Carole Delporte-Gallet

Hugues Fauconnier

Sergio Rajsbaum

Michel Raynal

Michel Raynal T-Résilient Snapshot

t-résilient snapshot immédiat

Keywords: Mémoire partagé, snapshot immédiat, tolérance aux pannes, consensus, k-accord

à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Introduction

We consider a distributed computing model of n asynchronous processes among which any subset of up to t processes may crash communicating by shared memory.

The snapshot object was first proposed over a decade ago [START_REF] Afek | Atomic snapshots of shared memory[END_REF][START_REF] Anderson | Multi-writer composite registers[END_REF] and has since been intensively studied by the distributed algorithms community. A snapshot object can be seen as a data structure initially empty, which can then contain at most n pairs (one per process), each made up of a process index and a value. This object provides the processes with two operations denoted update and snap. The invocation update(v) by a process p i adds the pair i, v to the data structure and the operation snap returns all the pairs already written in the data structure.

The immediate snapshot (IS) object has been introduced in [START_REF] Borowsky | Immediate atomic snapshots and fast renaming[END_REF][START_REF] Herlihy | The topological structure of asynchronous computability[END_REF], and later investigated in [START_REF] Borowsky | A simple algorithmically reasoned characterization of wait-free computations[END_REF][START_REF] Raynal | Concurrent programming : algorithms, principles and foundations[END_REF]. It is a variant of the snapshot object. An immediate snapshot provides the processes with a single operation write snapshot() that a process may invoke at most once. The invocation write snapshot(v) by a process p i adds the pair i, v to the object and returns a set of pairs view i belonging to the object such that if j, w is in view i then view j ⊆ view i .

The noteworthy feature of the iterated immediate snapshot model is the following. It has been shown by Borowsky and Gafni in [START_REF] Borowsky | A simple algorithmically reasoned characterization of wait-free computations[END_REF], that this model is equivalent to the usual read/write wait-free model ((n -1)crash model) for task solvability with the wait-freedom progress condition (any non-faulty process obtains a result). Its advantage lies in the fact that its runs are more structured and easier to analyze than the runs in the basic read/write shared memory model [START_REF] Rajsbaum | Iterated shared memory models[END_REF]. It is also the basis of the combinatorial topology approach for distributed computing (e.g., [START_REF] Herlihy | Distributed computing through combinatorial topology[END_REF]). Hence, IS objects constitute the algorithmic foundation of distributed iterated computing models.

When considering the t-crash n-process model where t < n, and assuming that each correct process writes a value, a process may wait for values written by (nt) processes without risking being blocked forever.

This naturally leads to the notion of a t-immediate snapshot object, which generalizes the basic (n -1)immediate snapshot object. More precisely, when considering a t-immediate snapshot object in a t-crash n-process model, an invocation of write snapshot() by a process returns a set including at least (n -t) pairs (while it would return a set of x pairs with 1 ≤ x ≤ n if the object was an immediate snapshot object). Hence, a t-immediate snapshot object allows processes to obtain as much information as possible from the other processes while guaranteeing progress.

The obvious question is then the implementability of a t-immediate snapshot object in the t-crash nprocess model.

Implementations of an (n -1)-immediate snapshot object is described in [START_REF] Borowsky | Immediate atomic snapshots and fast renaming[END_REF]. For the other values of t (0 < t < n -1), this question is answered in this paper, which shows that it is impossible to implement a t-IS object in a t-crash n-process model when 0 < t < n -1. More precisely we prove that implementing a t-IS object is equivalent § to implementing consensus when t < n/2 and enables to implement

(2t -n + 2)-Set agreement when n/2 ≤ t < n -1.
At first glance, this impossibility result may seem surprising. First, an IS object is a snapshot object (a) whose operations update and snap are glued together in a single operation write snapshot(), and (b) satisfying an additional property linking the sets of pairs returned by concurrent invocations. Then, as already indicated, a t-IS object is an IS object such that the sets returned by write snapshot() contain at least (nt) pairs. This property on the sets returned by a snapshot object can be trivially implemented in a t-crash n-process model. Hence, while a t-snapshot object can be implemented in the t-crash n-process model, a t-IS object cannot when 0 < t < n -1. Second, because in general smallest is the number of possible faults easiest is the implementation. But in the t-IS, a small number of failure, induces a harder problem each output set must have the size at least nt.

Model

We consider a distributed computing model of n ≥ 3 asynchronous sequential processes denoted p 1 , ..., p n among which any subset of up to t (0 < t < n) processes may crash. The processes cooperate by reading and writing Single-Writer Multi-Reader atomic read/write registers [START_REF] Lamport | On interprocess communication, Part I : basic formalism[END_REF]. One-shot immediate snapshot object. An immediate snapshot object (IS) is a set, initially empty, that will contain pairs made up of a process index and a value. Let us consider a process p i that invokes write snapshot(v). This invocation adds the pair i, v to the object, and returns to p i a set, called view and denoted view i , such that the sets returned to the processes collectively satisfy the following properties.

-Termination. The invocation of write snapshot() by a correct process terminates.

-Self-inclusion. ∀ i : i, v ∈ view i . -Validity. ∀ i : ((j, v ∈ view i) ⇒ p j invoked write snapshot(v)).

-Containment. ∀ i, j : (view i ⊆ view j) ∨ (view j ⊆ view i).

-Immediacy. ∀ i, j : (i, v ∈ view j) ⇒ (view i ⊆ view j). k-Set agreement. k-Set agreement was introduced by S. Chaudhuri [START_REF] Chaudhuri | More choices allow more faults : set consensus problems in totally asynchronous systems[END_REF], it generalizes consensus which corresponds to the case k = 1. A k-Set agreement object is a one-shot object that provides the processes with a single operation denoted propose k (). This operation allows the invoking process p i to propose a value it passes as an input parameter (called proposed value), and obtain a value (called decided value). The object is defined by the following set of properties.

-Termination. The invocation of propose k () by a correct process terminates.

-Validity. A decided value is a proposed value.

-Agreement. No more than k different values are decided. It is shown in [START_REF] Fischer | Impossibility of distributed consensus with one faulty process[END_REF][START_REF] Borowsky | Generalized FLP impossibility results for tresilient asynchronous computations[END_REF][START_REF] Herlihy | The topological structure of asynchronous computability[END_REF][START_REF] Saks | Wait-free k-set agreement is impossible : the topology of public knowledge[END_REF]] that the problem is impossible to solve if k ≤ t. t-Immediate Snapshot. A t-immediate snapshot object (denoted by t-IS) is an immediate snapshot object with the following additional property.

-Output size. The set view obtained by a process is such that |view| ≥ nt.

Results

t-Immediate Snapshot is Impossible if 0 < t < n -1. This section presents an algorithm Figure 1 to achieve (1) consensus from t-IS for 0 < t < n/2, and (2) k-Set agreement (in short k-SA) from t-IS for §. A is equivalent to B if A can be (computationally) reduced to B and reciprocally. Task T 1 :

6 repeat k ← k + 1 7 do aux ← S.snapshot() 8 until (dec ⊂ aux ∧ |aux| ≥ n -t) 9 dec ← CONS[k].propose 1 (aux) 10 if (i, v i ∈ dec) ∧ (view = / 0) then view ← dec end if 11 until |aux| = n 12 end task T 1 13
Task T 2 : wait(view = / 0) ; return(view) end task T 2. 14 end write snapshot FIGURE 2: Implementing t-IS with consensus (code for p i) k = 2tn + 2 (e.g., (n -2)-SA agreement from (n -2)-IS if t = n -2). As these problems are impossible to solve [START_REF] Borowsky | Generalized FLP impossibility results for tresilient asynchronous computations[END_REF][START_REF] Herlihy | The topological structure of asynchronous computability[END_REF][START_REF] Saks | Wait-free k-set agreement is impossible : the topology of public knowledge[END_REF], we show that it is impossible to implement a t-IS object when 0 < t < n -1.

Intuitively this algorithm works because there is a set of at least ≥ nt processes, that obtained the same view min view (or crashed before returning from write snapshot()), and this view is the smallest view obtained by a process and its size is |min view| = . If 0 < t < n/2, as ≥ nt and (nt) + (t + 1) > n, it follows from the waiting predicate, that, any process that executes line 5, obtains a copy of min view, and consequently we have view = min view at line 5. It follows that no two processes can decide different values. If n/2 ≤ t < n -1, we have n -t ≤ t. The m = (n -t) -1 biggest views will never be selected by the processes, and consequently these processes obtain at most tm = t -((nt) -1) = 2tn + 1 different smallest views. Hence, these processes may decide at most 2tn + 1 different values. Theorem 1 A t-IS object cannot be implemented if 0 < t < n -1.

From Consensus to t-IS if 0 < t ≤ n-1. While a snapshot object is atomic (operations on a snapshot object can be linearized [START_REF] Herlihy | Linearizability : a correctness condition for concurrent objects[END_REF]), an IS object and a k-immediate snapshot objects are not atomic (its operations cannot always be linearized).

So we cannot apply the universality result of Herlihy [START_REF] Herlihy | Wait-free synchronization[END_REF], and we have to write a specific algorithm given Figure 2.

t-Immediate Snapshot and k-Set agreement. With the algorithms Figures 1 and2, we get : Theorem 2 Consensus and t-IS are equivalent if 0 < t < n/2.

We have shown that from t-IS when n/2 ≤ t < n -2 we can implement (2tn + 2)-Set agreement. Can we do consensus as in the case 0 < t < n/2 ? By a simulation argument, we show that consensus is not solvable with t-immediate snapshot when n/2 ≤ t < n proving that the computational power of t-immediate snapshot when 0 < t < n/2 is strictly stronger than the computational power of t-immediate snapshot when n/2 ≤ t < n.

Conclusion

The paper has shown that, while it is possible to build an (n -1)-IS object in the asynchronous read/write (n -1)-crash model, it is impossible to build a t-IS object in an asynchronous read/write t-crash model when 0 < t < n -1. It follows that the notion of an Iterative immediate snapshot distributed model seems inoperative for these values of t. The results of the paper are summarized in Table 1.

Interestingly, this study shows that there are two contrasting impossibility results in asynchronous read/write t-crash n-process systems. Consensus is impossible as soon as t > 0, while t-immediate snapshot is impossible as soon as t < n -1.

As a final remark, some computability problems remain open. As an example, is it possible to implement a t-IS object from (2tn + 2)-Set agreement ? R éf érences

5

 5

TABLE 1 :

 1 Theorem 3 If 0 < t < n/2 then t-IS can implement (2tn + 2)-Set agreement and cannot implement consensus. Consensus implements t-IS. Summary of results presented in the paper

	1 ≤ t < n/2	n/2 ≤ t < n -1
	t-IS and consensus are equivalent	t-IS implements (2t -n + 2)-Set agreement
		t-IS does not implement consensus
		consensus implements t-IS