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A level set based model for damage growth: The thick level set
approach
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1GeM Institute, École Centrale de Nantes/Université de Nantes/CNRS 1 Rue de la Noë, 44321 Nantes, France 
2Laboratoire de Mécanique des Solides, CNRS UMR 7649, École Polytechnique, 91128 Palaiseau, France

In this paper, we introduce a new way to model damage growth in solids. A level set is used to separate 
the undamaged zone from the damaged zone. In the damaged zone, the damage variable is an explicit 
function of the level set. This function is a parameter of the model. Beyond a critical length, we assume the 
material to be totally damaged, thus allowing a straightforward transition to fracture. The damage growth 
is expressed as a level set propagation. The configurational force driving the damage front is non-local 
in the sense that it averages information over the thickness in the wake of the front. The computational 
and theoretical advantages of the new damage model are stressed. Numerical examples demonstrate the 
capability of the new model to initiate cracks and propagate them even in complex topological patterns 
(branching and merging for instance).
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1. INTRODUCTION

It is well known that fracture mechanics alone may not model the full scenario of the degradation
of solids under mechanical loading. Crack initiation for instance requires damage mechanics to
model the gradual loss of stiffness in a small area [1, 2]. When it comes to modelling damage,
special care needs to be taken to avoid so-called spurious localizations. Several damage models
were proposed in the literature to avoid spurious localization as detailed in [3, 4]:

• non-local integral damage model: the damage evolution is governed by a driving force which
is non-local, i.e. it is the average of the local driving force over some regions [5, 6];

• higher order, kinematically based, gradient models through the inclusion of higher order
deformation gradient [7–9] or additional rotational degrees of freedom [10];

• higher order, damage based, gradient models: the gradient of the damage is a variable as well
as the damage itself. This leads to a second-order operator acting on the damage [11–13].

Non-local and higher order gradient approaches were compared in [14]. More recently two
strategies to avoid spurious localization also appeared. The phase-field approach emanating from
the physics community [15–17] and the so-called variational approach [18–20].

In this paper, we wish to model damage as a propagating level set front. Let us first tour the
existing papers using a level set approach to model a degradation front. In report [21] a level
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set is introduced to separate a totally damaged zone from an undamaged zone. The growth of
the level is governed by a criterion: the front advances if the corresponding configurational force
(called shape gradient by the authors) reaches a critical value, say Yc. When no front is initially
present, the authors suggest to use the topological derivative as the driving force and compare it
with the critical value. We note that the model of [21] does not introduce a length and will most
likely suffer pathological mesh-dependencies known in the computational mechanics community
as spurious localization. This model will also most likely be unable to model a size-effect.

In the same spirit the evolution of the interface � separating sound material from damaged
material has been studied in [22, 23] using an energetical description for the propagation. The
driving force associated with the normal velocity of the front is a local release rate of energy. Using
normality rule to govern the propagation, the rate boundary value problem in terms of displacement
and motion of the interface is studied and conditions of existence and uniqueness are given.

In paper [24], Moës et al. use basically the same model as in [21], but with an important
difference that a surface energy term is added. This added energy term was introduced by Nguyen
et al. [25]. It is shown that this added energy contributes to stabilize the system so that no bifurcation
is observed during the interface propagation. The configurational force on the interface must now
reach the critical value Yc +�c/� in which � is the radius of curvature of the interface and �c a
critical surface energy. This avoids the creation of spikes on the interface since � will become
very small and the criterion to meet very high. As a by-product, the model introduces the length
scale lc =�c/Yc. The meaning of the length is however not clear at this time. The drawback of
this curvature regularized model is that the energy to initiate a small hole is infinite since �=0+
at void initiation. Without this critical surface energy nucleation of defects can also be considered
as a bifurcation of equilibrium solution [26].

Somehow, one would like to use the criterion of [21] based on the topological derivative
compared with Yc to nucleate a void and then use the model [25] to evolve the void without
spurious localizations. When should the switch take place is not a trivial question. Finally, in the
material science community, note that paper [27] also introduces a level set technique to distinguish
voids from matter. The growth criterion in the above paper is simply �c/�. The authors model
nano crack patterns. Nothing is said in this paper regarding nucleation.

In [21, 27], the authors do not consider the damaged region to be totally damaged but do leave
some stiffness in it. On the contrary, in [24] the front is modeled by the extended finite element
method (X-FEM) allowing the damaged zone to be truly of zero stiffness. This avoids non-physical
degradation behind the crack tip since the crack may now open freely. Still, from the numerical
stand point, Moës et al. [24] introduced a proper method to evaluate the loading (indeed as damage
progresses the load must usually decrease and snap-back may occur).

After this description of level set based damage front model, let us turn to the phase-field
approach developed for fracture in the physics community [15–17]. On the contrary to the level
based approach, there is no longer with the phase-field approach a strict boundary between one
material phase (damaged) and the other one (fully damaged). A transition zone is present.

In the phase-field approach a parameter �, called phase, is introduced to describe the transition
and varies from 0 (no damage) to 1 (total damage). A global phase equation coupled to the
mechanical equations is solved in order to determine the phase value at each point in the domain.
The phase-field equation involves a Laplacian of the phase that introduces a length scale and most
likely kills spurious localization of the phase. This resolution is made over the whole domain. The
damage is a given function of the phase field.

The goal of this paper is to introduce a new regularization for local damage models. The main
idea is to keep the simplicity of the level set through a propagation algorithm while keeping in
its wake a transition zone in which the material degrades over a given length. The advantage of
dealing with damage represented by a level set is that it is well known that a level set propagation
may be solved close only to the level set front.

Within the transition zone, damage is an explicit function of the level set. This function is a
parameter of the model. Beyond a critical distance to the level set front the damage is assumed to
be 1. In other words, as the front propagates it unveils in its wake a fully damaged zone. We call
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this zone the crack (although we shall see it is not necessarily of zero thickness). This zone may
be of very complex topology, thus dealing easily with branching and merging. In our approach, we
thus do not need a transition to a cohesive crack to handle full degradation as in [28–30]. The crack
appears as a consequence of the damage front motion. Finally, note that in the presented approach,
the fully damaged zone is clearly delimited by a level set. It is thus not a set of elements similar
to the element deletion approach [31]. Moreover, this zone is still allowed to carry compressive
loading if needed.

2. A NEW LEVEL SET BASED DAMAGE MODEL

It is well known that purely local damage models suffer from spurious localization because no
length scale is introduced in the models. In this paper, we introduce a length lc in the wake of
the front creating what we call a thick level set (TLS). The damage depends on a signed distance
function to the front. This description induces a specific evolution law for the damage, the evolution
follows the motion of the level set. The damage itself could be regarded as a level set, but to
preserve the generality of the approach, we choose to separate the evolution of the geometry
described by the level set and the associated value of damage.

In order to introduce the TLS approach we consider a simple damage model: an elasto-damage
model with a scalar damage parameter.

2.1. A simple local damage model

The free energy per unit volume � depends on the strain ε and a scalar damage variable denoted
by d

�=�(ε,d) (1)

The state laws are obtained by differentiating the free energy

r= ��

�ε
, Y =−��

�d
(2)

where r is the stress and Y the local energy release rate. For instance, if we consider a symmetric
behavior in traction and compression, we may use the potential

�(ε,d)= 1
2 (1−d) ε :E :ε (3)

leading to

r= (1−d) E :ε, Y = 1
2ε :E :ε (4)

A potential with closure effect will also be considered later in the numerical simulations. The
evolution of the damage is given by a dissipation potential �∗(Y ) which is a convex function of Y :

ḋ = ��∗(Y )

�Y
(5)

Alternatively, we may write

Y = ��(ḋ)

�ḋ
(6)

The above potentials �(ḋ) and �∗(Y ) are dual and related by the Legendre–Fenchel transformation

�(ḋ)=sup
Y

(Y ḋ −�∗(Y )), �∗(Y )=sup
ḋ

(Y ḋ −�(ḋ)) (7)
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Figure 1. Multiple damaged, undamaged and transition zones are described using only one level set.

For non-regular functions, the definition of the gradient is replaced by the notion of sub-gradient
Y ∈��(ḋ) if

�(ḋ)+Y (d∗− ḋ)��(d∗) (8)

for all admissible d∗. A similar definition is associated to �∗.
Note that from the above we have the following inequality for any couple (Y, ḋ) satisfying or

not the damage evolution law

�∗(Y )+�(ḋ)−Y ḋ�0 (9)

The equality is satisfied if and only if the damage evolution law is satisfied too:

�∗(Y )+�(ḋ)−Y ḋ =0⇔ ḋ = ��∗(Y )

�Y
⇔Y = ��(ḋ)

�ḋ
(10)

Note that the convexity of � or �∗ ensure positive dissipation, this is due to (8) considering the
properties

�(ḋ) convex, �(ḋ)�0, �(0)=0 (11)

The damage model described above suffers from spurious localizations. To regularize this situation,
we introduce a length scale in a different way than that proposed in the literature.

2.2. Free energy and state laws for the level set based damage model

The damage description is depicted in Figure 1. The level set �=0 separates the domain �
into an undamaged zone and damaged one. In the damaged zone, the damage variable d is an
explicit function of the level set. Note that a single level set is needed even if damaged zones are
disconnected as shown in Figure 1.

The damage increases progressively as the level set value rises. Mathematically this is expressed
by the following inequalities:

d(�) = 0, ��0 (12)

d ′(�) � 0, 0���lc (13)

d(�) = 1, ��lc (14)
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The function d =d(�) is assumed to be continuous for clarity. Discontinuous functions can be
chosen in the proposed approach but the obtained expressions must be modified with additional
contributions. At a distance lc from the damage front, the material is assumed completely damaged.
A spatial relationship between the damage value along the normal to the front �=0 is then deduced.

Consider a body �. Along the external boundary ��, loading T d (t) is applied on ��T and
displacements ud (t) are prescribed on the complementary part ��u ; ��=��T ∪��u , ��T ∩��u =
∅. Some parts of � may be totally damaged i.e. d =1. We denote by �c, the part of � not fully
damaged:

�c ={x∈� :�(x)�lc} (15)

Potential energy is written as a function of the displacement field and the level set function �:

E(u,�)=
∫

�c

�(ε(u),d(�))d�−
∫

��T

T·u dS (16)

where ε(u) denotes the strain, i.e. symmetric part of the gradient of u. The displacement field must
satisfy the kinematic boundary conditions whereas the gradient of the level set field must be of
norm 1 since it is a signed distance function.

The function d(�) is assumed to be continuous. The displacement, the free energy and the
stress vector are then continuous functions along each iso-� curve ��. Otherwise, a more complex
expression involving jump terms must be written. Along �� the displacement is continuous, then
[u]��(x, t)=0 for x(t) on the moving surface ��(t). Then [u̇]�� + ẋ.[∇u]�� =0, where ẋ is the
velocity of ��. Any variation of displacement and variation of �� are linked by this equation of
compatibility

[�u]�� +�vnn·[∇u]�� =0 (17)

But the continuity of d ensures the continuity of �. The stress vector and displacement gradient
are thus also continuous. Then no jumps exist along the moving surfaces. Then the variations of
the displacement and the variations of the moving surface �� are uncoupled.

The above conditions define the admissible set of variables Ad

Ad = {(u,�) :u∈ Au
d , �∈ A�

d } (18)

Au
d = {u :u defined on �c, u=u on ��u} (19)

A�
d = {� :‖∇�‖=1 on �} (20)

The set of admissible variations is then defined by

A0 = {(�u,��) :�u∈ Au
0, ��∈ A�

0 } (21)

Au
0 = {�u :�u=0 on ��u} (22)

A�
0 = {�� :∇��·∇�=0 on �} (23)

The condition on �� indicates that to remain a signed distance the level set variation must be
constant if we follow a path along the gradient of �. In order to visualize this property, let us
consider a plane situation as depicted in Figure 2 with the band of material comprised between the
boundaries �0 and �c. This band may be parametrized by two curvilinear coordinates � and s,
where s is the curvilinear abscissa along �0. The iso-coordinate curves are orthogonal to each
other. The condition (23) implies that �� is a function of s only and must be seen as a normal
perturbation of the � front location. We may then write

��=�a(s) (24)
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Figure 2. The curvilinear system of coordinates in the band. The front driving force g
at A is defined as the weighted average of the local driving force over the path of the

steepest descent AB following Equation (33).

Note that the level set �(x, t)=0 defines a surface of normal n then the velocity of this surface
is vn such that

��

�t
+vn∇�·n=0 (25)

Finally, note that in the curvilinear system of coordinates (�,s), the surface element d� is
expressed as

d�= �(�,s)

�(0,s)
d�ds =

(
1− �

�(s)

)
d�ds (26)

where �(�,s) is the radius of curvature at (�,s) of the iso-� curve. The last equality comes from
the fact that the radius of curvature is linear along the iso-� coordinates and we have used the
shortened notation �(s)=�(0,s). Equation (26) is well defined provided � is differentiable. In the
3D case, similar formula may be derived.

The directional derivative of the energy E with respect to (�u,�a)∈ A0 may now be computed.
We take into account the state laws (2)

DE(u,�)[(�u,�a)]=
∫

�c

r :ε(�u)d�−
∫

��T

T·�udS−
∫

�
Y d ′(�)�a d� (27)

Zeroing the directional derivative of the potential energy with respect to (�u,0)∈ A0
d , we obtain

the equilibrium equation

DE(u,�)[(�u,0)]=
∫

�c

r :ε(�u)d�−
∫

��T

T·�udS =0 ∀�u∈ Au
0 (28)

Let us now analyze the variation of the potential energy with respect to �. First, we note that d ′(�)
is only non-zero in the thick band �oc in which the level set varies from 0 to lc

�oc ={x∈� :0��(x)�lc} (29)

Variation of the potential energy with respect to � is reduced to:

DE(u,�)[(0,�a)] = −
∫

�oc

Y d ′(�)�a d� (30)

= −
∫

�0

∫ l

0
Y (�,s)d ′(�)�a(s)(1−�/�(s))d�ds (31)

= −
∫

�0

g(s)�a(s)ds (32)
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Figure 3. The damage band is not here fully developed, the maximum value of the level set is below lc
so that no fully damaged zone is present.

This relation defines the driving force associated with the moving band. The term is quite similar
to the energy release rate introduced in [22, 23]. The term g(s) can also be interpreted as a
configurational force per unit length on the front

g(s)=
∫ l

0
Y (�,s)d ′(�)

(
1− �

�(s)

)
d� (33)

In the above, l is either lc or some smaller values as illustrated in Figure 3. The configurational
force (33) is an average of the local damage driving force Y weighted by d ′(�) and the evolution of
the front curvature along the thickness. Note that the equality (33) bears some similarity with the
transition from damage to fracture as proposed in [32], whereas here it is relating diffuse damage
to a degradation front advance.

Finally, let us compute the dissipation. To do so, the virtual front advance �a is replaced by the
true front velocity vn . And therefore the dissipation reduces to:

D =− dE(u,�)

dt
+
∫

��T

T·u̇dS =
∫

�oc

Y ḋ d�=
∫

�0

g vn ds (34)

The last equation defines the global dissipation in terms of an energy release rate along a moving
surface. The link between this global formulation and the local variables Y, ḋ inside the front is
essentially due to Equation (25).

2.3. Dissipation potentials and evolution laws

We now need to provide the evolution law relating the front speed vn to the configurational force g.
Either we give this relationship in a phenomenological way prescribing directly a relation between
vn and g or we somehow homogenize the local damage evolution law (5). For this, we can use the
notion of a shock-generating function introduced in [33, 34] for an elastic continuum and hence
we obtain a global constitutive relation as in plasticity [35].

We propose here to satisfy as much as possible (5) while fulfilling the constraint

ḋ =d ′(�)vn (35)

This relation is defined for any distribution vn along �0. In general situation, we cannot fulfill at
every point the local damage evolution law since for a given Y field, the damage evolution given
by (5) will not satisfy the damage constraint (35). We also note from Equation (35) that the front
velocity must be positive at all time and all point on the front to prevent a reduction in damage.

Given a field Y , we thus minimize the expression below

inf
ḋ=d ′(�)vn

∫
�c

�∗(Y )+�(ḋ)−Y ḋ d�= inf
vn

∫
�c

�∗(Y )+�(d ′(�)vn)−Y d ′(�)vn d� (36)

which may be interpreted as the error on the local constitutive law. The value of the infimum
will not be zero and somehow measures the effect of homogenizing the evolution law over the
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band thickness. Noticing that vn is present in the last two terms of (36) the search of the infimum
reads as

inf
vn

∫
�c

�(d ′(�)vn)−Y d ′(�)vn d� (37)

The above integral may be limited to �oc. Using (32) we may also write∫
�oc

Y d ′(�)vn d�=
∫

�0

gvn ds (38)

and we define the homogenized potential � through∫
�0

�(vn,s)ds =
∫

�c

�(d ′(�)vn)d� (39)

Note that the homogenized potential expression � depends explicitly on the location on the
front. This potential is defined for any distribution vn given along �0. It thus ensures a local
definition of the potential at point s:

�=
∫ l

0
�(d ′(�)vn)

(
1− �

�(s)

)
d� (40)

The infimum (37) is now

inf
vn

∫
�

�(vn,s)−g vn ds =sup
vn

∫
�

g vn −�(vn,s)ds =
∫

�
�

∗
(g,s)ds (41)

where the dual potential �
∗

is obtained through the Legendre–Fenchel transformation of �. The
local damage evolution law (10) has been homogenized into a non-local evolution law

vn = ��
∗
(g,s)

�g
⇔g = ��(vn,s)

vn
⇔�

∗
(g,s)+�(vn,s)−g vn =0 (42)

Note that through the homogenization process, the properties of the local potential (11) are
preserved at the homogenized level. The following properties are satisfied at any point on �0

�(vn) convex, �(vn)�0, �(0)=0 (43)

ensuring the positivity of the dissipation gvn along the front. This automatic preservation of duality
when creating the non-local model is an advantage over classical non-local models [36].

A typical case. Let us apply this procedure to a power law-type damage evolution law with
threshold

ḋ =k

〈
Y

Yc
−1

〉n

+
, n>0, k>0, Yc>0 (44)

with the positive 〈·〉+ (negative 〈·〉−) part of a scalar following the usual definition

〈a〉+ = (a+|a|)/2, 〈a〉− = (a−|a|)/2 (45)

The corresponding potentials are

�∗(Y ) = kYc

n+1

〈
Y

Yc
−1

〉n+1

+
(46)

�(ḋ) = Ycḋ + kYc

n′+1

(
ḋ

k

)n′+1

+ I+(ḋ) (47)
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where n′ =1/n and I+ is the indicator function of R+

I+(x)=0 if x�0 and +∞ otherwise (48)

The homogenized potential is given by (39)

∫
�

�(vn,s)ds =
∫

�oc

Ycd ′vn + kYc

n′+1

(
d ′vn

k

)n′+1

+ I+(d ′vn)d� (49)

=
∫

�0

Y c(s)vn + k(s)Yc(s)

n′+1

(
vn

k(s)

)n′+1

+ I+(vn)ds (50)

where

Y c(s) = Yc

∫ l

0
d ′(�)

(
1− �

�(s)

)
d� (51)

k(s) = k

⎛
⎜⎜⎝

∫ l
0 d ′(�)

(
1− �

�(s)

)
d�

∫ l
0 (d ′(�))n′+1

(
1− �

�(s)

)
d�

⎞
⎟⎟⎠

n

(52)

The dual potentials and the corresponding evolution law are

�(vn,s) = Y c(s)vn + k(s)Yc(s)

n′+1

(
vn

k(s)

)n′+1

+ I+(vn) (53)

= �r (vn,s)+ I+(vn) (54)

�
∗
(g,s) = k(s)Yc(s)

n+1

〈
g

Y c(s)
−1

〉n+1

+
(55)

vn = k(s)

〈
g

Yc(s)
−1

〉n

+
(56)

where we did denote �r as part of � which may be differentiated in the classical sense. Note that
in practice, as it will be seen in the numerical implementation, it is not necessary to obtain the
analytical global potentials �.

2.4. Advantages of the proposed approach

• Compared with non-local approaches in which the duality may be corrupted [36], the proposed
approach is thermodynamically sound.

• Although the approach is non-local the specific numerical treatment for non-locality is limited
to a band.

• The scenario of the damage variable getting to 1 is included in the model.
• The criterion is maximum at the tip of a crack and not a little away from it as in classical

non-local approach [37].
• The issue of the proper boundary conditions in the gradient type is removed. Also, the

displacement field is no longer forced to be extra smooth as in the higher order displacement
gradient models.

2.5. Relationship with fracture mechanics

Let us now consider that the damage front has a shape depicted in Figure 4 and that it progresses
so that it keeps its shape with a speed ȧ. This means that the normal velocity on the front is
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Figure 4. A damage front progressing in a stationary fashion.

given by

vn = ȧ e ·n (57)

where n is the outer normal to the front and e the crack direction. Substituting this representation
of vn into (53), (55), (56), we get the following potentials:

�(ȧ) = Gcȧ+ K Gc

n′+1

(
ȧ

K

)n′+1

+ I+(ȧ) (58)

�∗(G) = K Gc

n+1

〈
G

Gc
−1

〉n+1

+
(59)

ȧ = K

〈
G

Gc
−1

〉n

+
(60)

where

G =
∫

�0

ge·nds (61)

Gc =
∫

�0

Yce ·nds (62)

K =
⎛
⎝ ∫

�0
Yce ·nds∫

�0
k
−n′

Yc(e·n)n′+1 ds

⎞
⎠n

(63)

To better see the relationship between damage parameters (Yc, lc,k) and fracture mechanics
parameters (Gc, K ), let us consider the particular case of a circular damage front and a linear
damage to level set relationship. In this case, we get

Gc = Yc(h+lc) (64)

K = klc

⎛
⎝ 2∫ �/2

−�/2(cos	)n′+1 d	

⎞
⎠n

(65)

3. SPACE AND TIME DISCRETIZATION

In this section, we consider only one front �0. In the presence of multiple, disconnected fronts i ,
the same procedure is performed for each individual front �i

0.
Regarding the space discretization, we use the X-FEM. This method is well known to handle

cracks [38, 39] without explicit meshing of the crack. The X-FEM may also handle voids [40] and
it is this feature that we will be using to model completely damaged zones. Thus, the boundary
�c does not need to be meshed explicitly. For a given location of the damage front, once the
mechanical fields are evaluated, we need to compute the front velocity. We shall look for the

10



velocity on the front as a combination of modes:

vn =
N∑

I=1
vnI FI (66)

The modes FI are explicit functions of s initially defined on the front �0, then extended through
the band �oc. The extension is performed just as a velocity is extended from the iso-zero of the
level set when dealing with the level set equation [41, 42].

In order to find the velocity coefficients, the discretized expression of the velocity is introduced
in (37)

inf
vn

∫
�oc

�(d ′(�)vn)−Y d ′(�)vn d� (67)

The integration is restricted over �oc since outside this band d ′(�)=0. In the minimization, the
velocity vn must be positive. If the velocity is not positive the potential � is infinite. In order to
impose the positivity of the velocity, introduction of a Lagrange multiplier 
 is useful.

inf
vn

sup

�0

∫
�c

�r (d ′(�)vn)−Y d ′(�)vn +
d ′(�)vn d� (68)

where �r is the regular part of the potential � which is no longer infinite when the velocity is
negative. Note that in the above equation, the 
 term also involves the gradient of the damage.
This is important if we do not want to loose the constraint of positive velocity as lc goes to zero.
The interpretation of the Lagrange multiplier is as follows: it will be zero in zones where the front
is moving and related to the gap Yc −Y in areas where it is not moving.

Finally, in order to remove the constraint 
�0 in (68) the trick, introduced for contact by Ben
Dhia et al. [43], is to write

inf
vn

sup



∫
�oc

�r (d ′(�)vn)−Y d ′(�)vn + d ′(�)

2�
〈
+�vn〉2

−− d ′(�)

2�

2 d� (69)

where �>0 is a parameter that does not affect the solution. Differentiating with respect to vn and

, we get∫

�oc

(
��r (d ′(�)vn)

�vn
+��d ′(�)vn

)
�vn +�d ′(�)
�vn d� =

∫
�oc

Y d ′(�)�vn d� ∀�vn (70)

∫
�oc

�d ′(�)vn�
+(�−1)d ′(�)



�
�
d� = 0 ∀�
 (71)

in which we did use the notation

�=�(
,vn) = 0 if 
+�vn�0 (72)

�=�(
,vn) = 1 if 
+�vn<0 (73)

This system may be solved using a Newton–Raphson technique. Two non-linearities appear.
One coming from the constitutive law �r and the second coming from the contact condition �. It
was shown in [43, 44] that solving one difficulty at a time was efficient. Basically, there are two
embedded loops in the Newton–Raphson procedure.

We now discretize

vn =
N∑

I=1
vnI FI , �vn =

N∑
I=1

�vnI FI


 =
N∑

I=1

I FI , �
=

N∑
I=1

�
I FI

(74)

11



where the modes FI depend only on the curvilinear abscissa s⎡
⎢⎣K i +�C0 C0

C0T C0 − M

�

⎤
⎥⎦
[

�vn

�


]
=
[

Ri

Si

]
(75)

K i
I J =

∫
�oc

�2�r (d ′(�)vi
n)

�2
vn

FI FJ d� (76)

C0
I J =

∫
�oc

�0d ′(�)FI FJ d� (77)

MI J =
∫

�oc

d ′(�)FI FJ d� (78)

Ri
I =

∫
�oc

(
−��r (d ′(�)vi

n)

�vn
+Y d ′(�)+�0d ′(�)(
i +�vi

n)

)
FI d� (79)

Si
I =

∫
�oc

d ′(�)(�0(
i/�+vi
n)−
i/�)FI d� (80)

where �0 =�(
0,v0
n). We note that the velocity computation on the front does not require an explicit

computation of the configurational forces on the front.
Regarding the loading, different types of control may be used. In the numerical experiments

we did use a crack mouth opening displacement (CMOD) for the three-point bending test and a
dissipation control-type algorithm for the other experiments. For the dissipation control algorithm
we were inspired by the work of Verhoosel et al. [45]. In our case, the dissipation reads as

D =
∫

�oc

Y d ′(�)vn d� (81)

It is tempting to impose the value of D by some prescribed constants. Unfortunately at initiation,
the left term goes to zero and the equality may only be satisfied for infinite loading. Hence, we
introduce a given parameter � and we take into account the volume of the damaged zone by the
constraint ∫

�oc

Y d ′(�)vn d�=
∫

�oc

�d ′(�)d� (82)

This constraint is imposed through a Lagrange multiplier . Taking into account the dissipation
constraint, the inf–sup principle (69) now reads as

inf
vn

sup



sup


∫
�oc

�r (d ′(�)vn)+ d ′(�)

2�
〈
+�vn〉2

−− d ′(�)

2�

2 −Y0d ′(�)vn + log�d ′(�)d� (83)

where Y0 is the value of Y for a unit loading. It may be observed in the above that the meaning of
the Lagrange parameter  is simply the square of the loading. The corresponding Newton–Raphson
iteration is given below⎡

⎢⎢⎢⎢⎣
K i +�C0 C0 D

C0T C0 − M

�
0

DT 0 Ei

⎤
⎥⎥⎥⎥⎦
⎡
⎢⎣

�vn

�


�

⎤
⎥⎦=

⎡
⎢⎢⎣

Ri

Si

T i

⎤
⎥⎥⎦ (84)
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DI =
∫

�oc

Y0d ′(�)FI d� (85)

Ei = −
∫

�oc

�d ′(�)

i2
d� (86)

T i =
∫

�oc

(
Y0d ′(�)vi

n − �d ′(�)

i

)
d� (87)

Once the normal velocity of the level set is known, the level set may be updated using classical
level set approaches [41, 42].

4. NUMERICAL SIMULATIONS FOR SEVERAL 2D CASES

In order to take into account more general loading cases and the closure effect in the fully damaged
zone, we consider an asymmetric tension/compression damage potential with a scalar damage
variable. We have considered a strain-based model. Other types of models involving closure effects
may be found in [46]

�(ε,d)=�(1−d)〈ε〉+ : 〈ε〉++�(1−hd)〈ε〉− : 〈ε〉−+ 


2
(1−d)〈T rε〉2

++ 


2
(1−hd)〈T rε〉2

− (88)

where 
 and � are the Lamé elastic coefficients and h�1. The positive (negative) part of the tensor
is applied to its spectral decomposition

〈ε〉+ =
3∑

i=1
〈εi 〉+ei ⊕ei (89)

〈ε〉− =
3∑

i=1
〈εi 〉−ei ⊕ei (90)

where εi , i =1,2,3, are the eigenvalues of the strain tensor and ei , i =1,2,3, the eigenvectors. The
potential is expressed as follows using the eigenvalues (and plane strain assumption ε3 =0))

�(ε,d)= E

2(1+)
((1−�1d)ε2

1 +(1−�2d)ε2
2)+ E(1−�d)

2(1−2)(1+)
(ε1 +ε2)2 (91)

with

�i = h if εi<0

1 if εi�0

� = h if ε1 +ε2<0

1 if ε1 +ε2�0

One can easily show that the eigenvectors of the stress and strain tensors coincide. The eigen
stresses are obtained from the eigen strains by differentiating (91)(

�1

�2

)
= E

1+

(
(1−�1d)+�(1−�d) �(1−�d)

�(1−�d) (1−�2d)+�(1−�d)

)
︸ ︷︷ ︸

L

(
ε1

ε2

)
(92)

Storing the two eigen stresses in r̃ and the two eigen strains in ε̃

r̃=Lε̃ (93)
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Figure 5. Three-point bending test case configuration.

Figure 6. Close-up views of the damage zones at t =103.25s for the three grid refinement
levels. The white zone indicates the fully damaged area (level set value above lc),

whereas the black line is the damage front.

Figure 7. Load–displacement curves for the three-point bending test using three different grid
refinement levels (dash-dotted line for the coarser mesh, dashed line for the intermediate mesh,
dotted line for the finer mesh and continuous line for the experimental data). The displacements

are the deflection on the loading point (left) and the CMOD (right).

It is important for the Newton–Raphson algorithm to compute also the tangent stiffness. First, we
note that the stress is the derivative of the potential

r= ��

�ε
= ��

�ε̃
�ε̃

�ε
= ε̃TL

�ε̃
�ε

(94)

H = �r
�ε

=
(

�ε̃

�ε

)T

L
�ε̃
�ε

+ ε̃TL
�2

ε̃

�ε2
(95)
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Figure 8. Time evolution of the norm of the displacement field.

Figure 9. Load–displacement curves for the three-point bending test using values of k =2.5×10−2 s−1

(dashed-dotted), k =2.5×10−3 s−1 (dashed) and k =2.5×10−4 s−1 (dotted). The displacements are the
deflection on the loading point (left) and the CMOD (right).

=
(

�ε̃

�ε

)T

L
�ε̃

�ε
+�1

�2
ε1

�ε2
+�2

�2
ε2

�ε2
(96)

finally, the local energy release Y is given by

Y = E

2(1+)
((�1 +��)ε2

1 +(�2 +��)ε2
2 +2��ε1ε2) (97)

15



Figure 10. Initial configuration for the crack coalescence test case and load–displacement curve.

with �=/(1−2). The first- and second-order derivatives in (96) are given by

�ε̃

�ε
= 1

2

[
1+cos 	 1−cos 	 sin 	

1−cos 	 1+cos 	 −sin 	

]
(98)

�2
ε1

�ε2
= 1

2r

⎡
⎢⎢⎣

1−cos2 	 −1+cos2 	 −sin 	cos 	

−1+cos2 	 1−cos2 	 sin 	cos 	

−sin 	cos 	 sin 	cos 	 1−sin2 	

⎤
⎥⎥⎦=−�2

ε2

�ε2
(99)

where we have used the following notations.

ε1,2 = tr (ε)±
√

tr (ε)2 −4det(ε)

2
= tr (ε)±r

2

ε11 −ε22 = r cos	

2ε12 = r sin	

We now discuss some mathematical aspects. The potential � is convex with respect to the
strain for any damage value (d�1). It is differentiable in the classical sense everywhere, i.e. for
any given strain, the corresponding stress is unique. However, the tangent stiffness H, i.e. second
derivative of the potential is discontinuous for ε1 =0 or ε2 =0 or ε1 +ε2 =0. This can be seen from
the expression of the D operator.

5. RESULTS

We present here four test cases to validate and illustrate the applicability of the TLS approach.
The first test case is the three-point bending problem with an imposed CMOD. Both the mesh

sensitivity and the speed effect, i.e. modifications of the load–displacement curves depending on the
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Figure 11. Time evolution of the von Mises stress (left) and displacement norm fields (right).

ratio between the crack mouth opening velocity and the damage front velocity [47], are observed
and the results are compared with a reference crack solution. The three remaining test cases illustrate
the advantages of the method by considering the coalescence, branching and merging of cracks
with an imposed dissipation rate to represent severe snap-backs on the load–displacement curves.

All computations are performed using a linear relationship d(�) and the non-linear potential
(88). Note that this non-linearity does not have much impact on the solution for the three-point
bending problem since the damage zone essentially experiences traction. The dissipation potential
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Figure 12. Initial configuration for the crack branching test case and load–displacement curve.

used is the one corresponding to the damage evolution law (44), using n =1. The velocity vn is
discretized using polynomial (Hermite) modes providing a partition of unity. Each mode is defined
(i.e. non-zero) on a length of about eight elements in the curvilinear coordinate along the front.
The total number of modes is therefore increasing as the front length increases. For instance, 50
modes are used at the end of the coalescence test case (Figure 11).

Before the damage front may be grown it must be initiated. It is initiated at the location and
for the load for which the critical local energy release Yc is reached. A level set is placed with a
radius of about two element sizes.

5.1. Three-point bending

We consider the beam in the three-point bending configuration depicted in Figure 5. Crack growth
for this specimen has been studied by Carpinteri and Colombo [48] using finite elements. These
results will be used as the reference results for the comparison. The material characteristics are
the Young modulus E =36.5×109 Nm−2 and the Poisson ratio of =0.1. Other parameters are
chosen to match approximately the order of magnitude of the reference solution: Yc =100Nm−2,
lc =7.5×10−3 m and k =2.5×10−2 s−1 while we ensure a constant crack mouth opening velocity U̇
of 2×10−7 ms−1. We therefore impose in this test case a CMOD instead of a given dissipation rate.

First, we consider three different grid refinement levels to observe the mesh sensitivity. Figure 6
is a close-up view of the three displacement fields and damaged zones obtained for the same
physical time t =103.25s on three embedded regular meshes with an element size h = lc/3, lc/6
and lc/12. The corresponding load–displacement curves are depicted in Figure 7 for both the
deflection and the CMOD. The same order of magnitude is reached for the three computations and
the reference solution (continuous line). In Figure 8 is depicted the time evolution of the crack and
the norm of the displacement field. The major loss of stiffness of the specimen happens between
states B and C.

Then, a family of load–displacement curves can be obtained with the variation of the speed
effect non-dimensional number

U̇

klc

representing the ratio between the loading velocity and the front velocity vn ∝klc. We consider
here variations of k to observe the impact of the speed effect. Three load–displacement curves are
depicted in Figure 9 for k =2.5×10i s−1 with i =−2,−3 and −4. The results are in agreement
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Figure 13. Evolution of the stress (left) and displacement (right) norms.

with the observations in [47]: the increase in the speed effect tends to scale the curves. Indeed,
for a same damaged zone, the specimen stiffness F/U remains the same, but larger load and
displacement are reached.

5.2. Crack coalescence

Let us consider the configuration depicted in Figure 10. The crack coalescence is a standard
benchmark studied extensively in, for instance [49, 50]. We consider the ratios a/b=0.2, e/b=
0.025 as in [50], with b=40mm, E =200GPa and =0.3. Other parameters are lc =1mm, Yc =
1kPa and k =2.5×10−6 s−1, with an imposed dissipation rate of 1Wm−2.

19



Figure 14. Random defects distribution for the crack percolation and load–displacement curve.

The load–displacement curve is depicted in Figure 10. The stress and displacement fields of
points A, B, C and D can be observed in Figure 11. Oscillations appearing on the load–displacement
plot seems to be due to the control in dissipation and will be investigated in a future work. Note
however that small dissipation increments have been used in this computation, but there is no
particular restriction on these imposed increments. We eventually obtain the expected crack growth
pattern of complete failure (state D) in good agreement with experimental observations [49, 50].

5.3. Crack branching

This test case consists in a specimen made of two materials presenting different Young’s moduli.
A crack is initiated in the material presenting the lower modulus, as depicted in Figure 12. The
damage evolution is presented in Figure 13. The crack propagates normally until approaching
the Young modulus transition zone (point A). Then, since branching requires less energy than
continuing into the second material, the fully damaged zone becomes larger (point B) and the crack
eventually branches into two parts (point C) as expected. This branching process naturally appears
as the level set grows, and would clearly be much more difficult to represent with classical models.

5.4. Crack percolation

The last test case configuration is depicted in Figure 14. We consider a random distribution of small
defects with a maximum initial size of 1mm with lc =3.5mm and the specimen length b=40mm.
We choose Yc =100Pa, k =2.5×10−4 s−1 and an imposed dissipation rate of 100Wm−2, for the
Young modulus and the Poisson ratio of 37.7GPa and 0.2, respectively. Note that crack percolation
was also studied using the X-FEM in [51].

Comparing Figures 14 and 15, we observe that the specimen stiffness is not much affected
when the defects grow, until they reach a maximum damage of d =1. Then, cracks appear as
shown in point B, and the stiffness decreases much more quickly. We also observe the merging
of damage zones and cracks. Unlike classical fracture mechanics methods, this process appears
naturally as the level set function grows, and the cracks merging does not require any particular
implementation. Moreover, it is not necessary to explicitly determine which crack should grow.
Indeed, the front velocity is already computed as the velocity minimizing the energy while ensuring
a given dissipation rate.

20



Figure 15. Time evolution of the damage (left) and the norm of the displacement field (right).

6. CONCLUSIONS

In this paper, we have introduced a new way to model damage growth in solids. The model is based
on a so-called Thick Level Set (TLS). The damage variable is tied to the distance to the damage
front (iso-zero of the level set). Beyond a critical distance the material is considered completely
damaged (but may still sustain compression if it is prescribed in the model). The model thus
introduces a length scale and it regularizes local damage models. A set of numerical experiments
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did demonstrate the capability of the model to handle initiation, growth, branching and coalescence
of crack-like patterns.
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