N

HAL

open science

Demo: AirNet in action

Messaoud Aouadj, Emmanuel Lavinal, Thierry Desprats, Michelle Sibilla

» To cite this version:

Messaoud Aouadj, Emmanuel Lavinal, Thierry Desprats, Michelle Sibilla. Demo: AirNet in action.
IEEE/IFIP Network Operations and Management Symposium (NOMS 2016): Demonstration Session
Paper, Apr 2016, Istanbul, Turkey. pp. 997-998. hal-01517374

HAL Id: hal-01517374
https://hal.science/hal-01517374
Submitted on 3 May 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-01517374
https://hal.archives-ouvertes.fr

OATAQO

Open Archive Toulouse Archive Ouverte

Open Archive TOULOUSE Archive Ouverte (OATAQO)

OATAO is an open access repository that collects the work of Toulouse researchers and
makesit freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toul ouse.fr/
EprintsID : 17013

The contribution was presented at NOM S 2016 :
http://noms2016.ieee-noms.org/

To citethisversion : Aouadj, Messaoud and Lavinal, Emmanuel and Desprats,
Thierry and Sibilla, Michelle Demo: AirNet in action. (2016) In: IEEE/IFIP
Network Operations and Management Symposium (NOM S 2016):
Demonstration Session Paper, 25 April 2016 - 29 April 2016 (Istanbul, Turkey).

Any correspondence concerning this service should be sent to the repository
administrator: staff-oatao@listes-diff.inp-toulouse.fr

Demo: AirNet in action

Messaoud Aouadj, Emmanuel Lavinal, Thierry Desprats, Michelle Sibilla
University of Toulouse, IRIT
118 Route de Narbonne, F-31062 Toulouse, France
Email: {FirstName.LastName} @irit.fr

Abstract—This demo paper presents the implementation and
the use of AirNet, a new domain specific language to design and
control virtual networks. The central feature of this language
is to rely on network abstractions in order to spare operators
the trouble of dealing with the complex and dynamic nature
of the physical infrastructure. One novelty of this language is
to integrate a network abstraction model that offers a clear
separation between simple transport functions and advanced
network services. AirNet is supported by a runtime system
handling, in particular, the virtual-to-physical mapping.

[. INTRODUCTION

Over time, network management has become a tedious,
complex and error-prone task for a human administrator.
Network virtualization has therefore emerged as the most
appropriate solution to address these limitations. However, to
be used to its best advantages, network virtualization requires
identifying practical abstractions that allow operators to ease
the configuration and the control of the physical infrastructure.
Today, there are two main approaches that are used for
abstracting the physical infrastructure: i) the overlay network
model [1] which consists in overlaying a virtual network of
multiple switches on top of a shared physical infrastructure and
ii) the one big switch abstraction model [2] which consists in
abstracting the whole network view in a single logical switch.

AirNet is a new high-level control language for SDN
platforms, which main novelty is to integrate a new abstraction
model that explicitly identifies two kinds of virtual units: i)
Fabrics to abstract packet transport functions and ii) Edges to
support, on top of host-network interfaces, complex network
functions. Additionally, we have designed and implemented a
hypervisor that supports this model and achieves its mapping
on a physical infrastructure.

The demo presented here exemplifies the programming
paradigm that we are advocating through AirNet and its Edge-
Fabric abstraction model, knowing that a fuller presentation of
AirNet and its features is available in [3]

II. AIRNET LANGUAGE

Every AirNet program contains three main phases: the
first phase deals with the design of the virtual network, the
second one specifies virtual control policies, and finally the
third one defines the mappings existing between virtual units
and switches present at the physical level. AirNet’s primitives
are divided into two main groups: i) Edge primitives which
includes Filters, Actions and Network Functions. Actions are
applied on sets of packets that are returned by installed filters.
Drop, forward and modify are standard actions found in most

network control languages. As for the fag action, it attaches
a label onto incoming packets, label that is used by fabrics to
identify and process packet flows. Network functions include
Dynamic control functions which implement a decision making
process capable of generating, at runtime, new policies that
change the control program’s behaviour, and data function
which implement complex data processing on the packet’s
payload that cannot be performed by the switches basic set
of actions. ii) Fabrics primitives which mainly include the
catch and the carry instruction. The catch primitive captures
an incoming flow based on a label inserted beforehand by an
edge. The carry primitive transports a flow from one edge to
the other (both connected to the fabric). Ultimately, AirNet
control programs are obtained by composing, sequentially and
in parallel, edge and fabric policies, policies that are commonly
obtained by sequentially composing a filter with actions (e.g.,
match () >>tag () >>forward (), catch () >>carry()).

III. AIRNET ARCHITECTURE

The AirNet language has been implemented as a domain-
specific language embedded in Python, as well as a runtime
system that we name “AirNet hypervisor”. Fig. 1 gives an
overview of our prototype’s architecture. The runtime core
module is composed of two main parts: the proactive and the
reactive core.

input

v

inPut | virtual-to-Physical
Mapping

infrastructure

Runtime
7 |[proactive || Reactive
Core Com

POX Client |

High-level
Control Policies

Virtual Network

1

RirNet Hypervisor

Controller AW [hcket In, statistics, ...

POX Controller
f)penﬂow

Fig. 1. AirNet’s architecture overview

1) The proactive core: is a module that includes the imple-
mentation of two main processes: i) virtual composition pro-
cess, the function of which is basicly retrieving infrastructure
information to build a corresponding graph, and composing
virtual policies to resolve all intersection issues, ii) physical
mapping process which includes transforming virtual policies
into physical rules, finding appropriate paths for each flow, and
finally distributing physical rules on switches.

a) Virtual topology
Net.A

& =@ e f—@—]

AL (4L115.6010) b) Physical infrastructure

s4

sl
h2 (141.115.64.12) =7 ==, WS (10.10.15.11
_K 3~ s5 8
AE) E)_E

\ =
h3(141.115.64.13) j s6 J
0= P

h4 (141.115.64.14)

i

Fig. 2. a) Specified virtual topology. b) Targeted physical infrastructure

2) The reactive core: which handles network functions
execution and changes that may occur in the physical topology
(e.g. link down). Network functions life cycle is divided within
the reactive core into three main phases: i) initialization at
deployment time, ii) processing incoming packets at runtime
before the limit parameter has been reached, and iii) processing
incoming packets at runtime once the limit is attained.

IV. DEMONSTRATION SCENARIO

In this section, we present a complete use case, which has
been implemented and tested on the Mininet network emulator,
using the physical topology depicted in figure 2. The use
case consists in programming a dynamic access control list
in order to enable communication between allowed users (i.e.,
not blacklisted) and server ws.

As with any AirNet program, the first step is to define a
virtual topology that meets our high-level goals. Here, we need
one host to represent our web server, one network to encom-
pass the users, two edges (10 and AC) that are connected to
the users’ network and the web server, respectively. Finally, we
use a fabric to connect our edges. The overall virtual topology
is depicted in figure 2. Moreover, designing the virtual network
relies on a straightforward declarative approach: one primitive
for each virtual unit that has to de added to the network
(addHost, addEdge, etc.).

The second part of the program deals with control policies
definition. AirNet does not impose any constraint on the pro-
gram’s structure. For example, here we have defined access
and transport functions but one could use a different de-
composition such as one function per virtual devices.

def access()
el = match(edge="I0", src="Net.A", dst="WS") >> filter(
e2 match (edge="I0", dst="Net.A") >> forward("Net.A")
e3 match (edge="AC", src="WS") >>

tag ("out_flows") >> forward("fabric"

e4 = match (edge="AC", dst="WS") >> forward("WsS")
return el + e2 + e3 + e4

def transport ()
tl = catch(src="I0", flow="in_flows") >> cary ("AC")
t2 = catch(src="AC", flow="out_flows") >> cary("IO")
return tl + t2

The first function configures edges as simple input/output
devices. For instance, the policy el uses the match instruction
to capture all flows coming from Net.A and having host ws
as destination, then the result is sequentially passed to the
forward action that transfers packets to the dynamic control

function filter. On the other hand, the transport function
deals with fabric policies. In this simple example, labeled flows
are carried from edge 10 to edge AC, and vice versa.
@DynamicControlFct (data="packet", limit=1, split=["nw_src"])
def filter (packet):

if packet.srcip in blacklist:

return (match(edge="I0", nw_src=ip.srcip) >> drop())
else: return (match(edge="IO", nw_src=ip.srcip) >>
tag("in_flows") >> forward("fabric"))

As shown above, the filter function is triggered for each
first packet coming from a different IP source address, since
the parameter [imit is set to “1”, and the parameter split is
set to “nw_src”. The function extracts the /P address from the
received packet, then it checks if the address is blacklisted. If
so, a new dropping policy is generated for the other packets
that belong to the same flow as the recieved packet, if not, a
forwarding policy is generated.

Mapping rules: Before executing our program, the map-
ping rules have to be defined according to the underlying
physical infrastructure. The following mappings have been
defined: 10 maps to s1 and s2, AC maps to s8, fabric maps
to [s3-s7], Net.A network map to 141.115.64.0/24 IP
addresses, and finally, WS maps to 10.10.15.11 host.

These mappings are specified through a separate module
thanks to the following instructions:
class MyMapping (Mapping) :
def __ _init__ (self):
Mapping.__init__ (self)
self.addEdgeMap ("IO", ["s1", "s2"])
self.addEdgeMap ("AC", ["s8"])
self.addFabricMap ("fabric",
[Ms3", me4n, wgsn, wagw, mgIn])
self.addNetworkMap ("141.115.64.%", "Net.A")
self.addHostMap ("10.10.15.11", "WS")

Experiments: In the first phase, the AirNet hypervisor
compiles the high-level policies and generates OpenFlow rules
that are pushed onto the switches through the POX controller
(all this process is done by the hypervisor’s proactive core).
The OpenFlow entries that are generated are match and output
actions to physical ports on s1, s2 and on s3, s4, s5,
s8 which are located on the shortest path in the physical
topology. In addition, due to the filter dynamic control
function, OpenFlow entries that send packets to the controller
are installed on s1 and s2 (these packets arriving at the
controller are handled by the hypervisor’s reactive core).

Next, at runtime, we executed several wger requests on the
web server from hosts connected to s1 and s2. For allowed
hosts (i.e., hl and h3), all the requests and their responses
were correctly routed through the network, allowing the web
clients to retrieve the requested HTML files. By contrast, for
hosts which are blacklisted (i.e., h2 and h4), all their requests
were dropped at the border of the network.

REFERENCES

[1] M. Casado, T. Koponen, R. Ramanathan, and S. Shenker, “Virtualizing
the Network Forwarding Plane,” in PRESTO. ACM, 2010.

[2] E. Keller and J. Rexford, “The “Platform As a Service” Model for Net-
working,” in Proc. of the 2010 Internet Network Management Workshop
(INM/WREN’10). USENIX Association, 2010.

[3] M. Aouadj, E. Lavinal, T. Desprats, and M. Sibilla, “Composing data and
control functions to ease virtual networks programmability,” in Proc. of
NOMS 2016, 2016.

