremental development is a specification and design process

that combines both refinements, extensions and increments, as well

as a means for their verification. The designer is free to follow several

strategies as depicted in Fig. 8. In Fig. 8a, themodel is first refined and

then extended, whereas in Fig. 8b it is first extended then refined. The

most realistic strategy is the mixed one shown in Fig. 8c.

The incremental design offers many advantages. The designer

can stop specification development if anticipated basic functions

have been defined and then begins system implementation. With

this initial version, the designer can generate quick feedback from

clients on fundamental functions before finalising the complete

model.

The technical feasibility of the solution is addressed prior tomodel

completion; design can thus be controlled in a more reactive man-

ner in order to take into account strategic marketing requirements,

or integrate functional requirement modifications suggested by

clients.

From the example described above, we gather the properties

we have identified for the three relations we are seeking: refine-

ment, extension, and incremental relations. These properties, listed

in Tables 1–3, come from theoretical and pragmatical motivations for

incremental and iterative modelling approaches of reactive systems.

The theoretical background is a mix of formal refinement techniques

Table 3

The extension relation must satisfy properties P1–P5 as well as the two properties P8 and P9 .

P8: Behavioural preservation — The relation detects the removal of optionalbehaviours.

P9: Extension — The relation allows for behavioural extension.



Fig. 8. Incremental development strategies.

and theorem proving, such as the B method (Abrial, 1996, 2010), and

model checking techniques (Baier and Katoen, 2008; Katoen, 2012).

The pragmatical motivations comes from experiences with interac-

tive programming languages, such as the CAML functional language

(Bertot and Castéran, 2004; Sagonas, 2013) and also by practical Agile

approaches (Ambler, 2008) which enable extensions.

First of all, the three kinds of relations must share common prop-

erties, referred by P1–P5 in Table 1. Since these relations are used in

an iterative development process, they all have to be transitive and

reflexive (P1). We also have to find relations which provide a good

balance between a strict verification (strong relations) and a great

expressiveness (weak relations). The former will detect1 too many

(irrelevant) errors, the latter will ignore major errors. Symmetric re-

lations are most of the time too strong for this purpose (P2). For re-

active systems, the main kind of properties we focus on are liveness

properties (P3): wewant the newmodel to be as reactive as the previ-

ous one under fairness assumption (3). This enables us to distinguish

critical divergences (livelocks) to harmless divergences, from which

the system can always eventually exit. Finally, in order to combine re-

finements and extensions, the required relationsmust be composable

(P5). We will see that some useful relations satisfy these five proper-

ties, which shows that this set of five properties is relevant and con-

sistent.

Within the state machine terminology, ‘must behaviours’ corre-

spond to liveness properties. In case of refinement relations, we also

consider safety properties (P6), and the relationmust be wide enough

to remove some non-determinism. This corresponds to ability to re-

move behaviours which are notmandatory (P7). Fig. 9 presents a clas-

sification of the three sought relations. Note that we have chosen

for these verification relations, other notations herein to distinguish

them from the modelling relationships introduced in Section 2.

In contrast with classical refinement approaches, we also consider

partial models which can be enriched. This corresponds to properties

P8 and P9. Clearly, P6 and P9 properties cannot both be satisfied, as

well as P7 and P8.

Various studies have previously addressed the problems of model

comparison or evaluation-based relations, but only a few of them

have actually studied their occurrence in a repetitive development

1 Given a property X and a binary relation R over models, the facts that R detects,

preserves, ensures or allows X are defined as follows:

– R detects X if, for all models M and M′ , when M′ satisfies X whereas M does not,

MRM′ does not hold.

– R preserves X if, for all models M and M′ , when M satisfies X, MRM′ entails that

M′ also satisfies X.

– R ensures X if, for all modelsM andM′ ,MRM′ impliesM′ satisfies X.

– R allows X if, for some modelsM andM′ ,M′ satisfies X andMRM′ .

⊑INC

⊑EXT⊑REF

Incremental relation

Refinement Extension

Preserves ‘must’ behaviours

Preserves ‘must’ behaviours
Removes ‘may’ behaviours

Preserves ‘must’ behaviours
Adds ‘may’ behaviours

Fig. 9. Classification of researched relations.

process that guarantees the aforementioned properties. The review

of existing works presented in the next section points out this short-

coming and illustrates why often proposed refinement relations are

unsuitable for incremental development.

4. State-of-the-art of UML state machine construction and

verification techniques

There is an increasing number of works dealing with UML model

consistency analysis as shown in surveys proposed by Mens et al.

(2005) and Khalil and Dingel (2013). These works address a huge

set of problems named evolution, co-evolution or refactoring which

is larger than our topic of incremental development. We will focus

on works dealing with vertical consistencies of behavioural mod-

els, that is the consistency of models at different levels of abstrac-

tion (Huzar et al., 2005). Most of these works (75% according to

Lucas et al. (2009)) set the semantics using a formal language,

which has led us to review those works addressing model verifi-

cation originating from both the UML community and the formal

community.

The first sub-section below will highlight the main model check-

ing techniques involved in UML model verification and specifically

state machines. Our analysis can be complemented by the review

about model checking for UML proposed by Bhaduri (2004) and

Usman et al. (2008) and the survey about the formal semantics of

UML state machine proposed by Crane and Dingel (2005) and Liu

et al. (2013). The second sub-section will indicate why these tech-

niques, even though they are supposed to be refinements, remain

inappropriate for the incremental development process. Our argu-

ment will be based on the set of properties listed in the previous

section.



4.1. UML state machine analyses

Two main approaches are available: consistency by construction,

and a posteriori consistency.

Sunyé et al. (2001) and Prochnow et al. (2006) treated consis-

tency by construction. Sunyé et al. (2001) addressed the refactor-

ing problem and proposed a state machine transformation that en-

sures behaviour preservation. Transformations are expressed through

rules modifying the state machine structure. Behaviour preservation

is checked by OCL rules, with no demonstration provided about live-

ness or safety preservation. Moreover, this technique is incompati-

ble with the addition of functionalities and can thus only be applied

in a refinement context. Prochnow et al. (2006) defined a number

of rules expressed in OCL or Java at the meta-model level, that per-

form style checking and robustness verification from syntactic and

semantic points of view. This approach offers effective support in

guiding designers but is not dedicated to model comparison from a

behavioural perspective. Pons (2005) proposed an original UML re-

finement approach qualified as being “formal to informal”. She de-

fined refinement patterns expressed on OCL which are inspired from

object-Z refinement principles. There is however no significant infor-

mation about the verification of the refinement.

Most works perform a posteriori consistency analyses by compar-

ing the designed model to a reference model. Since UML semantic is

ambiguous (Fecher et al., 2005), most of works set this semantic with

a formal language (Bhaduri, 2004; Fecher and Schönborn, 2007; Lano,

2009; Schönborn and Kyas, 2010; Liu, S. and Liu, Y. and André, E. and

Choppy, C. and Sun, J. and Wadhwa, B. and Dong, J., 2013; Knapp and

Mossakowski, 2014). An exception is found in Boiten and Bujorianu

(2003) who presented an approach to check the refinement between

state machines without applying any translation into a formal lan-

guage. It is based on an “intuitive” principle of unification. The ratio-

nale of the unification principle is highlighted on a simple example by

developing it both in UML and Z. This approach has not been defined

for general modelling contexts and has not been automated.

The objectives of a posteriori consistency approach relies on the

ability to utilise trustworthy model checking tools; the consistency

analysis modules developed are UML-free and can thus be applied

to other modelling languages as well. We have classified works con-

sidered herein into three categories, depending on the target formal

language. The drawbacks of the techniques involved for incremental

purposes will be analysed in the next sub-section. The main tech-

niques are listed below:

• Set theoretic languages, which encompass B language (Abrial,

1996), Event-B (Abrial, 2010) and Object-Z (Smith, 2000).

Truong and Souquieres (2005) performed a transformation from

UML behavioural models (state machines and collaboration dia-

grams) into B language. During refinements, the preservation of

system invariants is proved. Said et al. (2009); Said (2010); Said

et al. (2013) defined the UML-B language. They propose a trans-

lation from UML state machines to Event-B, which allows states

to be refined and invariant properties to be checked. Rasch and

Wehrheim (2003) translated UML state machines into Object-Z

and performed consistency verifications (basically liveness, dead-

lock and dead-code detection) using the refinement-based model

checker FDR (for Failure-Divergence Refinement), which is a re-

finement relation for the CSP process algebra (Manual FDR2,

2010; Goldsmith and Zakiuddin, 1999). Ruhroth and Wehrheim

(2012) proposed co-evolution and Object-Z refinement. Hudon

and Hoang (2013) defined the UNIT-B method which aims at de-

veloping model via refinement by preserving safety and liveness

properties.
• Process algebras and transition systems, such as CSP (Hoare, 2004),

LOTOS (Bolognesi and Brinksma, 1987), Promela (Holzmann,

1997) and IF (Bozga et al., 2002).

Chimisliu et al. (2009) translated UML state machines into LO-

TOS in order to generate test cases using TGV (Jard and Jéron,

2005). LOTOS specifications can be verified with the CADP model

checker (Garavel et al., 2011). Many equivalence and preorder re-

lations have been implemented within CADP, including strong,

observational, branching and trace equivalences. Lilius and Pal-

tor (1999) and Latella et al. (1999) translated UML state ma-

chines into Promela (Holzmann, 1997), so as to use the SPIN

model checker. This approach was followed up by Burmester et al.

(2004), who devised a way to translate UML state machines into

the syntax of the Uppaal model checking tool. Knapp et al. (2002)

compared state machines with respect to scenarios expressed in

terms of sequence diagrams; properties were verified using the

Uppaal model checker. These techniques allow the model to be

verified with respect to explicitly defined properties but are un-

able to compare two versions of state machines. This work used

the word incremental with a different connotation than ours:

their incremental verification consists of identifying new compo-

nents or new interactions and only verifying the discrepancies

between the new model and the reference model. Meng et al.

(2004) defined refinement using a simulation relation expressed

from a co-algebraic view. A very similar definition was given by

Kouchnarenko and Lanoix (2006). Schönborn and Kyas (2010) de-

fined refinement patterns on state machines based on a simula-

tion relation, whereby the abstract model simulates the concrete

one, with additional conditions ensuring the absence of deadlock.

Scholz (2001) defined refinement in terms of design rules based

on trace inclusion. Ober et al. (2006) translated state machines

into IF expressions and used both the IFx tool and CADP toolbox

to check safety properties. Dragomir (2014) proposed a contract-

based approach in order to compare SysML state machines with

their requirements, taking into account assumptions on the envi-

ronment which is also described by state machines.
• Logical languages, such as temporal logics and description logic

languages (Baader et al., 2003).

First-order logic was introduced in Van Der Straeten et al. (2003)

to verify the consistency between sequences of events defined by

a state machine and a sequence diagram. Royer (2003) demon-

strated an approach for writing and proving temporal logic prop-

erties on UML state machines; refinement aspects however have

not been taken into account. Gnesi and Mazzanti (2005) pre-

sented a state/event-based temporal logic that can be used in a

model checking environment. For our purposes, the drawback of

such approaches lies in the fact that model versions are not be-

ing considered: no support is offered to compare a model under

constructionwith a former version. Moreover, such approaches re-

quire the designer to develop two models that are conceptually

different and therefore require various skills: first a state machine

model, then a temporal logic specification of desired behavioural

properties. Lowe (2008) considered the relationship between CSP

specifications and temporal logic specifications. A refinement-

based model checker such as FDR has been introduced to

check whether a CSP description satisfies a temporal logic

specification.

This review indicates that many of the works using model check-

ers or theorem provers require designers to explicitly express the de-

sired safety and liveness properties in a separate language, which

is not our aim. Among the aforementioned techniques found in the

first two categories, we have focused on those based on equiva-

lence and preorder relations, which could become candidate tech-

niques for supporting incremental developments. Some properties

however are missing. The next sub-section will explain the gaps

existing between these relations and the expected incremental

relations.



Table 4

Comparison of typical refinement relations according to incremental requirements (property P5 will be examined in Section 5.5).

Refinement relations

Observational

equivalence

Trace inclusion Ready

simulation

Event-B and Stuttering

refinement

CSP Failure Divergence

Refinement

≈ ⊑MAY ⊑RS ⊑ ⊑FDR

P1 Preorder X X X X X

P2 Non symmetric X X X X

P3 Liveness

preservation

X X X

Deadlock

detection

X X X X

Livelock

detection

X X X

Divergence

detection

X X X X

Critical and

harmless

divergences

distinction

X X

P4 Fairness

assumption

X X X

P6 Safety

preservation

X X X X X

P7 Reduction X X X

P8 Behaviour

preservation

X

P9 Extension

4.2. Refinement relations versus incremental development

The relations we consider for comparing an abstract model with a

concrete one, which is the refined version, are: Milner’s observational

equivalence (Milner, 1989), trace inclusion, ready simulation (Bloom

et al., 1995), stuttering and Event-B refinements (Kouchnarenko and

Lanoix, 2006; Meng et al., 2004; Abrial, 2010), and lastly CSP Failure

Divergence Refinement (FDR) (Manual FDR2, 2010).

For refinement purposes, trace inclusion compares whether or not

the traces of the concrete model are included in the abstract model

traces. Ready simulation is a constrained simulation relation yield-

ing a more observable relation than observational equivalence. Bloom

et al. (1995) provided a precise definition of the ready simulation.

Aldini et al. (2010)presented and compared behavioural equivalences

on process algebras. Stuttering refinement is defined on propositional

labelled transition systems and on UML state machines; this refine-

ment appears to exhibit the same characteristics as the Event-B re-

finement (Abrial, 2010). Stuttering refinement is based on a simu-

lation together with additional properties to ensure the absence of

deadlock and livelock. Schneider et al. (2014) considered refinement

and extension approaches in Event-B. However, as they mentioned,

“refinement in Event-B does not require liveness properties to be

preserved”. Therefore, the CSP semantics they associated to Event-B

models does not take failures into account. In a CSP context, the fail-

ure preorders introduced in Brookes (1984) differentiate processes by

their “failure pairs”, which consist of sets of refused actions after ob-

servable traces.

Let’s now compare these relations with respect to the required

properties P1 through P9 for our incremental construction. Three as-

pects of liveness will be detailed: deadlock detection, critical diver-

gence detection, and the ability to distinguish between critical and

harmless divergences. Otherwise, it is fair to consider divergence as

harmless. The composability requirement P5 is irrelevant here since

it concerns the composability of extension and refinement relations

that is not addressed in the studied relations; this requirement will

be further examined in Section 5.5.

Table 4 summarises the comparisons of these relations. Observa-

tional equivalence is one of the strongest relations; it satisfies nearly

all our target requirements. This bisimulation however is a symmet-

ric relation and cannot be considered as an incremental development

relation. Unfortunately, if we were to only consider the observational

simulation, thenmost of its attractive propertieswould disappear. Ob-

servational simulation is similar to trace inclusion, with trace inclu-

sion naturally being the weakest of these relations and rarely con-

sidered as a refinement relation. It fails to detect any liveness risk

since new deadlocks and any type of divergences may appear. Never-

theless, trace inclusion deserves to be mentioned since it is the sim-

plest and largest relation: in the case of deterministic models, every

preorder relation considered coincides with the trace inclusion. The

other three relations are all refinements. Ready simulation offers an

improvement over observational simulation, when combining a con-

dition that makes it coincide with a simulation plus a refusal predi-

cate; it detects some liveness properties, but not livelocks. Stuttering

and Event-B refinements improve the ready-simulation by detecting

livelocks, though they are not in accordance with fairness hypotheses

and cannot distinguish between critical and harmless divergences.

Lastly, the CSP refinement detects all liveness violations but considers

divergences as dangerous.

All these relations can be considered as classical refinements; their

goal is to reduce the level of non-determinism and to introduce re-

fining details. It comes as no surprise therefore that none of these

relations can be used in an incremental approach for the extension

requirement. For refinement purposes, the ready simulation is close

to being the refinement relation we are seeking, except for the fact

that it is too strong: it does not allow for optional behaviours to be

removed. From this study, we can also state that none of the other

three preorder relations (⊑MAY, ⊑ and ⊑FDR) are proper refinement

relations for the liveness preservation and fairness requirements.

Next section presents relations we have selected to fulfil require-

ments P1 to P9.

5. Formal definitions of IDF relations

Since the relations we are seeking must all preserve liveness un-

der fairness assumption, we have studied a specific relation, whose

lonely goal is to preserve liveness. This relation is conformance rela-

tion conf (Cleaveland and Steffen, 1990; Leduc, 1992). Although it is

not transitive, it is a convenient means to define the three required



Fig. 10. P, Q and R are not distinguishable with the conf relation.

Fig. 11. Benefits of the conf relation over observational equivalence, observational pre-

order and trace equivalence.

relations for IDF. This section aims at explaining and formally defin-

ing these relations on labelled transition systems (LTS).

5.1. Labelled Transition Systems and acceptance sets

We have adopted the following notations for the typical LTS no-

tions (Milner, 1989; 1999) and definitions related to conformance

(Cleaveland and Steffen, 1990; Leduc, 1992; Tretmans, 1999).

Let Act = L ∪ {τ } be the set of all actions, where L is the set of

observable actions, and τ the internal action. Moreover, let P be the

set of all names of states or processes.

Definition 1 (Labelled Transitions Systems). (Milner, 1999) An LTS

〈P,A, →, P〉 is a tuple of a non empty set P ⊆ P of states, a set A

⊆ Act of names of actions where A = L ∪ {τ }, with L ⊆ L the set of

visible actions of the LTS, a relation of transitions→⊆ P × A× P, and

an initial state P ∈ P .

The LTS 〈P,A,→, P〉 is also designated by P. Let P and P′ be LTS, a,

ai, 0 ≤ i ≤ n actions of Act and σ ∈ L∗ a sequence of observable actions.

Next, let’s define:

P
a
−→ P′ =de f (P, a, P′) ∈→

P
ε

H⇒ P′ =de f P = P′ or P
τ ···τ
−−→ P′

P
a

H⇒ P′ =de f ∃P1, P2. P
ε

H⇒ P1
a
−→ P2

ε
H⇒ P′

P
a1 ···an
H⇒ P′ =de f ∃P0, . . . , Pn. P = P0

a1
H⇒ · · ·

an
H⇒ Pn = P′

P
σ

H⇒ =de f ∃P′. p
σ

H⇒ P′

Traces : Tr(P) =de f {σ ∈ L∗ | P
σ

H⇒}

P after σ =de f {P′ | P
σ

H⇒ P′}

Out(P) =de f {a ∈ L | P
a
−→}

The conformance relation will be defined with acceptance sets,

as proposed by Hennessy (1988). Acceptance sets capture both what

a process may accept and what it must accept; they offer a conve-

nient means for observing if one process is more deterministic than

another.

Definition 2 (Acceptance set). Acc(P,σ ) =de f
{

X | ∃P′ ∈ P after σ , such that X = Out(P′)
}

For instance, LTS S and T of Fig. 11 have both the same ac-

ceptance set after coin: Acc(S, coin) = Acc(T, coin) = {{coin}, {coffee}}.

This means that after coin, they must accept one of these two actions,

coin or coffee, but not both. This acceptance set also indicates that

they must refuse any other action, which is a safety property. Accep-

tance sets are compared by the following preorder ⊂⊂, where A ⊂⊂ B

means that A is less non-deterministic than B.

Definition 3 (Non-determinism preorder). Let A and B ⊆ P(L), A ⊂⊂

B if, for all a in A, there exists b in B such that b ⊆ a.

For example, for the two LTS S and D of Fig. 11, Acc(S, coin) =

{{coin}, {coffee}} and Acc(D, coin) = {{coin, coffee}}; Acc(D, coin) ⊂⊂

Acc(S, coin) points out that D is more deterministic than S.

5.2. The conformance relation: the reference implementation relation

Conformance testing methodologies proposed by ISO and ETSI

(ISO/IEC9646, 1991) are designed to compare an implementation

model with a standard specification. Standard specifications or rec-

ommendations serve to define both the mandatory and optional

parts. The main idea behind conformance is to verify agreement be-

tween an implementation and its specification on required parts; in-

formally speaking, an implementation conforms to a standard if it has

properly implemented all mandatory parts of the standard (Moseley

et al., 2006). In our framework, conformance will be taken as the ref-

erence relation to assess if a model implements a specification in the

right way.

Conformance leads to the verification that the implementation

model ‘must feature’ all behaviours required by the specification. A

precise definition will be needed not only of what it means to exhibit

a behaviour (accept and/or offer, from an observational point of view)

but also of how the may and must parts can be described through

non-determinism.

The reference implementation relation between LTS, conf⊆ P ×

P, can now be defined by means of acceptance sets, as follows:

Definition 4 (Conformance relation conf). Q conforms P, written

Q conf P, if for all σ ∈ Tr(P). Acc(Q,σ ) ⊂⊂ Acc(P,σ ).

The conf relation is comparable, in a mathematical sense, to Mil-

ner’s bisimulations (Milner, 1989), as stated by the following propo-

sition:

Proposition 5.1. Milner’s equivalence relations (strong equivalence ∼,

observational congruence= and observational equivalence≈ ) are in fact

conformance relations: ∼ ⊆ = ⊆ ≈ ⊆ conf.

Hence, in observational terms, equivalent processes are also con-

forming processes. The conformance relation considers fairness in

the same way as observational bisimulation. In particular, P, Q and

R in Fig. 10 are such that P = Q = R, hence the conformance relation

is applicable in both directions for these three processes. After coin,

these three processes will eventually accept the coffee action as well.

The fact that P conf R shows that some livelocks are harmless. This

finding distinguishes conf (and relations stronger than conf) not only

from the CSP refinement relations (Bolton and Davies, 2002; Hoare,

2004), in which any livelock is considered dangerous, but also from

failure preorders (Leduc, 1995).

The benefit of conf over observational equivalence is its lower dis-

crimination than Milner’s observational congruence (=). In Fig. 11 for

instance, we derive S conf T, T conf S, but S 6= T . From an observa-

tional standpoint, nothing distinguishes S from T. The primary ben-

efit of the conf relation lies in detecting non-determinism for the

purpose of identifying whether or not liveness properties are being

preserved. Once again, in the example shown in Fig. 11, process S

may refuse coffee after coin+, a non-empty unbounded occurrences

of coins, whereas process D, which is deterministic, cannot. S and D

are trace equivalent, yet not in conformance. Finally, the conformance

relation supports trace extension and/or reduction:U conf S,whereas

U never offers a coffee action but instead offers a new stop action.



Fig. 12. Example of a reduction followed by an extension.

5.3. Extension and reduction relations

Extension and reduction relations are defined as extending or re-

ducing traces, while preserving conformance. They are defined in

Brinksma and Scollo (1986) and denoted ext and red. P ⊑RED Q (resp.

P ⊑EXT Q) means that P is reduced by Q, or Q red P (resp. P is ex-

tended by Q, or Q ext P). These relations are defined as follows:

Definition 5 (Reduction relation ⊑RED). P is reduced by Q, written

P ⊑RED Q, if Tr(Q ) ⊆ Tr(P) and Q conf P.

Definition 6 (Extension relation ⊑EXT). P is extended by Q, written

P ⊑EXT Q, if Tr(P) ⊆ Tr(Q ) and Q conf P.

In Fig. 12, process R is a reduction of S, hence R conf S is also de-

rived. Process E is an extension of R, although it does not conform to

S, since E refuses coin and coffee after the trace coin.coin, whereas S

must accept either coin or coffee.

5.4. Incremental relations

Fig. 12 reveals that process R cannot be used if the underlying goal

is to pursue the development: we may extend R and generate a pro-

cess E, but E is not a correct implementation of S. The goal of an incre-

mental relation is for any implementation of an incremented process

to also be an implementation of the initial process. Consequently, we

are specifically seeking a relation that satisfies the following prop-

erty:

Definition 7 (Incremental relation⊑INC). R is incremented by S, writ-

ten R ⊑INC S, if for all I, I conf S ⇒ I conf R.

The⊑INC relation has been defined by Leduc (1991) and is denoted

confrestr,where R ⊑INC S = S confrestr R. This relation is our reference

incremental relation. The⊑INC relation enjoys the two following prop-

erties:

• ⊑INC ⊆ conf−1. This means that⊑INC can be used as an implemen-

tation relation. Since it is transitive, any increment of an incre-

mented model will also lead to a valid implementation. This as-

sessment enables us to pursue a development process at any time.
• If P ⊑INC Q, for any trace σ of P that is not a trace of Q, then Pmust

refuse everything after σ .

The extension relation is an incremental relation, i.e.⊑EXT ⊆⊑INC.

As shown in Fig. 12, the reduction relation is not incremental. We

have thus defined a new relation ⊑REF as the part of ⊑RED that is an

incremental relation.

Definition 8 (Refinement relation ⊑REF). ⊑REF =de f ⊑RED ∩ ⊑INC .

The following property is sufficient to characterise ⊑REF:

• P ⊑REF Q if P ⊑RED Q and for any trace σ of P that is not a trace

of Q, then Pmust refuse everything after σ .

Fig. 13 displays two examples of incremental developments for

a simple vending machine V. The machine VR is a refinement of V,

which in turn limits the possible pricing to just one or two coins.

Fig. 13. A process Vwith one refinement and extension.

Fig. 14. Position of incremental relations included in ⊑INC with respect to the confor-

mance relations included in conf−1 (Leduc, 1992).

This reduced machine may accept fewer actions, yet must still ac-

cept whatever V is required to accept. The extended machine VE adds

the possibility of being empty, therefore refusing the coffee button

forever in this case but still accepting coin action, which is the only

mandatory action after the coin∗ trace.

Lastly, let’s define =ct as the refinement equivalence relation.

Definition 9 (Refinement equivalence relation =ct). =ct=de f⊑RED

∩ ⊑EXT .

We also have=ct = conf ∩ =Tr . The=ct relation can be qualified as

a strict relation for both realisation and abstraction in that it allows

the incrementedmodel to bemore abstract or more concrete without

deleting optional functions or adding new functions. Fig. 14 provides

a synthesis of the set of conformance and IDF relations in addition to

their inclusion. Table 5 summarises their properties.

Property P5, which focuses on the composition between incre-

mental relations, is presented in the following sub-section. All the

preorder relations included in conf display the following results,

which enable reducing the complexity of the conformance relation

computation.

Theorem 1. For any relation ⊑ among {=ct,⊑REF,⊑EXT, ⊑INC}, any
process P, Q, P′ and Q′, if P′ ≈ P and Q′ ≈ Q, then

P ⊑ Q ⇐⇒ P′ ⊑ Q ′.

Corollary 1. For any relation ⊑ among {=ct, ⊑REF, ⊑EXT, ⊑INC} and
any process P and Q:

P ⊑ Q ⇐⇒ minobs(P) ⊑ minobs(Q )

where minobs(P) is the smallest process observationally equivalent to P.

These results are a direct consequence of both Proposition 5.1 and

the transitivity of preorder relations. Indeed, P′ ≈ P⇒P′⊑P and Q′ ≈

Q⇒Q⊑Q′. From P′⊑P⊑Q⊑Q′, we conclude that P′⊑Q′.

5.5. Composability of IDF relations

We have defined a set of relations to develop models, according

to refinement or extension, aimed at applying several development



Table 5

Analysis of conformance relations for incremental developments.

IDF relations

Conformance Reduction Refinement equivalence Refinement Extension Incremental relation

S′ conf S S ⊑RED S′ S =ct S′ S ⊑REF S′ S ⊑EXT S′ S ⊑INC S′

P1 Preorder X X X X X

P2 Non symmetric X X X X X

P3 Liveness preservation X X X X X X

P4 Fairness assumption X X X X X X

P5 Composability X X X X

P6 Safety preservation X X X

P7 Reduction X X X X

P8 Behaviour preservation X X

P9 Extension X X X

Table 6

Results of IDF refinement relation com-

positions.

◦ ⊑EXT =ct ⊑INC

⊑REF ⊑INC ⊑REF ⊑INC

=ct ⊑EXT =ct ⊑INC

⊑INC ⊑INC ⊑INC ⊑INC

strategies, as highlighted in Fig. 8. We must therefore verify the com-

position of these relations in order to guarantee that the relation re-

mains incremental. It corresponds to property P5 which guarantees

that the development of models can be iterative and strategy-free.

We need to check that inc1 ◦ inc2 ⊆⊑INC where inc1 and inc2 rep-

resent any incremental relations ⊑INC, ⊑REF, ⊑EXT or =ct. Let’s start

by studying the composition of any preorder relations.

Proposition 5.2. Let A be a preorder and X a relation such that X ⊆ A,

we then have A ◦ X = X ◦ A = A.

Since =ct ⊆ ⊑EXT, we conclude that ⊑EXT ◦ =ct = =ct ◦ ⊑EXT =

⊑EXT. This finding suggests that relations ⊑EXT and =ct involved in

local refinements guarantee a result that implements the specifica-

tion with relation ⊑EXT. The same reasoning can be applied to ⊑REF

and =ct: ⊑REF ◦ =ct = =ct ◦ ⊑REF = ⊑REF. In similar manner, since

⊑EXT ⊆ ⊑INC, =ct ⊆ ⊑INC and⊑REF ⊆ ⊑INC, the composition of these

relations with ⊑INC is included in ⊑INC.

Proposition 5.3. ⊑REF ◦ ⊑EXT = ⊑EXT ◦ ⊑REF = ⊑INC .

The proofs of these two propositions are straightforward and can

be found in (Luong, 2010). This set-up implies that relations ⊑EXT

and ⊑REF involved in local refinements guarantee a result that im-

plements the specification with relation ⊑INC.

Table 6 provides a summary of the combinations of local refine-

ments and extensions. Since the resulting relation of any composi-

tion is included in ⊑INC, it can be concluded that any sequence of

refinements and extensions leads to an incremental relation with no

restrictions being placed on incremental relation sequences. This out-

come proves that property P5 is preserved.

6. Implementation and complexity of IDF relations

Even though the conformance and refinement relations have been

defined by Brinksma and Scollo (1986) and Leduc (1992), we are

still not aware of any published method to compute them. We have

thus proposed two algorithms based on the reduction relation to im-

plement these two relations. We will provide an initial overview of

the method for computing the reduction relation and then a second

overview of the method for computing the extension relation based

on the conformance algorithm.

6.1. Implementation of relations

Implementation of reduction and extension preorders. The relation

⊑RED is useful for computing conf and ⊑REF as will be shown here-

after; furthermore, it is based on the same principle as ⊑EXT, which

is an incremental relation. In order to compute the reduction rela-

tion, we studied a very similar concept: the must preorder, defined

in Cleaveland and Hennessy (1993). Consequently, reduction can be

computed as a simulation between acceptance graphs, in addition to

a verification of acceptance set inclusion. An acceptance graph is de-

fined as a deterministic LTS, wherein the states are associated with

acceptance sets. Similarly, an extension is the opposite simulation

between acceptance graphs, while being combined with the same in-

clusion of acceptance sets.

Theorem 2. Let P and Q be two LTS whose acceptance graphs are re-

spectively T and U:

1. P ⊑RED Q ⇐⇒ T strongly simulatesU and Acc(u) ⊂⊂ Acc(t), for

every pair (t, u) of simulated states.

2. P ⊑EXT Q ⇐⇒ U strongly simulates T and Acc(u) ⊂⊂ Acc(t), for

every pair (t, u) of simulated states.

Let’s now refer to our work (Luong, 2010) on precise definitions

of acceptance graphs and the simulation between them, as well as

the corresponding propositions that allow implementing reduction

and extension relations. For a better understanding, the concepts of

acceptance graph and inclusion of acceptance sets are illustrated in

Section 8.

These developments are suited to the preorder relations (reduc-

tion and extension), which are stronger than the conformance rela-

tion, as shown in Fig. 14, though not for the conformance relation it-

self. The conformance relation is implemented as follows and serves

as a basis for the incremental relation.

Implementation of the conformance and refinement relations. It is

known (Leduc, 1992) that conf−1 = ⊑EXT ◦ ⊑RED, which means that

Q conf P ⇔ ∃R such that P ⊑EXT R ∧ R ⊑RED Q . The goal then consists

of finding an R process of this type. In Luong et al. (2008) and Luong

(2010), we have shown that the smallest extension of P and Q, written

Merge(P, Q), is always adequate, i.e.:

Theorem 3. Let P and Q be two LTS. Q conf P ⇐⇒ Merge(P,Q ) ⊑RED

Q.

The reader can refer to Khendek and von Bochmann (1995) for a

precise definition of the Merge operator. The demonstration of this

theorem is given in Luong et al. (2008). Hence, the conformance

relation is verified by a simulation of an acceptance graph and a

merge acceptance graph combined with trace inclusion. For the re-

finement relation ⊑REF, the implementation step is performed us-

ing the property presented above, i.e. P ⊑REF Q ⇔ P ⊑RED P ∧ ∀σ ∈



Tr(P) − Tr(Q ),Acc(P,σ ) = {∅}, which indicates that the refinement
algorithm is the same as the reduction algorithm, in adding the fol-

lowing verification: any action accepted by the reference model that

has not been defined in the refined models leads to a stop.

Implementation of the incremental relation. For the incremental

relation ⊑INC, the implementation step is performed using the

property presented above, i.e. P ⊑INC P ⇔ Q conf P ∧ ∀σ ∈ Tr(P) −

Tr(Q ),Acc(P,σ ) = {∅}.

6.2. Complexity of incremental development relations

Relations for incremental development are based on a strong sim-

ulation between two acceptance graphs and the verification of accep-

tance set inclusion. Let us consider two LTS to be compared having at

most n states andm transitions. The complexity of a strong simulation

is quadratic in n andm (Fernandez and Mounier, 1992), that of inclu-

sion of acceptance sets is polynomial. Building acceptance graphs is

a problem of conversion of a non-deterministic finite automaton to a

deterministic finite automaton (Cleaveland and Hennessy, 1993). It is

a PSPACE-complete problem, whose time complexity in worse case is

exponential (Van Glabbeek and Ploeger, 2008). Cleaveland and Hen-

nessy (1993) pointed out that, in practice, acceptance graphs have

less states than the LTS they are generated from. There are some so-

lutions to deal with this complexity. Let us first note that in the case of

LTS generated from state machines, we only have small LTS, i.e. of the

same size order as state machine sizes. Secondly, we can take advan-

tage of computing at first a minimisation with respect to the obser-

vational equivalence. The complexity of observational minimisation

is linear. If both minimised LTS are observationally equivalent, any

conformance preorder is satisfied. Otherwise, the conformance pre-

orders can be computed on minimised LTS as proposed in Corollary 1

in Section 5.4.

7. Transformation of state machines into LTS

The following sub-sections present the UML concepts taken into

account and the LTS semantics we have associated to state machines.

We will discuss the complexity and correctness of the transforma-

tion. Data and time are not represented in LTS, so that we cannot ex-

pect properties related to data and time to be analysed on LTS. Never-

theless, the proposed transformation has to guarantee that any live-

ness and safety property (unvalued and untimed) of a LTS is a prop-

erty of its originating state machine. This will be checked in the last

Section 7.3.

7.1. UML component and state machine features

Wewill focus on synchronous communication to ease the reading

of the article. Asynchronous communications such as signal trans-

missions and receptions are represented by synchronous mechanism

using buffers modelled by LTS. By this way, there is no restriction to

automate the transformation of asynchronous communications. In

referring to the UML standard, the state machines involved herein

are of the behavioural state type, without a history state. Composite

states having concurrent regions are restricted to independent re-

gionswithout internal synchronisation. They aremodelled by parallel

LTS which are synchronised on the provided and required operations.

The transformation of concurrent regions is not presented in detail to

ease the reading of the article. States can be of either the simple or

submachine state type, i.e. associated with a state machine.

From the entire range of pseudostates, let’s consider just the initial

pseudostates, entry points and exit points. The transitions may contain

a trigger of either the call event, time or change event type.

Guards are transformed from an abstract point of view, without

taking any data constraints into account. In other words, their expres-

sion is free. In order to indicate whether all possible switches have

been taken into account, one guard however can be labelled with the

keyword ELSE.

An effect may be associated with transitions. We have opted to

model effects by activity diagrams, whose nodes are presently limited

to call operations and control nodes of the initial, activity final and flow

final types. The activity diagram may represent two configurations: a

sequence of actions, or an infinite loop of actions.

7.2. Transformation rules

Let SM denote the set of state machines. The rules presented here

define a relation t ⊆ SM × P between state machines and LTS. The

rules and their compositions are defined in such a way, that we shall

prove relation t to be a function. The transformation goal is twofold:

reveal communication sequences between the component and its en-

vironment, and hide actions that are irrelevant to the communica-

tion. Transformation, based on the set of patterns defined in Fig. 15,

is performed automatically.

Hiding consists of representing actions by internal actions labelled

τ , written ‘i’ in the CADP LTS textual format. Below is the list of ab-

stracted state machine concepts:

• guards (cases 4 and 5 in Fig. 15): data used to base the choice are

not depicted; the LTS indicates that several paths can be traced

from the state representing the choice;
• change event and time event (case 3 in Fig. 15): time is not ex-

plicitly represented in LTS; the LTS models a system with internal

activity (e.g.waiting for a time to elapse) without any control from

its environment;
• private operation: any private operation performed under state

machine control is modelled by an unobservable action, which

means that for any case in Fig. 15 where operations describing

effects are private, the corresponding label no longer contains the

name of the operation but instead τ . This same reasoning is ap-
plied when transforming an action belonging to an activity dia-

gram (case 6 and 7 in Fig. 15) whose operation is private.

Transformation rules can be derived from the same state as many

times as there are output transitions, which suggests that UML transi-

tions exiting a common UML state are transformed by applying rules

corresponding to their types from the same LTS node. An LTS node

corresponding to a UML node on which several transformations are

applied is called a compositional node. Let’s note that case 4 in Fig. 15

leads to two possible configurations:(1) if the transitions are of case 4

without the ELSE guard, in a combination without any other type of

transition, then a deadlock node is generated; and (2) for other cases

(e.g. type 4 without ELSE combined with case 2), the state machine

cannot be considered as definitively locked since an event may trig-

ger a transition to allow exiting the state.

The transformation may highlight inconsistent configurations, in

which some transitions cannot be transformed due to the impossi-

bility of firing. In such cases, inconsistent transitions are eliminated

and a warning is issued. These kinds of configurations are described

by the following cases:

• Case 1 combined with any case from 2 to 5: the completion event

rule enforces that only the transition of case 1 can be fired; con-

sequently, other transitions of cases 2 through 5 are eliminated.
• Cases 2 or 5 combined with case 4, including a guard and ELSE

clause: again, the completion event rule enforces that only tran-

sitions with guards are fired; the transitions of cases 2 or 5 can

never be fired and consequently get eliminated.

An activity associated with a node is represented by a sequence

of actions of the Call Operation type: such actions are either hidden

if they are internal operations, or visible if they correspond to meth-

ods that belong to a required interface. Two kinds of activities are



Fig. 15. UML to LTS transformation rules for (a) a state without activity (before hiding effects). (b) A state with activities.

considered in Fig. 15: activities with a final node (case 6); and ac-

tivities without an end (case 7), which need to be interrupted by a

trigger associated with a transition leaving the state. Case 6 features

three combinational nodes hosting several transformations of output

transitions: input node and node 2 hosting transformations of only

the UML-triggered transitions (cases 2, 3 and 5), and node 3 hosting

transformations of all UML transitions since they correspond to the

end of the activity. Case 7 also contains three combinational nodes

hosting just the UML-triggered transitions since a completion event

can never occur.

Lastly, transforming a submachine node consists of distributing all

output transitions onto its internal states by applying rules that de-

pend on the type of transitions, as previously explained.

Transformation experiments have been conducted on UML state

machines designed under the Topcased environment (Farail et al.,

2006). Transformation of a state machine is automatically performed

through a Java module implemented within our IDF framework by

applying rules presented above. The LTS are generated in the Alde-

baran format of CADP (Garavel et al., 2011). When several rules may

be applied on a same state, a priority order is defined: cases 6 and

7 are of higher priority, cases 1 and 3 are of medium priority and

cases 2, 4 and 5 are of low priority. The priority order and the map-

ping between states of the state machine and the LTS ensures that the

transformation is deterministic. As the transformation is guaranteed

to terminate, this proves that the relation t ⊆ SM × P is a function

t ∈ SM 7→ P . Fig. 16 provides the LTS stemming from the transforma-

tions of some state machines presented in Section 2.

7.3. Complexity and correctness of the transformation

Complexity analysis. Given a state machine with n states without

concurrent region andm transitions, we deduce from the transforma-

tion rules of Fig. 15 that the time complexity of the transformation

is linear and the associated LTS space is bounded by 2n+ 4m. Con-

current regions of composite states are transformed into LTS whose

complexity is exponential with respect to the number of transitions

whose event or actions are visible. In practice, the LTS is greatly re-

duced when actions are internal since a composition of τ actions

produces a τ action. In other words, if the concurrent region han-

dles only internal actions, the corresponding LTS only contains a τ
transition.

Correctness of the transformation. One key point has to be discussed

concerning the correctness of the abstraction from state machines to

LTS. The transformation proceeds by abstraction on time and data.

Moreover, the action language is limited to operation call and signal

send. Other actions are considered as internal. We have to prove that

our abstraction is correct, i.e. that any LT property p of the LTS abstrac-

tion is also a property of the state machine. The correctness property

can be written:

Correctness: For any state machine s ∈ SM,

for all LT property p, t(s) |H p ⇒ s |H p. (1)

We can limit ourselves to the analysis of safety and liveness prop-

erties, since any LT property is a conjunction of both (Schneider,

1987). If, for a state machine or a LTS m, we write safety(m) and live-

ness(m) the sets of safety and liveness properties of m, (1) can be

rewritten as follows:

(1) ⇔

{

safety(s) ⊇ safety(t(s))
liveness(s) ⊇ liveness(t(s))

⇔

{

Tr(s) ⊆ Tr(t(s))
∀σ ∈ Tr(t(s)). Acc(s,σ ) ⊂⊂ Acc(t(s),σ )

(2)

Note that, although state machines are informal, we use trace and

acceptance sets notations on state machines. Trace and acceptance

sets of state machines take into account data and guards, but must be

written in the same language than those of LTS, which only consists

of unvalued and untimed visible actions. (2) means that the trans-

formation function t may add traces and add non-determinism (see

Definitions 2 and 3 p. 20). Saying that s is more deterministic than

t(s), for traces of t(s), also means that s has more liveness properties



0

1

23

4

5 6 7

8

9

10

11

i

i

coin5p

coin1p

i

i

coffee

coin5pcoin1p
i

i i

i

takeCoffee

i

i

takeChange

a. LTS3: CoffeeMachine

0

1

23

4

5

6 7

8

9
10

11

coin5p

icoin1p

i

takeChange

i

i

coin5p

coin1p

i

i

coffee

coin5p

coin1p

i

i

takeCoffee

ii

b. LTS4: AnticipatingMachine

8

4

0

9

5

1

6

2

7

3

takeChange

i

i

cancel

coin5p

coin1p

i

i

icancel

coffee
coin5p

coin1p

i

cancel

i

takeCoffee

i

c. LTS5: CancellableMachine

Fig. 16. LTS generated from state machines of the Coffee Machine.

than t(s). Models s and t(s) are finite, but Tr(t(s)) may be an infinite

set of traces. The two conditions of (2) have to be checked on ev-

ery translation pattern of Fig. 15, as well as on their compositions.

Machine s and LTS t(s) in cases 1 and 2 have the same traces and

same acceptance sets (τ transition introduced in case 1 will have

to be considered carefully when composing with other cases). In

case 3, we have to make the assumption that condition c is a sat-

isfiable formula. In some executions, c may never become true and

effect would be a refused action. Nevertheless, we consider that in

some circumstances and other executions, c may become true, so

that effect will eventually happen. Under this assumption, s and t(s)

have same traces and acceptance sets. This is different for cases 4

and 5. In case 4, if guard is always true, then Acc(s, ε) = {{effect}} ⊂⊂

Acc(t(s), ε) = {{effect}, ∅}, so that liveness(s)⊇liveness(t(s)) and

traces are the same. If guard is always false, Acc(s, ε) = {∅} ⊂⊂

Acc(t(s), ε). In case 5, if guard is always true, Acc(s, event) =

{{effect}} ⊂⊂ Acc(t(s), event) = {{event}, {effect}}. If guard is always

false, Acc(s, event) = {{event}} ⊂⊂ Acc(t(s), event). Cases 6 and 7 are

straightforward.

We now have to consider compositions of cases. Let us con-

sider only problematic cases. Case 2 has to be considered with

cases 2, 3 and 4. Only the compositions with case 4 when guard

is always true or false are non trivial. If guard is always true,

Acc(s, ε) = {{effect}} ⊂⊂ Acc(t(s), ε) = {∅, {event}, {effect}}. If guard
is always false, Acc(s, ε) = {{event}} ⊂⊂ Acc(t(s), ε). Similarly, case

5 composed with other cases leads to LTS having less properties.

Let us consider compositions of cases 6 and 7 with 5 (other com-

positions are straightforward), when guard is always true or always

false. If guard is always true Acc(s, event) = {effect} ⊂⊂ Acc(t(s), ε) =

{{event}, {operation}, {effect}}. If guard is always false, Acc(s, event) =

{event} ⊂⊂ Acc(t(s), ε).

Hence, considering any cases and reasoning by induction on the

composition of cases, we prove that s has more traces than t(s), and

that for any trace σ of s, Acc(s,σ ) ⊂⊂ Acc(t(s),σ ). This establishes

that s has more liveness and safety properties than t(s).

The transformation t is sound, but, like many abstract interpreta-

tions, it is not complete. This means that if a property is true on the

state machine, we cannot be sure it is true on the abstract LTS. For

instance, in case 4 when guard is always true, s has the liveness prop-

erty that it must accept {effect} whereas t(s) may refuse this set. In
case 5 and guard is always true, smust refuse event (safety property)

whereas t(s) may accept it.

Property (1) applies for LT properties of LTS.We now have to study

what we can deduce from the comparison of two LTS with incremen-

tal relations.

Warnings raised by comparisons of LTS. Let us now consider two

state machines s1 and s2 and their corresponding LTS t(s1) and t(s2).

The following analysis is shown with the refinement relation, since

it is the one that must preserve both safety and liveness proper-

ties. The same reasoning applies with ⊑INC and ⊑EXT relations,

where only liveness properties could be considered. Supposewe have

t(s1) ⊑REF t(s2). Let’s note LT (s) = safety(s) ∪ liveness(s) the set of

safety and liveness properties of a LTS or a state machine s. For sim-

plicity reasons, we assume here that ⊑REF is also defined between

state machines, by s1 ⊑REF s2 =de f LT (s1) ⊆ LT (s2) ∧ ∀σ ∈ Tr(s1) −

Tr(s2),Acc(s1,σ ) = {∅}.
From property (2) and the definition of ⊑REF,we have the follow-

ing results:

t(s1) ⊑REF t(s2) ⇒ LT (t(s1)) ⊆ LT (t(s2)) ⊆ LT (s2)

But t(s1) ⊑REF t(s2) 6⇒ LT (s1) ⊆ LT (s2)

6⇒ s1 ⊑REF s2

We can observe that, t(s1) ⊑REF t(s2) entails s2 preserves all LT

properties of t(s1), but may not preserve all LT properties of s1.

This is illustrated on Fig. 17a. State machines s2 may not preserve

unobserved properties of s1, since in particular the verification on LTS

does not analyse data nor timing aspects. When the LTS comparison

does not detect any problem, the designer must remember that only

untimed and unvalued traces and action sets have been analysed.

Suppose now we have t(s1) 6⊑REF t(s2), and in particular that

some properties of LT(t(s1)) are not in LT(t(s2)). Since LT(s2) is a su-

perset of LT(t(s2)), this may be a false alarm, and we may still have

s1 ⊑REF s2. This is illustrated on Fig. 17b. In this case, the designer

can further analyse the counter-examples given by the tool (set of ac-

tions refused after some traces) on initial state machines rather than

on generated LTS. He/she can then determine if the error is relevant

or not.

8. Illustration of IDF relations

This part will illustrate using the example presented in Section 2

how the incremental development relations are applied. Drawing



LT (s1)

LT (s2)

⊆6⊆

LT (t(s1))

LT (s2)

LT (t(s2)) ⊇ LT (t(s1))

⊇ LT (t(s2))

⊇

Unobserved properties

LT (s1)

LT (s2)
⊆ 6⊆

LT (s1)

LT (t(s1))

LT (s2)

LT (t(s2))

⊇ LT (t(s1))

⊇ LT (t(s2))

⊇

False alarm

LT (s1)

Fig. 17. Cases where (a) t(s1) ⊑REF t(s2) although some properties of s1 does not belong to s2 , (b) t(s1) 6⊑REF t(s2) is a false alarm.

4

0

1

2

3

takeGood

coin

coin

takeChange

takeChangegood

coin

State Acceptance set

0 {{coin}}

1 {{coin}, {takeChange},

{coin, takeChange},

{coin, good, takeChange}}

2 {{takeGood}}

3 {{coin}}

4 {{takeChange}}

Fig. 18. Acceptance graph of CoffeeMachine (after label renaming).

comparisons between models requires two pre-processing opera-

tions: hiding and renaming. For this purpose, we introduce the fol-

lowing notations.M/{op1,...,opm} means that operations op1,..., opm are

hidden in the LTS associated with the state machineM and hence are

replaced by the label i.M[op′
1/op1

, . . . , op′
n/opn

] means that operations

op1,..., opn are respectively renamed by op′
1,..., op

′
n in the LTS associ-

ated withM.

8.1. Refinement verification

Hiding is necessary whenever themodels to be compared have in-

terfaces at different levels of abstraction. When the designer declares

operations as ‘new detailed operations’, the newly detailed operations

will be automatically hidden. For example, the provided interface I2

of VendingMachine will be hidden, while the inherited interface R1

remains observable. The formal verification corresponds to:

InitialMachine ⊑REF VendingMachine/{coin,good}

The refinement relation is verified since after hiding, the two ac-

ceptance graphs of the state machines are identical.

Renaming is necessary whenever one operation is refined by

another. When the designer uses the construction ‘operations

refine < op >’, refined operation op will be automatically renamed.

For example, the coin operation of VendingMachine is refined by op-

erations coin1p and coin5p in CoffeeMachine, while operation good

is refined by operation coffee. The refinement relation between

VendingMachine and CoffeeMachine is thus formally checked as fol-

lows:

VendingMachine ⊑REF

CoffeeMachine[coin/coin1p, coin/coin5p,good/coffee,takeGood/takeCoffee]

Note that the operations coin and good, which were hidden dur-

ing the first refinement step, no longer need to be hidden since they

can be compared with respect to abstraction levels. Once again, the

refinement relation is verified since after hiding, the two acceptance

graphs of the state machines are identical. Fig. 18 shows the accep-

tance graph of these machines and its associated acceptance sets. The

acceptance graph is deterministic; the non-determinism of the LTS

from which it was built is translated into acceptance sets. For exam-

ple, the acceptance set of State 1 in Fig. 18 indicates that the machine

must accept either the coin or takeChange actions after the trace coin∗

and cannot refuse both of them. Furthermore, it may accept good but

this is not mandatory.

The third refinement between CoffeeMachine and

AnticipatingMachine does not require any hiding or renaming

since their interfaces are identical. The refinement relation fails:

CoffeeMachine 6⊑REF AnticipatingMachine

In order to analyse this failure, the first diagnosis to be performed

is a conformance check since conformance is the weakest relation.

8.2. Conformance verification

The analysis of the refinement failure between CoffeeMachine and

AnticipatingMachine is conducted through the verdict given by the

conformance relation:

AnticipatingMachine 6conf CoffeeMachine

This outcome yields a set of actions that may be refused after

a given trace even though they should always be accepted. In this

case, failure is identified after the empty trace between the 0 nodes

of the acceptance graphs associated with the AnticipatingMachine

LTS and the LTS obtained from merging CoffeeMachine LTS with

AnticipatingMachine LTS. The relation conf is actually implemented as

a reduction between these two acceptance graphs (see Theorem 3

in Section 6). Figs. 19 and 20 show these two graphs. Comparing

acceptance sets associated with the 0 nodes demonstrates that An-

ticipatingMachine may refuse coin1p and coin5p but cannot refuse

takeChange, while CoffeeMachine cannot refuse coin1p, coin5p or



4

0

5

1

2

3

takeChange

coin5p

coin1ptakeChange

coffeecoin5p

coin1p

takeChange

coffee

coin5p

coin1p takeCoffee

takeChange

takeChange

coin5p

coin1p

State Acceptance set

0 {{takeChange}, {coin5p, coin1p, takeChange}}

1 {{coin5p, coin1p, coffee, takeChange}, {takeChange},

{coin5p, coin1p, takeChange}, {coin5p, coin1p, coffee}}

2 {{takeChange}, {coin5p, coin1p, takeChange},

{coin5p, coin1p, coffee}}

3 {{takeCoffee}}

4 {{takeChange}}

5 {{takeChange}, {coin5p, coin1p, takeChange}}

Fig. 19. Acceptance graph of AnticipatingMachine.

8

4

0

10

9

5

1

6

2

7

3

coin5p
takeChange

takeChange

coin1p

coin1pcoffee

coin5p

coin5p

takeChange

takeChange

coffee

coffee

coin1p

coin1p

coin5p

coin5p

takeChange

takeChange

coffee

takeCoffee

coin1p

coin5p

takeChange

takeChange

coin1p

coin5p

takeCoffeetakeChange

coin1p

State Acceptance set

0 {{coin5p, coin1p, takeChange}}

1 {{coin5p, coin1p, coffee, takeChange}, {takeChange},

{coin5p, coin1p, takeChange}}

2 {{coin5p, coin1p, coffee, takeChange}, {takeChange},

{coin5p, coin1p, takeChange}, {coin5p, coin1p, coffee}}

3 {{takeChange}, {coin5p, coin1p, takeChange}}

4 {{takeCoffee}}

5 {{coin5p, coin1p, takeChange}}

6 {{takeChange}, {coin5p, coin1p, takeChange},

{coin5p, coin1p, coffee}}

7 {{takeChange}, {coin5p, coin1p, coffee, takeChange},

{coin5p, coin1p, coffee}}

8 {{takeChange}}

9 {{takeCoffee}}

10 {{takeChange}}

Fig. 20. Acceptance graph obtained by merging the LTS of CoffeeMachine and AnticipatingMachine.

takeChange. This finding is formally verified by:

{{takeChange}, {coin5p, coin1p, takeChange}}6⊂⊂

{{coin5p, coin1p, takeChange}}

8.3. Extension verification

Lastly, we must verify the extension relation between

CancellableMachine and CoffeeMachine. An extension verification

does not require any hiding of operations even if the interfaces are

different. It is simply necessary to check that new operations imply

new traces without corrupting the expected traces. The relation is

formally verified as follows:

CoffeeMachine ⊑EXT CancellableMachine

In this case, the relation is verified through an examination of ac-

ceptance graphs and set inclusion.

8.4. Overview of incremental development of the coffee machine

Fig. 21 offers a synthesis of the relations verified between the

state machines of Section 2. Let’s note that due to property P5

Fig. 21. Flowchart of the incremental development verification process of the coffee

machine.

regarding the composability of incremental relations, the fact that

InitialMachine ⊑INC CancellableMachine can be deduced.

CancellableMachine covers the first-level requirements. At this

modelling stage, the secondary requirements such as maintenance

need to be taken into consideration. Should these requirements be



Fig. 22. IDCM User interface for model verification.

evaluated as optional, model development can stop and a product

line can be developed and distributed. The benefit of this approach

is to postpone the development of new functionalities that will lead

to new system releases, by taking advantage of previously developed

models. When secondary requirements aremandatory, themodel ex-

tension must continue to cover all requirements.

9. IDCM: a tool supporting IDF

This part will provide an overview of the tool we developed to

support IDF. This development work was performed in Java. The

tool comprises two main modules: the transformation of UML mod-

els into LTS, and model analysis. The transformation module con-

sists of parsing primitive components constituting a UML model and

then transforming them into LTS according to the rules presented in

Section 7. This transformation involves the Java DOM (Document Ob-

ject Model) technology parser. The LTS are generated in the textual

CADP Aldebaran format (Garavel et al., 2011). It is thus possible to ap-

ply CADP tools to reduce large LTS (the bcg_min tool) and produce the

LTS of the component assembly, having the LTS associated with each

component.

The verification step consists of comparing two models according

to a relation selected by the designer, as depicted in Fig. 22. Once

the relation is verified, a diagnosis is provided to the designer. In

case of failure, an explanation is given in terms of rejected actions. In

Fig. 23 for example, IDCM indicates that AnticipatingMachine is not a

refinement of CoffeeMachine since it may initially accept the

takeChange action while refusing coin1p and coin5p.

A number of experiments have been conducted by the teammem-

bers and students to validate IDCM; moreover, case studies have

been established from conventional examples stemming from the

state-of-the-art such as the ATM (Automatic Teller Machine), Job-

Shop (Milner, 1989), Phone System (Luong et al., 2008), AFL (Adap-

tive Forward Lighting System) and VendingMachine (Courbis et al.,

2012). The development processes of these studies contain approxi-

matively 5 to 10 steps. Experiments pointed out that extending or re-

fining state machines is not intuitive even on simple models with few

states, even for teammembers that master the concepts of incremen-

tal development. Our technique discovered true errors in designed

state machines, that had not been intentionally added. IDCM gave us

verdict traces, which were useful to identify design errors in state

machines.

The IDCM performance on the JobShop models built from the ex-

ample proposed byMilner (1989) will be presented below. Themodel

has been set up using an incremental approach, starting from a sim-

ple specification that has been extended and refined into eight steps.

In order to evaluate the time efficiency of IDCM for computing the

relations, large LTS are requisite. As we have seen, LTS size is linear

with respect to state machine size. It is thus difficult to obtain large

LTS from actual statemachines. Consequently, we have designed state

machines for four simple components whose specification is given

below and built up large models by combining their LTS in differ-

ent configurations. The LTS generated from the composition of the

combined LTS has been obtained through the CADP toolbox by using

Fig. 23. IDCM diagnosis.



Table 7

Performance of IDCM on JobShop models.

System model Specification Components Transitions States Relation Verification time (s)

Workstation1 (M1) One jobber working with

two tools

Jobber, Tool 88 45 S1 ⊑REF M1 12

Workshop1 (M2) TwoWorkstation1 in

parallel

Workstation1,

Router

13,224 3,249 M1 ⊑EXT M2

S2 ⊑REF M2

13 10

Workstation2 (M3) Two jobbers sharing two

tools

Jobber, Tool, Router 2,511 815 M2 =ct M3 13

Line1 (M4) Sequence of two

Workstation1

Workstation1, Glue 23,387 5,673 M3 ⊑EXT M4 9

Workshop2 (M5) TwoWorkstation2 in

parallel

Workstation2 4,092,930 664,225 M4 ⊑EXT M5 24

Line2 (M6) Sequence ofWorkstation1

andWorkstation2

Workstation1,

Workstation2, Glue

510,526 100,865 M5 =ct M6 12

Workshop3 (M7) FourWorkstation1 in

parallel

Workstation1 32,076,000 4,100,625 M6 =ct M7 310

the operator of synchronous interaction of processes (Garavel et al.,

2011).

Jobber: takes a job, asks for a tool if necessary and puts the tool away when

the job is completed.

Tool: offers two actions: getwhen available and putwhen busy. This

component can only be used by one jobber at a time.

Router: dispatches inputs to sub-components and collects outputs from

these sub-components.

Glue: connects an output job with an input job.

The first specification, called Spec1Job, defines a system that ini-

tially waits for a single job, produces an output job and returns

to its initial state. Its extension, called Spec2Jobs, defines a system

that accepts one or two input jobs (potentially arriving in paral-

lel) and consequently produces one or two output jobs. The refine-

ment of these specifications involves two main primitive compo-

nents, Jobber and Tool, and two auxiliary primitive components, Glue

and Router. The specification of these components is presented in

Table 7.

Fig. 24 shows the models that have been built and their devel-

opment relationships. Details on components and the size of the

generated LTS are listed in Table 7 along with the time consumed

for their relation verification. This time value includes a minimisa-

tion using CADP and the relation computation with IDCM. All exper-

iments have been conducted on a Windows 7 PC with 64 bits and

2.70 GHz.

These experiments indicate that IDCM verifications can be per-

formed on reasonably large-sized LTS. Note that, for Line1 and Line2,

verification times remain low. This is due to the fact that the corre-

sponding minimised LTS are of same size as Workshop1. Concerning

Workshop2 andWorkshop3, verification timesmainly consist of gener-

ation and minimisation times and corresponding LTS are drastically

reduced. The systems studied herein have been built as an assem-

bly of active components.When incrementally designing such assem-

Fig. 24. Relations verified between the models presented in Table 7.

blies, it might be assumed that only modified components are to be

verified: this consideration lies outside the scope of this paper and

will be studied in a subsequent work.

10. Concluding discussion and future work

We have defined IDF, a framework for incremental development

of UML state machine models. This approach combines the advan-

tages of vertical and horizontal developments. Vertically, it sup-

ports refinement approaches from abstractions to realisations, while

horizontally it serves to enhance models and integrate new be-

haviours so as to easily and safely develop intermediate product ver-

sions.

Main benefits of IDF are the following:

• The construction is separated into small tractable steps.
• IDF offers evaluation means during the construction of mod-

els, and not only at the end the design phase. This “pocket-

verification” technique is therefore an ongoing evaluation means

for designers, but it is also a solution to verification problems

which are intractable when models become too large. In partic-

ular, the verifications we propose for reactivity aspects concern

the preservation of ‘must-behaviours’, which belong to the class of

liveness properties. Such liveness properties are known to be im-

possible to analyse by testing techniques, and many model check-

ing techniques ignore them.
• Designers can verify models without having to use other mod-

elling languages to describe required properties. There are two

drawbacks to a separate description of required properties of the

system with a specific language: (i) it requires modelling skills

with a formal language suited to describe requirements (ii) it

needs validation means to ensure that formal requirements ac-

tually correspond to the informal requirements.
• IDF offers a formal support to an agile approach, allowing engi-

neers to develop first simplified or prototype versions and to en-

rich them afterwards. Such versions can be reviewed by stake-

holders before the system is achieved.
• IDF supports the development of a line of products. Intermediate

models can be extended and refined in various ways to develop

several kinds of products.

IDF is based on a set of formal relations for refinement, exten-

sion and increment defined on a formal abstract model of labelled

transition systems. By this way, the verification we propose be-

longs to model-checking techniques, since it is based on exhaustive

state space exploration of a finite state system (Bhaduri, 2004). Usu-

ally, model-checking techniques compare behavioural models with

required properties, described for instance in temporal logics. Our

model-comparison approach has several limitations compared to

such techniques:



• First model is not verified and similarly, new added behaviours

are not verified with respect to their requirements. We only verify

that they do not contradict existing behaviours.
• UML state machine language is not as expressive as temporal log-

ics to describe required properties.
• The safety verification we propose, in case of vertical refinement

developments, consider that all non described behaviours in the

initial model are unwanted behaviours. An advantage of sepa-

rately describing some safety properties is to enable the designer

to extend the models and to verify that precisely described safety

properties are still satisfied.

In order to reduce these drawbacks, our approach could be com-

pleted by techniques allowing the designer to describe unexpected

behaviours, such as a kind of ‘anti state machine’ describing an un-

wanted set of behaviours. We can also consider other UML diagrams,

such as sequence diagrams, which could be used to describe negative

scenarios corresponding to unexpected behaviours. Negative scenar-

ios are used for instance in Ramchandani (2009). At last, we have

shown that the LTS generated as an abstraction of state machines

have all their safety and liveness properties included inside originat-

ing state machine’s properties. Designers can therefore take benefit

of other model-checking facilities proposed by a tool such as CADP.

At the present time, we are working on the incremental design of

architectures defined by assemblies of active components. In a first

approach, this work could require to compute the overall behaviour

of architectures from the behaviour of their components and their in-

terconnections. It is necessary to formally define the transformation

of architectures into LTS. In a second approach, we could consider the

substitution question. Indeed, an interesting question concerning ar-

chitectures is the one of comparing two architectures where only one

of their components differs.

Future steps of our work will also be focused on building a UML

profile that fits the IDF paradigms. In this manner, the designer may

express expected model developments with respect to refinement

and extension in implying the automatic verification of relations. Fur-

thermore, IDF may be enhanced by a methodology to guide designers

according to requirement priority levels or development strategies.

References

Abrial, J.-R., 1996. The B-Book — Assigning Programs to Meanings. Cambridge Univer-
sity Press.

Abrial, J.-R., 2010. Modeling in Event-B — System and Software Engineering. Cambridge
University Press.

Aldini, A., Bernardo, M., Corradini, F., 2010. A Process Algebraic Approach to Software
Architecture Design. Springer doi:10.1007/978-1-84800-223-4.

Alpern, B., Schneider, F., 1985. Defining liveness. Inf. Process. lett. 21 (October), 181–
185.

Alpern, B., Schneider, F.B., 1987. Recognizing safety and liveness. Distrib. Comput. 2 (3),
117–126. doi:10.1007/BF01782772.

Ambler, S.W., 2008. The Object Primer, AgileModel-Driven Developmentwith UML 2.0.
Cambridge edition.

Baader, F., Calvanese, D., McGuinness, D.L., 2003. The Description Logic Handbook: The-
ory, Implementation, and Applications. Cambridge University Press.

Baier, C., Katoen, J., 2008. Principles of model checking. MIT Press.
Bertot, Y., Castéran, P., 2004. Interactive Theorem Proving and Program Development.

Springer Science & Business Media.
Bhaduri, P., 2004. Model checking of statechart models. arXiv cs/SE 0407038, 1–

41.0407038v1
Bloom, B., Istrail, S., Meyer, A.R., 1995. Bisimulation can’t be traced. J. ACM (JACM) 42

(1), 232–268.
Boiten, E.A., Bujorianu, M.C., 2003. Exploring UML refinement through unification. In:

Jürgens, J., Rumpe, B., France, R., Fernandez, E. (Eds.), Critical Systems Develop-
ment with UML—Proceedings of the UML’03 workshop. Technische Universität
München, pp. 47–62.

Bolognesi, T., Brinksma, E., 1987. Introduction to the ISO specification language LOTOS.
In: Computer Networks and ISDN systems, Vol. 14, pp. 25–59.

Bolton, C., Davies, J., 2002. A comparison of refinement orderings and their associated
simulation rules. Electron. Theor. Comput. Sci. 70 (3), 297–310.

Bozga, M., Graf, S., Mounier, L., 2002. IF-2.0: a validation environment for component-
based real-time systems. In: Brinksma, E., Larsen, K. (Eds.), Conference on Com-
puter Aided Verification (CAV). Springer, Berlin, Heidelberg, pp. 343–348.

Brinksma, E., Scollo, G., 1986. Formal Notions of Implementation and Conformance in
LOTOS. Technical Report. Twente University of Technology, Department of Com-
puter Science. Enschede.

Brookes, S., 1984. A theory of communicating sequential processes. J. Assoc. Comput.
Mach. 31 (3), 560–599.

Burmester, S., Giese, H., Hirsch, M., Schilling, D., 2004. Incremental design and formal
verification with UML/RT in the FUJABA real-time tool suite. In: Jardim Nunes, N.,
Selic, B., Rodrigues da Silva, A., Toval Alvarez, A. (Eds.), Workshop on Specification
and Validation of UML Models for Real-Time and embedded Systems (SVERTS).
Springer Verlag, pp. 1–20.

Chimisliu, V., Schwarzl, C., Peischl, B., 2009. From UML statecharts to LOTOS : a seman-
tics preserving model transformation. In: Choi, B. (Ed.), 9th Conference on Quality
Software (QSIC’2009), pp. 173–178. doi:10.1109/QSIC.2009.31.

Cleaveland, R., Hennessy, M., 1993. Testing equivalence as a bisimulation equivalence.
Form. Asp. Comput. 5, 1–20.

Cleaveland, R., Steffen, B., 1990. A preorder for partial process specifications. In:
Baeten, J., Klop, J. (Eds.), CONCUR ’90 Theories of Concurrency: Unification and Ex-
tension. Springer-Verlag, New York, Inc., pp. 141–151.

Corporation, O., 2013. The java tutorials — trial essential classes: concurrency. Liveness.
Courbis, A.-L., Lambolais, T., Luong, H.-V., Phan, T.-L., Urtado, C., Vauttier, S., 2012. A for-

mal support for incremental behavior specification in agile development. In: The
24th International Conference on Software Engineering and Knowledge Engineer-
ing (SEKE). Knowledge Systems Institute Graduate School, USA, pp. 694–699.

Crane, M.L., Dingel, J., 2005. On the Semantics of UML State Machines: Categoriza-
tion and Comparison. Technical Report. School of Computing, Queen’s University,
Kingston, Ontarion Canada.

Dragomir, I., 2014. Contract-based modeling and verification of timed safety require-
ments for system design in SysML. Toulouse 3.Ph.D. Thesis

Farail, P., Gaufillet, P., Canals, A., Le Camus, C., Sciamma, D., Michel, P., Crégut, X.,
Pantel, M., 2006. The TOPCASED project: a toolkit in open source for critical aero-
nautic systems design. Ingénieurs de l’Automobile 781, 54–59.

Fecher, H., Schönborn, J., 2007. UML 2.0 state machines: complete formal semantics via
core state machine. In: Brim, L., Haverkort, B., Leucker, M., van de Pol, J. (Eds.), For-
mal Methods: Applications and Technology. Springer, Berlin Heidelberg, pp. 244–
260. doi:10.1007/978-3-540-70952-7_16.

Fecher, H., Schönborn, J., Kyas, M., de Roever,W., 2005. 29 new unclarities in the seman-
tics of UML 2.0 statemachines. In: Lau, K.-K., Banach, R. (Eds.), Formal Methods and
Software Engineering. Springer, Berlin, Heidelberg, pp. 52–65.

Fernandez, J.-C., Mounier, L., 1992. On the fly verification of behavioural equiva-
lence and preorders. In: Computer Aided Verification. Springer, Berlin, Heidelberg,
pp. 181–191.

Garavel, H., Lang, F., Mateescu, R., Serwe, W., 2011. CADP 2010: a toolbox for the
construction and analysis of distributed processes. In: Abdulla, P.A., Leino, K.R.M.
(Eds.), Tools and Algorithms for the Construction and Analysis of Systems. In: Lec-
ture Notes in Computer Science, Vol. 6605. Springer, Berlin, Heidelberg, pp. 372–
387. doi:10.1007/978-3-642-19835-9_33.

Gnesi, S., Mazzanti, F., 2005. A model checking verification environment for UML stat-
echarts. In: XLIII Congresso Annuale AICA, p. 10.

Goldsmith, M., Zakiuddin, I., 1999. Critical systems validation and verification with CSP
and FDR. In: Hutter, D., Stephan,W., Traverso, P., Ullmann,M. (Eds.), Applied Formal
Methods – FM-Trends 98. Springer, Berlin, Heidelberg, pp. 243–250. doi:10.1007/
3-540-48257-1_15.

Halbwachs, N., 1992. Synchronous programming of reactive systems. Springer Science
& Business Media.

Hennessy, M., 1988. Algebraic theory of processes. MIT Press.
Hoare, C.A.R., 2004. Communicating Sequential Processes. Prentice Hall International.
Holzmann, G.J., 1997. The model checker SPIN. IEEE Trans. Softw. Eng. 23 (5), 279–295.
Hudon, S., Hoang, T.S., 2013. Systems design guided by progress concerns. In:

Johnsen, E., Petre, L. (Eds.), Integrated Formal Methods. Springer, Berlin, Heidel-
berg, pp. 16–30.

Huzar, Z., Kuzniarz, L., Reggio, G., Sourrouille, J.L., 2005. Consistency problems in UML-
based software development. In: Jardim Nunes, N., Selic, B., Rodrigues da Silva, A.,
Toval Alvarez, A. (Eds.), UML Modeling Languages and Applications. Springer,
Berlin, Heidelberg, pp. 1–12. doi:10.1007/978-3-540-31797-5_1.

ISO/IEC9646, 1991. Information technology – open systems interconnection – confor-
mance testing methodology and framework – part 1: general concepts.

Jard, C., Jéron, T., 2005. TGV: theory, principles and algorithms. In: International Journal
on Software Tools for Technology Transfer (STTT), Vol. 7. Springer Verlag, pp. 297–
315. doi:10.1007/s10009-004-0153-x.

Katoen, J., 2012. Model checking: one can do much more than you think!. In: Funda-
mentals of Software Engineering. Springer, Berlin, Heidelberg, pp. 1–14.

Khalil, A., Dingel, J., 2013. Supporting the Evolution of UML Models in Model Driven
Software Development : A Survey. Technical Report 602. School of Computing,
Queen’s University, Ontario, Canada.

Khendek, F., von Bochmann, G., 1995. Merging behavior specifications. Form. Methods
in Syst. Des. 6 (3), 259–293.

Knapp, A., Merz, S., Rauh, C., 2002. Model checking timed UML state machines and
collaborations. In: Damm, W., Olderog, E.-R. (Eds.), 7th International Symposium
on Formal Techniques in Real-Time and Fault Tolerant Systems (FTRTFT 2002).
Springer, Berlin, Heidelberg, pp. 395–414. doi:10.1007/3-540-45739-9_23.

Knapp, A., Mossakowski, T., 2014. An institution for simple UML state machines. arXiv
preprint cs 1411.4495, 1–24.

Kouchnarenko, O., Lanoix, A., 2006. How to Verify and Exploit a Refinement of
Component-based Systems. Technical Report. INRIA - n5898.

Kupferman, O., Vardi, M., 2001. Model checking of safety properties. Form. Methods in
Syst. Des. 19 (3), 291–314.



Lano, K. (Ed.), 2009. UML 2 Semantics and Applications. John Wiley and Sons, Inc.,
Hoboken, New Jersey.

Larman, G., Basili, V.R., 2003. Iterative and incremental development: a brief history.
Computer 36 (6), 47–56.

Latella, D., Majzik, I., Massink, M., 1999. Automatic Verification of a Behavioural Subset
of UML Statechart Diagrams Using the SPIN Model-checker. Form. Asp. Comput. 11
(6), 637–664. doi:10.1007/s001659970003.

Leduc, G., 1991. On the Role of Implementation Relations in the Design of Distributed
Systems Using LOTOS. University Liège Ph.D. thesis.

Leduc, G., 1992. A framework based on implementation relations for implementing
LOTOS specifications. In: Computer Networks and ISDN Systems, Vol. 25, pp. 23–
41.

Leduc, G., 1995. Failure-based congruences, unfair divergences and new testing theory.
In: Vuong, S., Chanson, S. (Eds.), Proceedings of the Fourteenth of a Series of Annual
Meetings on Protocol Specification, Testing and Verification. Springer, US, pp. 252–
267. doi:10.1007/978-0-387-34867-4_17.

Lilius, J., Paltor, I.P., 1999. Formalising UML state machines for model checking. In:
France, R., Rumpe, B. (Eds.), UML’99 — The Unified Modeling Language. Springer,
Berlin, Heidelberg, pp. 430–444. doi:10.1007/3-540-46852-8_31.

Liu, S., Liu, Y., André, E., Choppy, C., Sun, J., Wadhwa, B., Dong, J.S., 2013. A Formal Se-
mantics for the Complete Syntax of UML State Machines with Communications.
Technical Report. School of Computing, National University of Singapore Republic.

LiuS. and Liu, Y. and André, E. and Choppy, C. and Sun, J. and Wadhwa, B. and Dong,
J., 2013. A formal semantics for complete uml state machines with communi-
cations. In: Johnsen, E., Petre, L. (Eds.), Integrated Formal Methods. In: Lecture
Notes in Computer Science, Vol. 7940. Springer, Berlin, Heidelberg, pp. 331–346.
doi:10.1007/978-3-642-38613-8_23.

Lowe, G., 2008. Specification of communicating processes: temporal logic versus
refusals-based refinement. Form. Asp. Comput. 20 (3), 277–294. doi:10.1007/
s00165-007-0065-0.

Lucas, F.J., Molina, F., Toval, A., 2009. A systematic review of UML model consistency
management. Inf. Softw. Technol. 51 (12), 1631–1645. doi:10.1016/j.infsof.2009.04.
009.

Luong, H.-V., 2010. Construction incrémentale de spécifications de systèmes critiques
intégrant des procédures de vérification. Université Paul Sabatier Toulouse III Ph.D.
thesis.

Luong, H.-V., Lambolais, T., Courbis, A.-L., 2008. Implementation of the conformance
relation for incremental development of behavioural models. In: Czarnecki, K.,
Ober, I., Bruel, J.-M., Uhl, A., Völter, M. (Eds.), Proceedings of 11th International
Conference on Model Driven Engineering Languages and Systems (MoDELS 2008).
Springer, Berlin, Heidelberg, pp. 356–370. doi:10.1007/978-3-540-87875-9_26.

Manual FDR2, 2010. Failures-Divergence Refinement. Oxford University Computing
Laboratory.

Meng, S., Naixiao, Z., Barbosa, S., 2004. On semantics and refinement of UML state-
charts: a coalgebraic view. In: Software Engineering and Formal Methods (FSEN).
IEEE, pp. 164–173.

Mens, T., Van Der Straeten, R., Simmonds, J., 2005. A framework for managing consis-
tency of evolving UMLmodels. In: Yang, H. (Ed.), Software Evolution with UML and
XML. Idea Group Inc. Publishing, p. 30. doi:10.4018/978-1-59140-462-0.ch001.

Milner, R., 1989. Communication and concurrency. Prentice-Hall, Inc..
Milner, R., 1999. Communicating and Mobile Systems: the Pi-Calculus. Cambridge Uni-

versity Press.
Moseley, S., Randall, S., Wiles, A., 2006. In pursuit of interoperability. In: Jakobs, K.

(Ed.), Advanced Topics in Information Technology Standards and Standard-
ization Research. Idea Group Publishing, Hershey, pp. 321–323. doi:10.4018/
978-1-59140-938-0.ch017.

Ober, I., Graf, S., Ober, I., 2006. Validating timed UML models by simulation and verifi-
cation. In: International Journal on Software Tools for Technology Transfer (STTT),
Vol. 8, pp. 128–145. doi:10.1007/s10009-005-0205-x.

Pons, C., 2005. On the definition of UML refinement patterns. In: Proceedings of tne 2nd
Model Design and Validation (MoDeVa) Workshop, Montego Bay, Jamaica, p. 6.

Prochnow, S., Schaefer, G., Bell, K., Von Hanxleden, R., 2006. Analyzing robustness of
UML statemachines. In: Gerard, S., Graf, S., Haugen, O., Ober, I., Selic, B. (Eds.), Inter-
national Workshop MARTES: Modeling and Analysis of Real-Time and Embedded
Systems, pp. 61–80.

Puhakka, A., Valmari, A., 2001. Liveness and fairness in process-algebraic verification.
In: Larsen, K.G., Nielsen, M. (Eds.), CONCUR 2001 — Proceedings of the 12th In-
ternational Conference on Concurrency Theory, Aalborg, Denmark, August 20-25.
Springer, Berlin, Heidelberg, pp. 202–217. doi:10.1007/3-540-44685-0_14.

Ramchandani, D., 2009. Refining Labelled transition systems using scenario-based
specifications. Technical Report. Imperial College London, Department of Comput-
ing.

Rasch, H., Wehrheim, H., 2003. Checking consistency in UML diagrams: Classes and
state machines. In: Formal Methods for Open Object-Based Distributed Systems,
pp. 229–243.

Royer, J.-C., 2003. Temporal logic verifications for UML: the vending machine example.
Proceedings of 4th Rigourous Object-Oriented Methods Workshop; RSTI L’objet 9
(04), 73–92.

Ruhroth, T., Wehrheim, H., 2012. Model evolution and refinement. Sci. Comput. Pro-
gram. 77 (3), 270–289. doi:10.1016/j.scico.2011.04.007.

Sagonas, K. (Ed.), 2013. Practical Aspects of Declarative Languages. number 7752 in
Lecture Notes in Computer Science, Springer Verlag.

Said, M., Butler, M., Snook, C., 2009. Language and tool support for class and state ma-
chine refinement in UML-B. In: Cavalcanti, A., Dams, D. (Eds.), FM 2009: Formal
Methods SE - 37. In: Lecture Notes in Computer Science, Vol. 5850. Springer, Berlin,
Heidelberg, pp. 579–595. doi:10.1007/978-3-642-05089-3_37.

Said, M.Y., 2010. Methodology of Refinement and Decomposition in UML-B. University
of Southampton Ph.D. thesis.

Said, M.Y., Butler, M., Snook, C., 2013. A method of refinement in UML-B. Softw. Syst.
Model. 1–24. doi:10.1007/s10270-013-0391-z.

Schneider, F.B., 1987. Decomposing Properties into Safety and Liveness Using Predicate
Logic. Technical Report. Cornell University Ithaca, NY, Dept. of Computer Science.

Schneider, S., Treharne, H., Wehrheim, H., 2014. The behavioural semantics
of Event-B refinement. Form. Asp. Comput. 26 (2), 251–280.. doi:10.1007/
s00165-012-0265-0.

Scholz, P., 2001. Incremental design of statechart specifications. Sci. Comput. Program.
40, 119–145.

Schönborn, J., Kyas, M., 2010. Refinement patterns for Hierarchical UML statemachines.
In: Arbab, F., Sirjani, M. (Eds.), Third International conference on Fundamentals of
Software Engineering. In: Lecture Notes in Computer Science, Vol. 5961. Springer,
Berlin, Heidelberg, pp. 371–386. doi:10.1007/978-3-642-11623-0_22.

Smith, G., 2000. The object-Z specification language, Vol. 1. Advances in Formal Meth-
ods. Kluwer Academic Publishers, Boston, MA doi:10.1007/978-1-4615-5265-9.

Sunyé, G., Pollet, D., Le Traon, Y., Jézéquel, J.-M., 2001. Refactoring UML models. In:
Gogolla, M., Kobryn, C. (Eds.), UML 2001 — The Unified Modeling Language. Mod-
eling Languages, Concepts, and Tools. Springer, Berlin, Heidelberg, pp. 134–148.
doi:10.1007/3-540-45441-1_11.

Tretmans, J., 1999. Testing concurrent systems: a formal approach. In: Baeten, J.,
Mauw, S. (Eds.), CONCUR’99 Theories of Concurrency: Unification and Extension.
Springer, Berlin, Heidelberg, pp. 46–65. doi:10.1007/3-540-48320-9_6.

Truong, N.-T., Souquieres, J., 2005. Verification of behavioural elements of UML models
using B. In: Proceedings of the 2005 ACM symposium on Applied Computing. ACM,
New York, NY, USA, pp. 1546–1552. doi:10.1145/1066677.1067024.

Usman, M., Nadeem, A., Kim, T.H., Cho, E.S., 2008. A survey of consistency checking
techniques for UML models. In: Proceedings of the 2008 Advanced Software Engi-
neering and its Applications, pp. 57–62. doi:10.1109/ASEA.2008.40.

Van Der Straeten, R., Mens, T., Simmonds, J., Jonckers, V., 2003. Using description
logic to maintain consistency between UML models. In: Stevens, P., Whittle, J.,
Booch, G. (Eds.), UML 2003 — The Unified Modeling Language. Modeling Lan-
guages and Applications. Springer, Berlin, Heidelberg, pp. 326–340. doi:10.1007/
978-3-540-45221-8_28.

Van Glabbeek, R., Ploeger, B., 2008. Five determinisation algorithms. In: Ibarra, O.H.,
Ravikumar, B. (Eds.), International Conference Implementation and Appli-
cation of Automata. Springer, Berlin, Heidelberg, pp. 161–170. doi:10.1007/
978-3-540-70844-5_17.

Thomas Lambolais had a PhD in Computer Science by Institut National Polytechnique
de Lorraine (France) in 1997. From 1998 to 2001, he worked at TRT (Thalès Research
and Technology). Since 2001, he is associate professor at the Ecole des mines d’Alès
(France). His research interests are in software engineering and include requirements
engineering. He is interested in methods and tools to support incremental develop-
ment of behavioural models based on verification techniques.

Anne-LiseCourbis had a PhD in Computer Science by University of Montpellier 2
(France), in 1991. From 1992 to 1996, she worked as associate professor at LERI - EERIE
(Nîmes, France). Since 1996, she is associate professor at the Ecole des mines d’Alès
(France). Her research interests are in system engineering and include discrete be-
havioural modelling and simulation. She contributes to the incremental development
of behavioural models based on verification techniques.

Hong-Viet Luong had a PhD in Computer Science by University Paul Sabatier of
Toulouse 3 (France), in 2010. His area of interest is incremental development of UML
state machines. From 2011 to 2013, he had a post-doctoral position at the AMPERE lab-
oratory (INSA Lyon, France. Since 2014, he is R&D Engineer at the M2M-NDT company
(France).

Christian Percebois is professor of computer science at the University of Toulouse
since 1992. He was always interested in software engineering. He worked on Lisp and
Prolog interpreters, garbage collecting for symbolic computations, asynchronous back-
trackable communications in parallel logic languages, abstract machine construction
through operational semantics refinements, typing in object-oriented programming
and multiset rewriting techniques in order to coordinate concurrent objects. Today his
main research tries to combine formalmethods and software engineering, in particular
for graph rewriting systems.




