N

HAL

open science

t-résilient snapshot immédiat

Carole Delporte-Gallet, Hugues Fauconnier, Sergio Rajsbaum, Michel Raynal

» To cite this version:

Carole Delporte-Gallet, Hugues Fauconnier, Sergio Rajsbaum, Michel Raynal. t-résilient snapshot
immédiat. ALGOTEL 2017 - 19émes Rencontres Francophones sur les Aspects Algorithmiques des
Télécommunications, May 2017, Quiberon, France. hal-01517320

HAL Id: hal-01517320
https://hal.science/hal-01517320
Submitted on 3 May 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-01517320
https://hal.archives-ouvertes.fr

t-résilient snapshot immédiat "

Carole Delporte-Gallet! ¥ et Hugues Fauconnier! et Sergio Rajsbaum? et
Michel Raynal?

LIRIF -GANG, Université Paris Diderot, Paris, France
2 Instituto de Matemdticas, UNAM, Meéxico D.F, 04510, México
3 JUF & IRISA (Université de Rennes), Rennes, France

Dans un systeme de n processus communiquant par mémoire partagée, un snapshot immédiat est un état de la mémoire
assurant que si I’écriture réalisée par ¢ est dans le snapshot de p alors le snapshot de p contient le snapshot obtenu par
g. Un snapshot immédiat peut étre réalisé dans un systeme ol au plus n — 1 processus peuvent tomber en panne. Dans
un systéme ol ¢ processus peuvent tomber en panne, un processus peut obtenir un snapshot contenant les valeurs écrites
par jusqu’a n — t processus. On définit ainsi le #-résilient snapshot immédiat et on établit des liens entre ce probleme et
les problémes d’accord comme le consensus et le k-accord.

Mots-clefs : Mémoire partagé, snapshot immédiat, tolérance aux pannes, consensus, k-accord.

1 Introduction

We consider a distributed computing model of n asynchronous processes among which any subset of up
to ¢ processes may crash communicating by shared memory.

The snapshot object was first proposed over a decade ago [1, 2] and has since been intensively studied
by the distributed algorithms community. A snapshot object can be seen as a data structure initially empty,
which can then contain at most n pairs (one per process), each made up of a process index and a value. This
object provides the processes with two operations denoted update and snap. The invocation update(v) by a
process p; adds the pair (i,v) to the data structure and the operation snap returns all the pairs already written
in the data structure.

The immediate snapshot (IS) object has been introduced in [3, 11], and later investigated in [5, 15]. It
is a variant of the snapshot object. An immediate snapshot provides the processes with a single operation
write_snapshot() that a process may invoke at most once. The invocation write_snapshot(v) by a process
p; adds the pair (i,v) to the object and returns a set of pairs view; belonging to the object such that if {j, w)
is in view; then view; C view;.

The noteworthy feature of the iterated immediate snapshot model is the following. It has been shown by
Borowsky and Gafni in [5], that this model is equivalent to the usual read/write wait-free model ((n — 1)-
crash model) for task solvability with the wait-freedom progress condition (any non-faulty process obtains
a result). Its advantage lies in the fact that its runs are more structured and easier to analyze than the runs in
the basic read/write shared memory model [14]. It is also the basis of the combinatorial topology approach
for distributed computing (e.g., [10]). Hence, IS objects constitute the algorithmic foundation of distributed
iterated computing models.

When considering the #-crash n-process model where ¢ < n, and assuming that each correct process writes
a value, a process may wait for values written by (n —t) processes without risking being blocked forever.

This naturally leads to the notion of a r-immediate snapshot object, which generalizes the basic (n — 1)-
immediate snapshot object. More precisely, when considering a f-immediate snapshot object in a ¢-crash
n-process model, an invocation of write_snapshot() by a process returns a set including at least (n —¢) pairs

TThis paper is an extended abstract of [7]; the original title is t-resilient snapshot immédiat.
*Carole Delporte-Gallet, Hugues Fauconnier and Michel Raynal are supported by ANR DESCARTES



Carole Delporte-Gallet et Hugues Fauconnier et Sergio Rajsbaum et Michel Raynal

(while it would return a set of x pairs with 1 < x < if the object was an immediate snapshot object). Hence,
a r-immediate snapshot object allows processes to obtain as much information as possible from the other
processes while guaranteeing progress.

The obvious question is then the implementability of a r-immediate snapshot object in the ¢-crash n-
process model.

Implementations of an (n — 1)-immediate snapshot object is described in [3]. For the other values of ¢ (
0 <t < n—1), this question is answered in this paper, which shows that it is impossible to implement a ¢-IS
object in a ¢-crash n-process model when 0 < ¢ < n— 1. More precisely we prove that implementing a ¢-IS
object is equivalent ¥ to implementing consensus when ¢ < 1/2 and enables to implement (2 — n +2)-Set
agreement when n/2 <r<n-—1.

At first glance, this impossibility result may seem surprising. First, an IS object is a snapshot object
(a) whose operations update and snap are glued together in a single operation write_snapshot(), and (b)
satisfying an additional property linking the sets of pairs returned by concurrent invocations. Then, as
already indicated, a ¢-IS object is an IS object such that the sets returned by write_snapshot() contain at
least (n —t) pairs. This property on the sets returned by a snapshot object can be trivially implemented in
a t-crash n-process model. Hence, while a ¢-snapshot object can be implemented in the ¢-crash n-process
model, a #-IS object cannot when 0 <t < n— 1. Second, because in general smallest is the number of
possible faults easiest is the implementation. But in the #-IS, a small number of failure, induces a harder
problem each output set must have the size at least n —¢.

2 Model

We consider a distributed computing model of n > 3 asynchronous sequential processes denoted py, ...,
pn among which any subset of up to # (0 <t < n) processes may crash. The processes cooperate by reading
and writing Single-Writer Multi-Reader atomic read/write registers [13].

One-shot immediate snapshot object. An immediate snapshot object (IS) is a set, initially empty, that
will contain pairs made up of a process index and a value. Let us consider a process p; that invokes
write_snapshot(v). This invocation adds the pair (i,v) to the object, and returns to p; a set, called view
and denoted view;, such that the sets returned to the processes collectively satisfy the following properties.

— Termination. The invocation of write_snapshot() by a correct process terminates.

— Self-inclusion. Vi: (i,v) € view;.

— Validity. Vi : (((j,v) € view;) = p; invoked write_snapshot(v)).

— Containment. V i, j : (view; C view;) V (view; C view;).

— Immediacy. Vi, j: ((i,v) € view;) = (view; C view;).
k-Set agreement. k-Set agreement was introduced by S. Chaudhuri [6], it generalizes consensus which
corresponds to the case k = 1. A k-Set agreement object is a one-shot object that provides the processes
with a single operation denoted propose; (). This operation allows the invoking process p; to propose a
value it passes as an input parameter (called proposed value), and obtain a value (called decided value). The
object is defined by the following set of properties.

— Termination. The invocation of propose, () by a correct process terminates.

— Validity. A decided value is a proposed value.

— Agreement. No more than k different values are decided.

It is shown in [8, 4, 11, 16] that the problem is impossible to solve if k < ¢.
t-Immediate Snapshot. A 7-immediate snapshot object (denoted by ¢-1S) is an immediate snapshot object
with the following additional property.

— Output size. The set view obtained by a process is such that |[view| > n—t.

3 Results

t-Immediate Snapshot is Impossible if 0 < ¢ < n — 1. This section presents an algorithm Figure 1 to
achieve (1) consensus from #-IS for 0 < ¢ < n/2, and (2) k-Set agreement (in short k-SA) from ¢-IS for

§. A s equivalent to B if A can be (computationally) reduced to B and reciprocally.



t-resilient immediate snapshot

1 PROPOSE(v)

2 begin

3 view <— I.write_snapshot(v) ; /* I shared immediate snapshot*/
4 VIEW[i] < view; /* VIEW is a shared array*/

5 wait(]{ j such that VIEW[j] # L} =1+1);

6 let view be the smallest of the previous (z+ 1) views ;

7 return(smallest proposed value in view)

8 end PROPOSE

FIGURE 1: Solving consensus from -1S if 0 < ¢ < n/2(code for p;)

do aux < S.snapshot()

until (dec C aux A |aux| > n—t)

dec + CONSIk].propose, (aux)

10 if ((i,vi) € dec) A (view = 0) then view < dec end if
until |aux| =n

12 endtask T'1

13 Task T2 : wait(view # 0) ; return(view) end task 72.

14 end write_snapshot

1 write_snapshot(v;)

2 begin

3 S.update((i,v;) ; I* S shared snapshot*/

4 view < 0; dec < 0 ; k < —1; launch the tasks 71 and T2.
5 TaskTl1:

6 repeat k < k—+1

7

8

9

—_
—

FIGURE 2: Implementing ¢-IS with consensus (code for p;)

k=2t—n+2 (e.g., (n—2)-SA agreement from (n— 2)-IS if t = n — 2). As these problems are impossible
to solve [4, 11, 16], we show that it is impossible to implement a 7-IS object when 0 < ¢t <n—1.
Intuitively this algorithm works because there is a set of at least £ > n —t processes, that obtained the
same view min_view (or crashed before returning from write_snapshot()), and this view is the smallest view
obtained by a process and its size is [min_view| = (. If0 <t <n/2,as £ >n—tand (n—1)+(t+1) >n,
it follows from the waiting predicate, that, any process that executes line 5, obtains a copy of min_view,
and consequently we have view = min_view at line 5. It follows that no two processes can decide different
values. If n/2 <t <n—1,wehave n—t <t. The m = (n—t) — 1 biggest views will never be selected by the
processes, and consequently these processes obtain at mostt —m =1 — ((n—t) — 1) = 2t —n+ 1 different
smallest views. Hence, these processes may decide at most 2 —n + 1 different values.
Theorem 1 A t-IS object cannot be implemented if 0 <t <n— 1.

From Consensus to ¢-IS if 0 < < 7n— 1. While a snapshot object is atomic (operations on a snapshot object
can be linearized [12]), an IS object and a k-immediate snapshot objects are not atomic (its operations cannot
always be linearized).

So we cannot apply the universality result of Herlihy [9], and we have to write a specific algorithm given
Figure 2.

t-Immediate Snapshot and k-Set agreement. With the algorithms Figures 1 and 2, we get :
Theorem 2 Consensus and t-1S are equivalent if 0 <t < n/2.

We have shown that from #-IS when n/2 <t < n—2 we can implement (2t —n+ 2)-Set agreement. Can
we do consensus as in the case 0 <7 < n/2? By a simulation argument, we show that consensus is not
solvable with 7-immediate snapshot when n/2 <t < n proving that the computational power of #-immediate
snapshot when 0 < t < n/2 is strictly stronger than the computational power of 7-immediate snapshot when
n/2<t<n.



Carole Delporte-Gallet et Hugues Fauconnier et Sergio Rajsbaum et Michel Raynal

Theorem 3 If 0 < t < n/2 then t-IS can implement (2t — n+ 2)-Set agreement and cannot implement
consensus. Consensus implements t-1S.

| 1<1<n/2 [ n/2<t<n-—1 |
t-1S and consensus are equivalent t-IS implements (2¢ — n + 2)-Set agreement

t-IS does not implement consensus
consensus implements 7-IS

TABLE 1: Summary of results presented in the paper

4 Conclusion

The paper has shown that, while it is possible to build an (n — 1)-IS object in the asynchronous read/write
(n — 1)-crash model, it is impossible to build a z-IS object in an asynchronous read/write ¢-crash model
when 0 <t < n— 1. It follows that the notion of an Iterative immediate snapshot distributed model seems
inoperative for these values of ¢. The results of the paper are summarized in Table 1.

Interestingly, this study shows that there are two contrasting impossibility results in asynchronous read/write
t-crash n-process systems. Consensus is impossible as soon as ¢ > 0, while z-immediate snapshot is impos-
sible as soon ast < n— 1.

As a final remark, some computability problems remain open. As an example, is it possible to implement
a t-IS object from (2¢ — n+2)-Set agreement ?

Références
[1] Afek Y., Attiya H., Dolev D., Gafni E., Merritt M. and Shavit N., Atomic snapshots of shared memory. Journal
of the ACM, 40(4) :873-890 (1993)
[2] Anderson J., Multi-writer composite registers. Distributed Computing, 7(4) :175-195 (1994)

[3] Borowsky E. and Gafni E., Immediate atomic snapshots and fast renaming. Proc. 12th ACM Symposium on
Principles of Distributed Computing (PODC’93), pp. 41-50 (1993)

[4] Borowsky E. and Gafni E., Generalized FLP impossibility results for fresilient asynchronous computations. Proc.
25th ACM Symposium on Theory of Computation (STOC’93), California (USA), pp. 91-100 (1993)

[5] Borowsky E. and Gafni E., A simple algorithmically reasoned characterization of wait-free computations. Proc.
16th ACM Symposium on Principles of Distributed Computing (PODC’97), ACM Press, pp. 189-198 (1997)

[6] Chaudhuri S., More choices allow more faults : set consensus problems in totally asynchronous systems. Infor-
mation and Computation, 105(1) :132-158 (1993)

[7] Delporte C., Fauconnier H., Rajsbaum S., and Raynal M., t-Resilient immediate snapshot is impossible. Proc.
23rd Int. Colloquium Structural Information and Communication Complexity, (SIROCCO), pp 177-191 (2016)

[8] Fischer M.J., Lynch N.A., and Paterson M.S., Impossibility of distributed consensus with one faulty process.
Journal of the ACM, 32(2) :374-382 (1985)
[9] Herlihy M. P, Wait-free synchronization. ACM Transactions on Programming Languages and Systems,
13(1) :124-149 (1991)
[10] Herlihy M.P., Kozlov D., and Rajsbaum S., Distributed computing through combinatorial topology, Morgan Kauf-
mann/Elsevier, 336 pages, ISBN 9780124045781 (2014)
[11] Herlihy M. P. and Shavit, N., The topological structure of asynchronous computability. Journal of the ACM,
46(6) :858-923 (1999)
[12] Herlihy M. P. and Wing J. M., Linearizability : a correctness condition for concurrent objects. ACM Transactions
on Programming Languages and Systems, 12(3) :463-492 (1990)
[13] Lamport L., On interprocess communication, Part I : basic formalism. Distributed Computing, 1(2) :77-85 (1986)
[14] Rajsbaum S., Iterated shared memory models. Proc. 9th Latin American Symposium on Theoretical Informatics
(LATIN’10), Springer LNCS 6034, pp. 407-416 (2010)
[15] Raynal M., Concurrent programming : algorithms, principles and foundations. Springer, 515 pages, ISBN 978-
3-642-32026-2 (2013)
[16] Saks M. and Zaharoglou F., Wait-free k-set agreement is impossible : the topology of public knowledge. SIAM
Journal on Computing, 29(5) :1449-1483 (2000)



