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CENTRAL LIMIT THEOREMS FOR EMPIRICAL TRANSPORTATION COST IN GENERAL DIMENSION By Eustasio del Barrio and

We consider the problem of optimal transportation with quadratic cost between a empirical measure and a general target probability on R d , with d ≥ 1. We provide new results on the uniqueness and stability of the associated optimal transportation potentials, namely, the minimizers in the dual formulation of the optimal transportation problem. As a consequence, we show that a CLT holds for the empirical transportation cost under mild moment and smoothness requirements. The limiting distributions are Gaussian and admit a simple description in terms of the optimal transportation potentials.

1. Introduction. The analysis of the minimal transportation cost between two sets of random points or of the transportation cost between an empirical and a reference measure is by now a classical problem in probability, to which a significant amount of literature has been devoted.

In the case of two sets of n random points, say X 1 , . . . , X n and Y 1 , . . . , Y n in R d , the object of interest is

T c,n = min σ 1 n n i=1 c(X i , Y σ(i) ),
where σ ranges is the set of permutations of {1, . . . , n} and c(•, •) is some cost function. T c,n is usually referred to as the cost of optimal matching. This optimal matching problem is closely related to the Kantorovich optimal transportation problem, which, in the Euclidean setting amounts to the minimization of

I[π] = R d ×R d c(x, y)dπ(x, y),
with π ranging in the set of joint probabilities on R d × R d with marginals P, Q. Here P and Q are two probability measures on R d and the minimal value of I[π] is known as the optimal transportation cost between P and Q. The cost functions c(x, y) = xy p have received special attention and we will write W p p (P, Q) for the optimal transportation cost in that case. It is well known that with this choice of cost function T c,n = W p p (P n , Q n ), with P n and Q n denoting the empirical measures on P n and Q n . A related functional of interest is W p p (P n , Q), the transportation cost between the empirical measure on the sample X 1 , . . . , X n and a given probability Q.

How large is the cost of optimal matching, W p p (P n , Q n )? Under the assumption that X 1 , . . . , X n are i.i.d. with distribution P , Y 1 , . . . , Y n are i.i.d. with distribution Q and P and Q have finite p-th moment is is easy to conclude that W p p (P n , Q n ) → W p p (P, Q) almost surely. One might then wonder about the rate of approximation, that is, how far is the empirical transportation cost from its theoretical counterpart. Much effort has been devoted to the case when P = Q, namely, when the two random samples come from the same random generator. In this case W p p (P, Q) = 0 and the goal is to determine how fast does the empirical optimal matching cost vanish. From the early work [START_REF] Ajtai | On optimal matchings[END_REF], followed by the important contributions [START_REF] Talagrand | Matching random samples in many dimensions[END_REF], [START_REF] Talagrand | The transportation cost from the uniform measure to the empirical measure in dimension ≥ 3[END_REF], [START_REF] Talagrand | The integrability of the square exponential transportation cost[END_REF] and [START_REF] Dobrić | Asymptotics for transportation cost in high dimensions[END_REF], it is known that the answer depends on the dimension d. In the case when P = Q is the uniform distribution on the unit hypercube W p (P n , Q n ) = O(n -1/d ), if d ≥ 3, with a slightly worse rate if d = 2. The results for d ≥ 3 were later extended to a more general setup covering the case when P = Q has bounded support and a density satisfying some smoothness requirements. The one-dimensional case is different. If p = 1 then, under some integrability assumptions W 1 (P n , P ) = O P (n -1/2 ), with √ nW 1 (P n , P ) converging weakly to a non Gaussian limit, see [START_REF] Del Barrio | Central limit theorems for the Wasserstein distance between the empirical and the true distribution[END_REF]. If p > 1 then it is still possible to get a limiting distribution for √ nW p (P n , P ), but now integrability assumptions are not enough and the available results require some smoothness conditions on P (and on its density), see [START_REF] Del Barrio | Asymptotics for L2 functionals of the empirical quantile process, with applications to tests of fit based on weighted Wasserstein distances[END_REF] for the case p = 2. In fact, see [START_REF] Bobkov | One-dimensional empirical measures, order statistics and Kantorovich transport distances[END_REF], the condition that P has a positive density in an interval is necessary for boundedness of the sequence √ nE(W p (P n , P ))

if p > 1. In a different setting using PDE, rates in dimension 2 are also given [START_REF] Ambrosio | A PDE approach to a 2-dimensional matching problem[END_REF]. This paper provides CLT's and variance bounds for the quadratic transportation cost between an empirical measure based on i.i.d. observations and a probability on R d or between two sets of d-dimensional i.i.d. observations. More precisely, we will consider i.i.d. R d valued random variables (r.v.'s in the sequel) X 1 , . . . , X n with common distribution P and an additional probability Q on R d . We will write P n for the empirical measure on X 1 , . . . , X n and will give CLT's for W 2 (P n , Q) (see our Theorem 4.1). We also extend this result to CLT's for W 2 (P n , Q m ) when Q m is the empirical measure on a further independent sample of i.i.d. r.v.'s, Y 1 , . . . , Y m , with law Q.

Beyond the theoretical interest of the problem, we would like to emphasize the potential impact on statistical applications of our results. Quoting from [START_REF] Sommerfeld | Inference for Empirical Wasserstein Distances on Finite Spaces[END_REF], the transportation cost distance 'is an attractive tool for data analysis but statistical inference is hindered by the lack of distributional limits'. This has led to some attempts to provide some distributional limits in different setups. In [START_REF] Rippl | Limit laws of the empirical Wasserstein distance: Gaussian distributions[END_REF] a related (but different) problem is considered. There the sample X 1 , . . . , X n consists of i.i.d. Gaussian r.v.'s (this is extended to cover elliptical models as well) and CLT's are given for the transportation between the underlying Gaussian law and a Gaussian law with estimated parameters (see Theorems 2.1 and 2.2 there). To our best knowledge the only work that deals with the issue of distributional limit laws for the transportation cost between empirical measures is [START_REF] Sommerfeld | Inference for Empirical Wasserstein Distances on Finite Spaces[END_REF] (see Theorem 1 there). However, the problem considered there is of a different nature. Both generating probabilities P and Q are assumed to have finite support. This allows to deal with the transportation cost as a functional of the multinomial vector of empirical frequencies, and the result follows from the directional Hadamard differentiability of this functional. On the other hand we focus on the case when the probabilities P and Q are smooth (or at least one of them) and this requires the exploration of alternative methods of proof.

Our approach to the transportation cost between empirical measures comes from a closer analysis of the Kantorovich duality. We give a selfcontained description of this in Section 2 below. For the moment we limit ourselves to note that the transportation cost W 2 2 (P, Q) can be expressed as

W 2 2 (P, Q) = R d x 2 dP (x) + R d y 2 dQ(y) + 2 min (ϕ,ψ)∈Φ J(ϕ, ψ),
where Φ denotes the set of pairs of functions (ϕ, ψ) ∈ L 1 (P ) × L 1 (Q) such that ϕ(x) + ψ(y) ≥ x • y and J is the linear functional

J(ϕ, ψ) = R d ϕdP + R d ψdQ.
If (ϕ, ψ) is a minimizing pair in Φ for J we will refer to ψ as an optimal transportation potential for the transportation of Q to P . The motivation for the name comes from the fact that, provided Q has a density, the optimal transportation problem is equivalent to the Monge transportation problem, that is,

W 2 2 (P, Q) = min T : Q•T -1 =P R d x -T (x) 2 dQ(x),
(here and in the sequel Q • T -1 denotes the law induced from Q by the measurable map T ). A minimizing T in the Monge problem is called an optimal transportation map from Q to P . It is well known (see, e.g., Theorem 2.12 in [START_REF] Villani | Topics in Optimal Transportation[END_REF]) that the optimal transportation map is unique if Q has a density and, in fact, it is the unique map of the form ∇ψ with ψ a proper, lower semicontinuous, convex function, that maps Q to P (see details below). It is also true that ∇ψ is an optimal transportation map if and only if ψ is an optimal transportation potential. Beyond uniqueness, it is also known that optimal transportation maps enjoy some stability: if

P n → P in W 2 2
distance then the optimal transportation map from Q to P n converges Qalmost surely to the optimal transportation map from Q to P , see for instance Corollary 5.23 in [START_REF] Villani | Optimal Transport: Old and New. Grundlehren der Mathematischen Wissenschaften[END_REF]. Optimal transportation potentials do not enjoy uniqueness or stability in general. However, we show in this paper that they are essentially unique (up to the addition of a constant) and that suitable versions can be chosen for which stability does hold.

Once we have proved these stability results, our approach to the CLTs for the empirical transportation cost relies on a rather simple application of the Efron-Stein variance inequality (see Section 3). Related techniques had been used to provide exponential concentration bounds for the empirical transportation cost (see [START_REF] Del Barrio | Rates of convergence for partial mass problems[END_REF]). Here we give only variance bounds, but get two main advantages. First, these variance bounds hold in great generality, requiring only finite fourth moments (in [START_REF] Del Barrio | Rates of convergence for partial mass problems[END_REF] a bounded support is assumed for the exponential bounds). Second, they can be adapted to prove a linearization result that yields as a direct consequence our CLT's that are presented in Section 4. The Efron-Stein method for variance inequalities boils down to bounding the moments of the increase that results in replacing a member of a sample by an independent copy. This is particularly convenient in optimal transportation, where a solution which is optimal for a sample results in or can be transformed into a different solution which is not optimal for the transformed sample, but yields a workable bound for the increase in transportation cost. We would like to mention that we use this observation both for the primal and the dual formulation of the transportation problem and that both uses are needed to prove our linearization result.

Finally, to end this introduction, we would like to explain the particularities that made ourselves constrain our approach to the quadratic cost. While it was this quadratic case that historically received first a closer attention, the theory has then broadened and much of the key results have been extended to more general costs. Of course, the Kantorovich duality holds in much greater generality. Equivalence to the Monge version of optimal transportation requires, however, some additional assumptions, related to strict convexity of the cost function. It does hold for the cost xy p with p > 1 and there are uniqueness and stability results for the optimal transportation maps in this more general setup (see [START_REF] Gangbo | The Geometry of Optimal Transportation[END_REF]). However, our approach to prove uniquess and stability of optimal transportation potentials relies on tools from the theory of graphical convergence of multivalued maps (a particular case of set convergence in the Painlevé-Kuratowski sense, see details in Section 2 below) which are particularly suited for the analysis of convex functions and their subgradients. We expect that similar results will be developed to enable to handle version related to generalized concavity, which would allow to extend the approach in this paper to costs xy p with p > 1. This will be covered in a future work.

2. Uniqueness and stability of optimal transportation potentials.. An essential component in our approach is the Kantorovich duality, which we succintly describe next and refer to the excellent monographs [START_REF] Rachev | Mass Transportation Problems. (2 Vols)[END_REF], [START_REF] Villani | Topics in Optimal Transportation[END_REF] or [START_REF] Villani | Optimal Transport: Old and New. Grundlehren der Mathematischen Wissenschaften[END_REF] for further details. Given Borel probabilities P and Q on R d with finite second moment, the optimal transportation problem (with quadratic cost) is the problem of minimization of

I[π] = R d ×R d x -y 2 dπ(x, y) in π ∈ Π(P, Q), the set of Borel probability measures on R d ×R d with marginals P and Q. It is convenient to consider the equivalent problem of maximization of Ĩ[π] = R d ×R d x•ydπ(x, y) (note that I[π] = x 2 dP (x)+ y 2 dQ(y)- 2 Ĩ[π]
). We denote by Φ the set of pairs of functions (ϕ, ψ)

∈ L 1 (P ) × L 1 (Q) such that ϕ(x) + ψ(y) ≥ x • y
for every x and y. We write also

(1)

J(ϕ, ψ) = R d ϕdP + R d ψdQ.
Then,

(2) min

(ϕ,ψ)∈Φ J(ϕ, ψ) = max π∈Π(P,Q) Ĩ[π].
With this result, to which we will refer as the Kantorovich duality, we are summarizing a number of different facts. First, the functional Ĩ[π] admits a maximizer in Π(P, Q); second, the functional J(ϕ, ψ) admits a minimizer in Φ; finally, the optimal values are equal (see for instance Theorems 1.3 and 2.9 in [START_REF] Villani | Topics in Optimal Transportation[END_REF]). Furthermore, the maximizing pair for J, (ϕ, ψ), can be taken to be a pair of lower semicontinuous, proper convex conjugate functions, that is, ϕ(x) = ψ * (x), where

h * (x) = sup y∈R d (x • y -h(y))
denotes the convex conjugate of h (note that ϕdP

+ ψdQ ≥ ψ * dP + ψdQ since ϕ ≥ ψ * if (ϕ, ψ) ∈ Φ)).
This results in a more precise description of the maximizers of Ĩ[π], as follows.

For any π ∈ Π(P, Q) and any (ψ * , ψ) in Φ we clearly have

J(ψ * , ψ) = R d ×R d (ψ * (x) + ψ(y))dπ(x, y) ≥ R d ×R d x • ydπ(x, y) = Ĩ[π].
The Kantorovich duality (2) entails that (ψ * , ψ) is a minimizer of J and π is a maximizer of Ĩ if and only if

R d ×R d (ψ * (x) + ψ(y) -x • y)dπ(x, y) = 0, that is, if and only if the nonnegative function ψ * (x) + ψ(y) -x • y vanishes π-almost surely. The condition ψ * (x) + ψ(y) -x • y = 0 holds if and only if x ∈ ∂ψ(y) (if and only if y ∈ ∂ψ * (x)).
Here ∂ψ(y) denotes the subgradient of ψ at y, that can be written as

∂ψ(y) = {z ∈ R d : ψ(y ′ ) -ψ(y) ≥ z • (y ′ -y) for all y ′ ∈ R d },
which is a nonempty set if ψ is a proper convex function and y belongs to the interior of its domain (see [START_REF] Rockafellar | Convex Analysis[END_REF] for further details). If ψ is differentiable at y then ∂ψ(y) = {∇ψ(y)}, where ∇ denotes the usual gradient. We note that convex functions are locally Lipschitz, hence, by Rademacher's Theorem (see, e.g., p. 81 in [START_REF] Evans | Measure Theory and Fine Properties of Functions[END_REF]) they are differentiable at almost every point in the interior of their domain. These facts can be used to prove that if Q does not give mass to sets of Hausdorff dimension d -1 (in particular if Q is absolutely continuous with respect to ℓ d , the Lebesgue measure on R d ), then (see Theorem 2.12 in [START_REF] Villani | Topics in Optimal Transportation[END_REF]) (ψ * , ψ) is a minimizing pair for J if and only if Q • (∇ψ) -1 = P and then π = Q • (∇ψ, Id) -1 maximizes Ĩ. The map T = ∇ψ is known as the optimal transportation map from Q to P and is Qa.s. unique: if ψ 1 were a further convex function such that Q

• (∇ψ 1 ) -1 = P then ∇ψ = ∇ψ 1 Q-almost surely.
Unlike the optimal transportation map, the optimal transportation potential, that is a convex, lower semicontinuous ψ such that (ψ * , ψ) minimizes J (equivalently, a convex, lower semicontinuous

ψ such that Q • (∇ψ) -1 = P ), is not unique, since, obviously J(ψ * -C, ψ + C) = J(ψ * , ψ) for every C ∈ R.
However, under some additional regularity on Q we can ensure that this is the only way to produce a different optimal transportation potential. Our next result would be trivial if we were imposing further smoothness assumptions on the convex potentials: two differentiable functions on a convex domain that have the same gradient are equal up to addition of a constant. What we show next is that, for convex functions, having a common gradient at almost every point is enough to reach the same conclusion. Then there exists

C ∈ R such that ψ 1 (x) = ψ 2 (x) + C for all x ∈ A.
Proof. For i = 1, 2, we write ∂ϕ i (x) for the subgradient of ϕ i at x ∈ A, namely, the set of z ∈ R d such that ϕ i (y)-ϕ i (x) ≥ z•(y-x) for all y ∈ R d . We also write S i (x) for the set of points z ∈ R d such that z = lim n→∞ ∇ϕ i (x n ) for some sequence x n which satisfies lim n→∞ x i = x. Then ∂ϕ i (x) is the closure of the convex hull of S i (x) (see Theorem 25.6, p. 246 in [START_REF] Rockafellar | Convex Analysis[END_REF]; note that the normal cone to a point in the interior of the domain of a convex function is simply {0}). Now, assume that z ∈ S 1 (x), with z = lim n→∞ ∇ϕ 1 (x n ) and x n is some sequence converging to x ∈ A. Denote by B ⊂ A the set such that A-B has null Lebesgue measure while for x ∈ B ϕ i , i = 1, 2 are differentiable at x with ∇ϕ 1 (x) = ∇ϕ 2 (x). We note that ∇ϕ 1 is continuous in the set of points of differentiability of ϕ 1 (Theorem 25.5 in [START_REF] Rockafellar | Convex Analysis[END_REF]). Hence, for each n we can find xn ∈ B such that x nxn ≤ 1 n and ∇ϕ 1 (x n ) -∇ϕ 1 (x n ) ≤ 1 n . But then xn → x and ∇ϕ 1 (x n ) = ∇ϕ 2 (x n ) → z, which shows that z ∈ S 2 (x) and implies that S 1 (x) ⊂ S 2 (x). By symmetry, we also have S 2 (x) ⊂ S 1 (x). Now, two convex functions with equal subgradient at every point are equal up to the addition of a constant (see Theorem 24.9 in [START_REF] Rockafellar | Convex Analysis[END_REF]; we note that although the statement of this Theorem considers convex functions on R d the proof can be reproduced verbatim for convex functions on a smaller convex, open domain in R d ). This completes the proof.

As a consequence of Lemma 2.1, we obtain uniqueness of optimal transportation potentials (up to the addition of a constant) under suitable regularity assumptions.

Corollary 2.2. Assume that P and Q are Borel probabilities on R d with finite second moments and

(3)
Q has a positive density in the interior of its convex support.

Then, if ψ 1 , ψ 2 are convex, lower semicontinuous convex functions such that

J(ψ * 1 , ψ 1 ) = J(ψ * 2 , ψ 2 ) = min (ϕ,ψ)∈Φ J(ϕ, ψ), with J(ϕ, ψ) as in (1), there exists C ∈ R such that ψ 2 = ψ 1 + C in the interior of the support of Q. In particular, ψ 2 = ψ 1 + C Q-a.s..
Proof. Uniqueness of the optimal transportation map and (3) ensure that ∇ψ 1 (x) = ∇ψ 2 (x) for almost every x ∈ A, the interior of the support of Q. Lemma 2.1 allows to conclude that ψ 2 (x) = ψ 1 (x) + C for some constant C and every x in the interior of A. The conclusion follows from the fact that the boundary of a convex set has zero Lebesgue measure.

Remark 2.3. Uniqueness of the optimal transportation potential fails without assumption (3). As a counterexample, consider the probability P giving mass 1 2 to the points -1, 1 and assume that Q ε is the uniform law on the set (-ε -1, -ε) ∪ (ε, 1 + ε), ε > 0. Non-decreasing maps are optimal. Hence, the optimal transportation map from

Q ε to P is T ε (x) = -1, x < 0, T ε (x) = 1, x > 0. The maps ψ ε,L (x) = -x, x ≤ -L 2 , ψ ε,L (x) = x + L, x ≥ -L 2 , 0 < L < ε, are continuous, convex and satisfy ψ ′ ε,L = T ε Q ε a.s.
. Hence, they are optimal transportation potentials. However, if

L 1 = L 2 , then there is no choice of a constant C such that ψ ε,L 2 = ψ ε,L 1 + C Q ε a.s.
This example can be easily adapted to general dimension.

We turn now to stability in optimal transportation problems. We will assume that Q is a regular probability measure on R d (in the sense of (3)) and P n , P are probabilities satisfying W 2 (P n , P ) → 0. It is well known (see Theorem 3.4 in [START_REF] Cuesta-Albertos | Optimal transportation plans and convergence in distribution[END_REF]) that the optimal transportation maps from Q to P n , say T n , converge Q-a.s. to T , the optimal transportation map from Q to P . Here we will provide stability results for the optimal transportation potentials.

A main tool in our approach will be the concept of graphical convergence of multivalued maps, which is a particular case of set convergence in the Painlevé-Kuratowski sense. We include next a brief summary of some related key facts and refer to [START_REF] Rockafellar | Variational Analysis[END_REF] for a detailed account of the main results on the topic.

Given a sequence of subsets {C n } n≥0 of R d , its outer limit, to be denoted lim sup n→∞ C n is the set of points x ∈ R d such that x = lim j→∞ x n j for some subsequence n j and some choice of points x n j ∈ C n j , while the inner limit (denoted lim inf n→∞ C n ) is the set of points x ∈ R d such that x = lim n→∞ x n for some sequence x n such that x ∈ C n for all n ≥ n 0 (for some n 0 ). Obviously, lim inf n→∞ C n ⊂ lim sup n→∞ C n . When these two sets are equal (to C, say) then the sequence C n is said to converge to C in the Painlevé-Kuratowski sense. The limiting sets are necessarily closed and, in fact, it makes no difference to replace C n by its closure in all these definitions (see Proposition 4.4 in [START_REF] Rockafellar | Variational Analysis[END_REF]).

A multivalued map, T , from R d to R d is a map that assigns to each x ∈ R d , a set T (x) ⊂ R d . The domain of T is the set of x ∈ R d such that T (x) = ∅, while the graph is the subset

gph(T ) = (x, t) ∈ R d × R d : t ∈ T (x) .
Multivalued maps can be identified with subsets of R d × R d . Given a set T ⊂ R d × R d we can define the map T by the rule T (x) = {t ∈ R d : (x, t) ∈ T } and then the graph of T equals T . This identification allows to define convergence of multivalued maps in terms of set convergence of their graphs in the Painlevé-Kuratowski sense. More precisely, the sequence of multivalued maps {T n } n≥1 from R d to R d is said to converge graphically to T if the graphs gph(T n ) converge to gph(T ) in the Painlevé-Kuratowski sense, see Chapter 5 in [START_REF] Rockafellar | Variational Analysis[END_REF] for details. For convenience, we include next two results about convergence of sets and multivalued maps. The first one is a characterization of graphical convergence, which is just a rewriting of Proposition 5.33 in [START_REF] Rockafellar | Variational Analysis[END_REF]. The second is a key result on sequential compactness in the Painlevé-Kuratowski sense.

Proposition 2.4. The sequence of multivalued maps {T n } n≥1 converges graphically to T if and only if for every x ∈ R d the following two conditions hold:

(a) if x n → x, y n ∈ T n (x n ) for large n and there is a subsequence y n j → y, then y ∈ T (x), (b) if y ∈ T (x) then there exist sequences {x n }, {y n } with x n → x, y n ∈ T n (x n ) for large n and such that y n → y.

Theorem 2.5.

(a) Assume that {C n } n≥1 ⊂ R d satisfies that for some ε > 0 and some subsequence {n j } C n j ∩ B(0, ε) = ∅ for every j ≥ 1, where B(0, ε) denotes the open ball of radius ε centered at the origin. Then there exists a subsequence {n j k } and a nonempty subset

C ⊂ R d such that C n j k converges to C in the Painlevé-Kuratowski sense. (b) Assume that {T n } n≥1 is a sequence of multivalued maps from R d to
R d such that for some bounded sets C, D ⊂ R d and some subsequence {n j } there exist x n j ∈ C with T n j (x n j ) ∩ D = ∅ for all j ≥ 1. Then there exists a subsequence {n j k } and a multivalued map, T , from R d to R d , with nonempty domain such that T n j k converges graphically to T .

Proof. We note that the assumption in (a) is simply a rewriting of the assumption in Theorem 4.18 in [START_REF] Rockafellar | Variational Analysis[END_REF] (the condition that the sequence of sets does not escape to the horizon). Similarly, (b) follows from Theorem 5.36 in [START_REF] Rockafellar | Variational Analysis[END_REF].

The link between optimal transportation and the theory of multivalued maps comes from the fact that a transportation plan π is optimal (a minimizer for Ĩ) if and only its support is contained in the graph of the multivalued map ∂ψ for some proper, lower semicontinuous, convex ψ (recall the discussion above; see also Theorem 2.12 in [START_REF] Villani | Topics in Optimal Transportation[END_REF]). It is well known that subgradients of convex maps can be characterized in terms of monotonicity or cyclical monotonicity. A multivalued map

T from R d to R d is monotone if (t 1 -t 0 ) • (x 1 -x 0 ) ≥ 0 whenever t i ∈ T (x i ), i = 0, 1.
It is cyclically monotone if for every choice of m ≥ 1, points x 0 , . . . , x m and elements t i ∈ T (x i ), i = 0, . . . , m, we have

t 0 • (x 1 -x 0 ) + t 1 • (x 2 -x 1 ) + • • • + t m • (x 0 -x m ) ≤ 0.
A monotone multivalued map is maximal monotone if its graph cannot be enlarged without losing the monotonicity property and similarly for maximal cyclically monotone maps. It is easy to see that every cyclically monotone map is also monotone. It is also true that a maximal cyclically monotone map is maximal monotone and, in fact, a multivalued map T has the form T = ∂ψ for some proper, lower semicontinuous, convex ψ if and only if T is maximal cyclically monotone (see Theorems 12.17 and 12.25 in [START_REF] Rockafellar | Variational Analysis[END_REF]; Theorem 12.25 is often referred to as 'Rockafellar's Theorem').

In our stability result for optimal transportation potential we will make use of the following result on convergence of cyclically monotone maps. While it follows easily from related known results, we have not been able to find it in the literature and therefore states its result in the following theorem.

Theorem 2.6. If a sequence of cyclically monotone maps {T n } from R d to R d converges graphically then the limit map, T , must be cyclically monotone. If the T n are maximal cyclically monotone then T is also maximal cyclically monotone.

Assume {ψ n } is a sequence of proper, lower semicontinuous, convex maps from R d to R such that for some bounded sets C, D ⊂ R d and some subsequence {n j } there exist x n j ∈ C with ∂ψ n j (x n j ) ∩ D = ∅ for all j ≥ 1. Then there exists a subsequence {n j k } and a proper, lower semicontinuous, convex map, ψ, from R d to R, with subgradient with nonempty domain such that ∂ψ n j k converges graphically to ∂ψ.

Proof. Take t i ∈ T (x i ), i = 0, . . . , m. The points (x i , t i ) belong to the graph of T , hence they belong to lim inf n→∞ gph(T n ) and, consequently, there are sequences (x n,i , t n,i ) ∈ gph(T n ) (for large enough n) such that (x n,i , t n,i ) → (x i , t i ), i = 0, 1, . . . , m. By cyclical monotonicity we have

t n,0 • (x n,1 -x n,0 ) + t n,1 • (x n,2 -x n,1 ) + • • • + t n,m • (x n,0 -x n,m ) ≤ 0.
Taking limits we conclude that

t 0 • (x 1 -x 0 ) + t 1 • (x 2 -x 1 ) + • • • + t m • (x 0 -x m ) ≤ 0.
Therefore T is cyclically monotone. If T n are maximal cyclically monotone then they are maximal monotone. By Theorem 12.32 in [START_REF] Rockafellar | Variational Analysis[END_REF] T must be maximal monotone. Hence, it is also maximal cyclically monotone (if we could enlarge the graph of T preserving cyclical monotonicity, then the enlarged graph would also be monotone, contradicting maximal monotonicity).

For the second part we use Rockafellar's theorem and part (b) of Theorem 2.5.

Finally, we quote a technical result relating graphical convergence of subgradients of convex functions to pointwise convergence of the convex functions themselves. A proof follows easily from Theorem 12.35 and Exercise 12.36 in [START_REF] Rockafellar | Variational Analysis[END_REF].

Proposition 2.7. Assume ψ, {ψ n } are proper, lower semicontinuous, convex maps from R d to R such that ∂ψ n converges to ∂ψ graphically and there is a sequence (x n , t n ) with t n ∈ ∂ψ n (x n ) and a pair (x 0 , t 0 ) with t 0 ∈ ∂ψ(x 0 ) satisfying (x n , t n ) → (x 0 , t 0 ) and ψ n (x n ) → ψ(x 0 ). Then, if ψ is finite at x, xn → x and lim inf n→∞ ∂ψ n (x n ) = ∅ we have

lim n→∞ ψ n (x n ) = ψ(x).
We are now ready for the announced result on stability of optimal transportation potentials.

Theorem 2.8. Assume Q satisfies (3) and Q n , P n ,P are probabilities such that W 2 (P n , P ) → 0 and W 2 (Q n , Q) → 0. If ψ n (resp. ψ) are optimal transportation potentials from Q n to P n (resp. from Q to P ) then there exist constants a n such that if ψn = ψ na n then ψn (x) → ψ(x) for every x in the interior of the support of Q, hence, for Q-almost every x.

Proof. We write π n for an optimal transportation plan for Q n , P n and π for the optimal transportation plan for Q, P . We recall that π is unique and

π = Q • (Id, ∇ψ) -1 . π is concentrated in the graph of ∂ψ, that is, in the closed set {(x, y) ∈ R d × R d : ψ(x) + ψ * (y) = x • y} = {(x, y) ∈ R d × R d : y ∈ ∂ψ(x)}.
It is easy to see that π n → π weakly. As before, we denote by A the interior of the support of Q. We write à for the set of x ∈ A such that ψ is differentiable at a. Then Q( Ã) = Q(A) = 1. Furthermore (see Theorem 25.5 in [START_REF] Rockafellar | Convex Analysis[END_REF]) ∇ψ is continuous at every differentiability point x ∈ A. Fix x 0 ∈ à and set y 0 = ∇ψ(x 0 ). Now, for every ε > 0 there exists δ > 0 such that ∇ψ(x)y 0 ≤ ε if x ∈ à and x-x 0 ≤ δ. Hence, π(B(x 0 , δ)× B(y 0 , ε)) ≥ Q(B(x 0 , δ)) = η > 0 by Assumption (3), and weak convergence implies that π n (B(x 0 , δ)×B(y 0 , ε)) ≥ η 2 for large enough n. But π n is concentrated in the graph of ∂ψ n , hence, there exists (x n , y n ) with y n ∈ ∂ψ n (x n ), x nx 0 < δ, y ny 0 < ε. We take now a sequence ε k ց 0. For every k ≥ 1 we choose

δ k ∈ (0, 1 k ) such that ∇ψ(x) -y 0 < ε k if x -x 0 < δ k and x ∈ Ã. As before, π(B(x 0 , δ k ) × B(y 0 , ε k )) ≥ Q(B(x 0 , δ k )) = η k > 0. Fix n 0 = 0 and, for k ≥ 1, n k > n k-1 such that π n (B(x 0 , δ k ) × B(y 0 , ε k )) ≥ η k 2 if n ≥ n k .
Recall that π n is concentrated in the graph of ∂ψ n . For n = 1, . . . , n 1 -1 we take any pair (x n , y n ) with y n ∈ ∂ψ n (x n ). For k ≥ 2 and n = n k-1 , . . . , n k we take (x n , y n ) ∈ B(x 0 , δ k-1 )×B(y 0 , ε k-1 ) such that y n ∈ ∂ψ n (x n ). This construction yields a sequence (x n , y n ) such that x n → x 0 , y n → y 0 and y n ∈ ∂ψ n (x n ). We note that (x 0 , y 0 ) ∈ lim sup gph ∂ψ n . We set now a n = ψ n (x n )ψ(x 0 ) and define ψn (x) = ψ n (x)a n . Obviously, ∂ ψn (x) = ∂ψ n (x) for every x. By Theorem 2.6 there exists a proper, lower semicontinuous convex function ρ such that ∂ ψn converges graphically to ∂ρ along a subsequence. We keep the same notation for the subsequence. We see that y 0 ∈ ∂ρ(x 0 ). We can consider now x ∈ A, y = ∇ψ(x) and apply the same argument to conclude that y ∈ ∂ρ(x). This implies that dom (ρ) ⊃ A. Hence ρ must be differentiable and ∇ρ(x) = ∇ψ(x) at almost every point in A. We conclude, using Lemma 2.1, that ρ = ψ +C in A, hence, subtracting a constant, if necessary, ρ = ψ in A. Since ψn (x n ) = ψ(x 0 ) = ρ(x 0 ), applying Proposition 2.7 we obtain that ψn (x) → ρ(x) = ψ(x) for all x ∈ Ã, hence (see Theorem 7.17 in [START_REF] Rockafellar | Variational Analysis[END_REF]) ψn (x) → ρ(x) = ψ(x) for all x ∈ A. Note that from this argument we see, in fact, that for any x ∈ A and any subsequence n ′ we can extract a further subsequence n ′′ such that ψn ′′ → ψ(x). But this proves that ψn → ψ(x) as n → ∞ for every x ∈ A. This completes the proof. Remark 2.9. Theorem 2.8 extends known results about stability of optimal transportation maps. In fact, it covers the case Q n = Q. In this case ψ n is differentiable at almost every x ∈ A. From the proof of Theorem 2.8 we have graphical convergence of ∂ψ n to ∂ρ with ρ = ψ in A. This implies (see, e.g., Exercise 12.40 (a) in [START_REF] Rockafellar | Variational Analysis[END_REF]) that ∇ψ n (x) → ∇ψ(x) at almost every x ∈ A, that is ∇ψ n → ∇ψ Q-a.s.. This stability result for optimal transportation maps is contained in Theorem 3.4 in [START_REF] Cuesta-Albertos | Optimal transportation plans and convergence in distribution[END_REF] or in [START_REF] Heinich | Convergence des fonctions monotones[END_REF]. Our result applies to a non-smooth setup in that the Q n 's are not assumed to have a density (on the other hand, we need to impose additional regularity assumptions on Q to ensure convergence of the convex potentials).

Under some moment assumptions the stability result in Theorem 2.8 can be complemented with L 2 convergence. As in the Introduction, in our next result W 4 denotes the transportation cost metric associated to the cost function c(x, y) = xy 4 . We note that the condition W 4 (P n , P ) → 0 implies the weaker assumption W 2 (P n , P ) → 0 and also that the conclusions in Theorem 2.10 do not depend on the particular choice of the potential ψ since all the possible choices are Q-a.s. equal up to the addition of a constant.

Theorem 2.10. Assume that Q, P, {P n } n≥1 are probabilities on R d with finite fourth moment with Q satisfying (3) and write ψ (resp. ψ n ) for a proper, lower semicontinuous function such that ∇ψ (resp. ∇ψ n ) is the optimal transportation map from Q to P (resp. from Q to P n ). Then ψ, ψ n ∈ L 2 (Q). Furthermore, if W 4 (P n , P ) → 0, then taking ψn as in Theorem 2.8 we have that ψn → ψ in L 2 (Q).

Proof. We keep the notation for A and à as in the proof of Theorem 2.8 and the choice of x 0 ∈ U and write z 0 = ∇ψ(x 0 ). Then ( 4)

ψ(x) ≥ ψ(x 0 ) + z 0 • (x -x 0 ), x ∈ R d .
On the other hand, since z 0 ∈ ∂ψ(x 0 ) we have ψ(x 0 ) + ψ * (z 0 ) = x 0 • z 0 , hence, x 0 ∈ ∂ψ * (z 0 ) and .

(

) ψ * (z) ≥ ψ * (z 0 ) + x 0 • (z -z 0 ), z ∈ R d . 5 
But optimality implies that ψ(x)+ψ * (∇ψ(x)) = x•∇ψ(x) Q-a.s.. Therefore, using [START_REF] Del Barrio | Asymptotics for L2 functionals of the empirical quantile process, with applications to tests of fit based on weighted Wasserstein distances[END_REF] we conclude that, Q-a.s.,

(x) ≤ x•∇ψ(x)-ψ * (z 0 )-x 0 •(∇ψ(x)-z 0 ) = ψ(x 0 )+(x-x 0 )•∇ψ(x). (6) ψ 
Combining ( 4) and [START_REF] Bobkov | One-dimensional empirical measures, order statistics and Kantorovich transport distances[END_REF] we see that

|ψ(x) -ψ(x 0 )| ≤ |(x -x 0 ) • ∇ψ(x 0 )| + |(x -x 0 ) • ∇ψ(x)| ≤ x -x 0 2 + 1 2 ∇ψ(x 0 ) 2 + 1 2 ∇ψ(x) 2 , Q -a.s.
By assumption xx 0 2 is in L 2 (Q). Also, since, ∇ψ transports Q to P , ∇ψ(x) 4 dQ(x) = z 4 dP (z). This shows that ψ ∈ L 2 (Q). The same argument works for ψ n or ψn , in fact,

| ψn (x) -ψn (x 0 )| ≤ x -x 0 2 + 1 2 ∇ψ n (x 0 ) 2 + 1 2 ∇ψ n (x) 2 , Q -a.s.
Now, ∇ψ n (x) 4 → ∇ψ(x) 4 Q-a.s. and ∇ψ n (x) 4 dQ(x) → ∇ψ(x) 4 dQ(x). Hence, the sequence ∇ψ n 4 converges to ∇ψ 4 in L 1 (Q) according to Scheffé Lemma. So it is Q-uniformly integrable, and the same applies to ψ2 n , which combined with Theorem 2.8 proves that ψn → ψ in L 2 (Q).

3. Variance bounds.. We turn now to concentration bounds and Central Limit Theorems for the empirical L 2 -Wasserstein distance on d-dimensional data. From this point we assume that P n denotes the empirical measure on X 1 , . . . , X n , i.i.d. r.v.'s with distribution P and P and Q are Borel probabilities on R d with finite second moments. A main tool in our proofs is the Efron-Stein inequality for variances, namely, that if

Z = f (X 1 , . . . , X n ) with X 1 , . . . , X n independent random variables, (X ′ 1 , . . . , X ′ n ) is an independent copy of (X 1 , . . . , X n ) and Z i = f (X 1 , . . . , X ′ i , . . . , X n ) then Var(Z) ≤ 1 2 n i=1 E(Z -Z i ) 2 = n i=1 E(Z -Z i ) 2 + .
We refer, for instance, to [START_REF] Boucheron | Concentration Inequalities. A Nonasymptotic Theory of Independence[END_REF] for a proof. In the particular case when X 1 , . . . , X n are i.i.d. and f is a symmetric function of x 1 , . . . , x n all the values E(Z-Z i ) 2 + are equal and the bound simplifies to

(7) Var(Z) ≤ nE(Z -Z ′ ) 2 + with Z ′ = f (X ′ 1 , X 2 , . . . , X n ).
We show first a variance bound for W 2 2 (P n , Q).

Theorem 3.1. If Q has a density and P and Q have finite fourth moments then

Var(W 2 2 (P n , Q)) ≤ C(P, Q) n ,
where

C(P, Q) = 8 E( X 1 -X 2 2 X 1 2 )+(E X 1 -X 2 4 ) 1/2 R d y 4 dQ(y) 1/2 .
Proof. We write Z = W 2 2 (P n , Q). The assumption that Q has a density ensures the existence of an otimal transportation map, T , from Q to P n . Hence, denoting

C i = {y ∈ R d : T (y) = X i } we have Q(C i ) = 1 n and Z = n i=1 C i y -X i 2 dQ(y).
Let us consider an additional random variable X ′ 1 with law P , independent of X 1 , . . . , X n , write P ′ n for the empirical measure on X ′ 1 , X 2 , . . . , X n and

Z ′ = W 2 2 (P ′ n , Q). Let us also denote by T ′ the o.t.m. from Q to P ′ n and C ′ 1 = {y ∈ R d : T ′ (y) = X ′ 1 }, C ′ i = {y ∈ R d : T ′ (y) = X i }, i = 2, . . . , n. Then Z ′ = C ′ 1 y -X ′ 1 2 dQ(y) + n i=2 C ′ i y -X i 2 dQ(y), while Z ≤ C ′ 1 y -X 1 2 dQ(y) + n i=2 C ′ i y -X i 2 dQ(y).
This implies that

Z-Z ′ ≤ C ′ 1 ( y-X 1 2 -y-X ′ 1 2 )dQ(y) ≤ X 1 -X ′ 1 1 n X 1 + X ′ 1 +2 C ′ 1 y dQ(y) ,
from which we conclude that ( 8)

E(Z -Z ′ ) 2 + ≤ 8 n 2 E( X 1 -X ′ 1 2 X 1 2 )+8E X 1 -X ′ 1 2 C ′ 1 y dQ(y) 2 .
We note now that

C ′ 1 y dQ(y) ≤ C ′ 1 1dQ(y) 3/4 C ′ 1 y 4 dQ(y) 1/4 = 1 n 3/4 C ′ 1 y 4 dQ(y) 1/4
. and, as a consequence,

By exchangeability we have

E n C ′ 1 y dQ(y) 4+δ ≤ nE C ′ 1 y 4+δ dQ(y) = R d y 4+δ dQ(y) < ∞.
Finally, we use Schwarz's inequality to see that

E n X 1 -X ′ 1 C ′ 1 y dQ(y) 2+ δ 2 ≤ E X 1 -X ′ 1 4+δ 1 2 R d y 4+δ dQ(y) 1 2 
.

This entails that n X 1 -X ′ 1 C ′ 1 y dQ(y)
2 is uniformly integrable and completes the proof.

We consider next a version of the variance bounds in Theorems 3.1 and 3.2 suited to the two-sample empirical transportation cost. Thus, we assume that X 1 , . . . , X n are i.i.d. r.v.'s with law P , Y 1 , . . . , Y m are i.i.d. r.v.'s with law Q, independent of the X i 's, P n denotes the empirical measure on the X i 's and Q m the empirical measure on the Y j 's.

Theorem 3.3. If P and Q have densities and finite fourth moments then

Var(W 2 2 (P n , Q m )) ≤ C(P, Q) n + C(Q, P ) m ,
where C(P, Q) is defined as in Theorem 3.1.

If P and Q satisfy (3) and have finite moments of order 4 + δ for some δ > 0, n → ∞, m → ∞, n n+m → λ ∈ (0, 1) and set

R n,m = W 2 2 (P n , Q m )- R d ( x 2 -2ϕ 0 (x))dP n (x)- R d ( y 2 -2ψ 0 (y))dQ m (y), then nm n + m Var(R n,m ) → 0.
Proof. We note first that, as a function of X 1 , . . . , X n , Y 1 , . . . , Y m , W 2 2 (P n , Q m ) is symmetric in its first n variables, as well as in its last m. Hence, using the Efron-Stein inequality we see that

Var(W 2 2 (P n , Q m )) ≤ nE(Z -Z ′ ) 2 + + mE(Z -Z ′′ ) 2 + ,
where

Z = W 2 2 (P n , Q m ), Z ′ = W 2 2 (P ′ n , Q m ), Z ′′ = W 2 2 (P n , Q ′ m ), P ′ n is the empirical measure on X ′ 1 , X 2 , . . . , X n , Q ′ m is the empirical measure on Y ′ 1 , Y 2 , .
. . , Y m and X ′ 1 , Y ′ 1 are independent r.v.'s, independent of the X i 's and Y j 's, with X ′ 1 having law P and Y ′ 1 with law Q. To bound E(Z-Z ′ ) 2 + we write π (resp. π ′ ) for the optimal transportation plan from P n to Q m (resp. from P ′ n to Q m ). We write also π i,j for the probability that π assigns to the pair (X i , Y j ), and similarly for π ′ i,j , c i,j = X i -Y j 2 and c ′ i,j for the costs associated to the data X ′ 1 , X 2 , . . . , X n , Y 1 , . . . , Y m . Then

Z ′ = n i=1 m j=1 c ′ i,j π ′ i,j
and Z ≤ n i=1 m j=1 c i,j π ′ i,j . Hence, noting that c i,j = c ′ i,j for i ≥ 2 we see that

Z -Z ′ ≤ m j=1 π ′ 1,j (c 1,j -c ′ 1,j ) ≤ X 1 -X ′ 1 m j=1 π ′ 1,j ( X 1 + X 1 ′ + 2 Y j ). Since m j=1 π ′ 1,j = 1 n we obtain that Z -Z ′ ≤ X 1 -X ′ 1 1 n ( X 1 + X 1 ′ ) + 2 m j=1 π ′ 1,j Y j .
From this point we can argue as in the proof of Theorem 3.1 to conclude that E(Z -Z ′ ) 2 + ≤ C(P,Q) n 2 . We note that, again in this setup, we have by exchangeability

E m j=1 π ′ 1,j Y j 4 = 1 n E n i=1 m j=1 π ′ i,j Y j 4 = 1 n E 1 m m j=1 Y j 4 = 1 n E Y 1 4 .
Similarly, we see that

E(Z -Z ′′ ) 2 + ≤ C(Q,P ) m 2
and this proves the first claim. For the second claim we argue as in the proof of Theorem 3.2. We keep the notation P ′ n , Q ′ m as above and set

R ′ n,m = W 2 2 (P ′ n , Q m )- R d ( x 2 -2ϕ 0 (x))dP ′ n (x)- R d ( y 2 -2ψ 0 (y))dQ m (y), R ′′ n,m = W 2 2 (P n , Q ′ m )- R d ( x 2 -2ϕ 0 (x))dP n (x)- R d ( y 2 -2ψ 0 (y))dQ ′ m (y).
Again, the Efron-Stein inequality shows that it suffices to prove that n

2 E(R n,m - R ′ n,m ) 2 + → 0 and m 2 E(R n,m -R ′′ n,m ) 2 + → 0.
We prove the first of these two claims, the other following by symmetry. We write ϕ n for the optimal transportation potential from P n to Q m and ψ n = ϕ * n . We note that Theorem 2.8 ensures that we can center the φ n 's to ensure that ϕ n → ϕ 0 P -a.s.. Also, as above,

W 2 2 (P n , Q m ) = R d ( x 2 -2ϕ n (x))dP n (x) + R d ( y 2 -2ψ n (y))dQ m (y),
We believe that the assumptions of moments with order 4+δ is a technical condition that could be weakened to moments of order 4 only. Yet, for the proof, this condition is mandatory.

To end this Section we provide an additional CLT for W 2 2 (P n , Q) which does not require smoothness on P , but only on Q. Now a finite fourth moment for Q will suffice, but P will be assumed to have finite support. The proof will use the following special form for the quadratic transportation cost to a finitely supported probability. Proposition 4.2. Assume P has finite support, {x 1 , . . . , x k } ⊂ R d , with P {x i } = p i , i = 1, . . . , k and Q is a Borel probability on R d with finite second moment then

W 2 2 (P, Q) = R d x 2 dP (y) + R d y 2 dQ(y) -2 min z∈R k V (z),
where V is the convex function

(11) V (z 1 , . . . , z k ) = k i=1 p i z i + E max 1≤j≤k x j • Y -z j ,
and Y is a random vector with distribution Q.

If Q ≪ ℓ d , the d-dimensional Lebesgue measure, then V is differentiable and ∇V (z) = (p 1 , . . . , p k ) -(Q(A 1 (z)), . . . , Q(A k (z))),
where

A j (z) = y ∈ R d : (x j • y -z j ) > max i =j (x i • y -z i ) , j = 1, . . . , n.
Finally, if Q satisfies (3) then z minimizes V if and only ∇V (z) = 0 and there is a unique z such that ∇V (z) = 0,

z i + x i 2 2 ≥ 0, i = 1, . . . , k and k i=1 p i (z i + x i 2 2 ) = max 1≤i≤k x i 2 + R d y 2 dQ(y).
Proof. From duality theory for optimal transportation we know that

W 2 2 (P, Q) = k i=1 p i x i 2 + R d y 2 dQ(y)-2 min (z,ψ)∈Φ k i=1 p i z i + ψ(y)dQ(y) ,
where Φ is the class of pairs (z, ψ) such that z ∈ R k , ψ ∈ L 1 (Q) and

x j • y ≤ z j + ψ(y), 1 ≤ j ≤ k, y ∈ R k . Since ψ(y) ≥ ψ(y) := max 1≤j≤k (x j • y -z j )
and (z, ψ) ∈ Φ we see that min

(z,ψ)∈Φ k i=1 p i z i + ψ(y)dQ(y) = min z∈R d V (z)
with V as in the statement [START_REF] Fournier | On the rate of convergence in Wasserstein distance of the empirical measure[END_REF], which is obviously convex. Let us fix now z ∈ R k , set ψ(y) = max 1≤j≤k (x j •y -z j ) and consider zj = sup y∈R d (x j •y -ψ(y)). Since z j ≥ x j • yu(y) for all y we have zj ≤ z j , j = 1, . . . , n. Let us now set ψ(y) = max 1≤j≤n (x j • yzj ). Then we have ψ(y) = max 1≤j≤n (x j • yzj ) ≥ max 1≤j≤n (x j • yz j ) = ψ(y). On the other hand, zj + ψ(y) ≥ x j • y for all j and y implies ψ(y) ≥ max 1≤j≤n (x j • yzj ) = ψ(y). Hence, ψ = ψ and V (z 1 , . . . , zk ) ≤ V (z 1 , . . . , z k ). If p i > 0 then the last inequality is strict unless zi = z i .

From this point we assume that Q has a density. Then a minimizing pair (z, ψ) in Φ must satisfy z j = sup y∈R d (x j • yψ(y)) and ∇ψ is the optimal transportation map from Q to P . Since, on the other hand, ψ(y) = max 1≤j≤n (x j • yz j ) we see that ∇ψ(y) = x j if y ∈ A j (z) and the condition Q(A j (z)) = p j , j = 1, . . . , k is necessary and sufficient for z to be a minimizer of V .

If Q satisfies (3) then the polyhedral sets that are mapped by ∇ψ onto the x i 's are uniquely determined up to differences in the boundaries, which entails that any two minimizers u, ψ satisfy ψ = ψ + L for some constant L. Consequently, two minimizers, z, z of V must satisfy zi = z i -L, i = 1, . . . , k.

For the claims about the differentiability of V it suffices to focus on Ṽ (z) = E max 1≤j≤k

x j • Yz j and note that

Ṽ (z + h) -Ṽ (z) - k j=1 h j Q(A j (z)) = k j=1 E max 1≤i≤k x i • Y -(z i + h i ) -x j • Y -(z j + h j ) I A j (z) (Y ) .
It is easy to check that 0 ≤ max 1≤i≤k x i • Y -(z i + h i )x j • Y -(z j + h j ) I A j (z) (Y ) ≤ 2 max 1≤j≤k |h j |, while, as h → 0, max 1≤i≤k x i • Y -(z i + h i )x j • Y -(z j + h j ) I A j (z) (Y ) eventually vanishes (except, possibly, if Y belongs to the boundary of A j (z)). Then, from dominated convergence we conclude that Ṽ (z + h) -Ṽ (z) -k j=1 h j Q(A j (z)) h → 0 as h → 0, proving that Ṽ , and therefore, V are differentiable. Obviously, the condition ∇V (z) = 0 is exactly the necessary and sufficient condition for z to be a minimizer of V shown above.

Finally, let us fix z ∈ R k and write ψ(y) = max 1≤j≤k (x j • yz j ). Since

ψ(y) + y 2 2 ≥ x j + y 2 2 -z j - x j 2 2 ≥ -z j - x j 2 2
we see that a := inf yR d ψ(y) + y 2 2 a is finite. As noted above, V remains unchanged if we replace (z 1 , . . . , z k ) by (z 1 + a, . . . , z k + a) and ψ(y) becomes ψ(y)a. As a consequence, in the minimisation of V it suffices to consider points (z 1 , . . . , z k ) such that [START_REF] Gangbo | The Geometry of Optimal Transportation[END_REF] inf

y∈R d ψ(y) + y 2 2 = 0.
Let us assume that (12) holds and consider zj = sup y∈R d (x j • yψ(y)). As above, we have zj ≤ z j , j = 1, . . . , n, ψ(y) = max 1≤j≤k (x j • yzj ) = ψ(y) and V (z 1 , . . . , zk ) ≤ V (z U n,i ( x i 2 -2z i ).

On the other hand, the choice of z n guarantees that it is a bounded sequence. Assume that, through a subsequence, z n → ẑ. Then M n (z n ) → M (ẑ) (here we are using the continuity of Ṽ . For any fixed z we have M (z) = lim n→∞ M n (z) ≤ lim n→∞ M n (z n ) = M (ẑ). Hence, ẑ is a maximizer of M . But obviously ẑi + x i 2 2 ≥ 0 and

k i=1 p i (ẑ i + x i 2
2 ) = M . Hence, by uniqueness, we must have ẑ = z 0 , that is, z n → z 0 a.s.. From this fact we see that

√ n(W 2 2 (P, Q) -W 2 2 (P, Q)) = √ n(M n (z n ) -M (z 0 )) = √ n(M n (z n ) -M (z n )) + √ n(M (z n ) -M (z 0 )). ( 14 
)
Now, by optimality we see that

√ n(M n (z 0 )-M (z 0 ))- √ n(M n (z n )-M (z n )) ≤ √
n(M (z n )-M (z 0 )) ≤ 0. Also, from [START_REF] Heinich | Convergence des fonctions monotones[END_REF] we see that U i ( x i 2 -2z 0,i ).

√ n(M n (z n )-M (z n )) → k i=1 U i ( x i 2 -2z 0,i ), √ n(M n (z 0 ) -M (z 0 )) → k i=1 U i ( x i 2 -2z 0,i ) a.
A simple computation shows that the right hand side in this last display is a centered Gaussian random variable with variance σ 2 (P, Q) as in Theorem 3.1.

Remark 4.4. We note that, provided Q has a finite moment of order 4 + δ for some δ > 0, the linearization bound in Theorem 3.2 can be adapted to cover this setup and conclude that nVar(W 2 2 (P n , Q)) → σ 2 (P, Q) and √ n W 2 2 (P n , Q) -E(W 2 2 (P n , Q)) → w N (0, σ 2 (P, Q)).

On the other hand, the centering constants E(W 2 2 (P n , Q)) in Theorem 4.1 cannot be replaced in general by W 2 2 (P, Q). As an example, consider the case

Lemma 2 . 1 .

 21 Assume ψ 1 and ψ 2 are finite convex functions on a nonempty convex, open set A ⊂ R d such that ∇ψ 1 (x) = ∇ψ 2 (x) for almost every x ∈ A.

C ′ 1 y 4

 14 dQ(y) d = C 1 y 4 dQ(y) d = C j y 4 dQ(y), for all j = 2, . . . , n. This shows that E

  s.. As a consequence, √ n(M (z n ) -M (z 0 )) → 0 a.s.which, together with (

  1 , . . . , z k ). We observe now that Without loss of generality we can assume that U n → U a.s.. Note that, in particular,

	(13)					M n (z) -M (z) =	1 √ n	k i=1		
	zj +	x j 2	2	= sup y∈R d	x j • y +		x j 2	2	-ψ(y)
					≥ sup y∈R d	-	y 2 2	-ψ(y) = -inf y∈R r ψ(y) +	y 2 2	= 0.
	On the other hand,									
	V (z 1 , . . . , zk )+	1 2	k i=1	p i x i	2 +	1 2 R d	y 2 dQ(y) =	k i=1	p i zi +	x i 2	2	+	R d	ψ(y)+	y 2 2	dQ(y),
	which, by (12), implies that							
	k i=1	p i zi +	x i 2	2	≤ V (z 1 , . . . , zk ) +	1 2	k i=1	p i x i	2 +	1 2 R d	y 2 dQ(y).
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From this bound, (8) and Schwarz's inequality we obtain

.

This and the Efron-Stein inequality for variances complete the proof.

Theorem 3.1 provides a simple bound with explicit constants for the variance of W 2 2 (P n , Q) and implies tightness of √ n(W 2 2 (P n , Q) -E(W 2 2 (P n , Q))) with the only requirement of finite fourth moments and a density for Q. Next, we present a different application of the Efron-Stein inequality that will result in an approximation bound from which a CLT can be concluded. Theorem 3.2. Assume that P and Q satisfy (3) and have finite moments of order 4 + δ for some δ > 0. Write ϕ 0 for the optimal transportation potential from

Proof. We will argue as in the proof of Theorem 3.1. We write ψ 0 = ϕ * 0 for the optimal transportation potential from Q to P . Without loss of generality we can assume that

's with law Q. We note that, with probability one, W 2 (P n , P ) → 0 and we can apply Theorem 2.8. Hence, if write ψ n for the suitable centered optimal transportation potentials from Q to P n that satisfy ψ n → ψ 0 Q-a.s., and

ϕ n (∇ψ 0 (x)) → ϕ 0 (∇ψ 0 (x))

for Q almost every x.

Next, we write P ′ n for the empirical measure on X ′ 1 , X 2 , . . . , X n and

Now, the Efron-Stein inequality [START_REF] Boucheron | Concentration Inequalities. A Nonasymptotic Theory of Independence[END_REF] implies that it suffices to show that (10)

We show first that n(R n -R ′ n ) + → 0 a.s.. We write ψ ′ n for the optimal transportation potential from Q to P n and ϕ ′ n = (ψ ′ n ) * . We note that

and similarly for

. Also, by optimality,

Hence,

Combining this bound with ( 9) we conclude that n(R n -R ′ n ) + → 0 a.s., as claimed. To complete the proof it suffices to show that n

and ( X 1 2 -2ϕ 0 (X 1 )) and ( X ′

)) have finite second moment (recall Theorem 2.10), this will follow if we prove that

keeping the notation there for C

2 is uniformly integrable. To check this we argue as above to see that

From this we see that

and this shows that n(R n,m -R ′ n,m ) + → 0 a.s.. Arguing as in the proof of Theorem 3.2 we can check that n 2 (R n,m -R ′ n,m ) + is uniformly integrable. Hence, we conclude that n 2 E(R n,m -R ′ n,m ) 2 + → 0 and complete the proof.

4. CLTs for empirical transportation cost. As a direct consequence of the approximation bounds in Theorems 3.2 and 3.3 we arrive to the main results in this paper, namely, central limit theorems for the empirical transportation cost and the optimal matching cost.

Theorem 4.1 (Central Limit Theorem for empirical quadratic transportation cost). Assume P and Q are probabilities on R d that satisfy (3) and have finite moments of order 4 + δ for some δ > 0. If X 1 , . . . , X n are i.i.d. r.v.'s with law P and P n denotes the empirical measure on X 1 , . . . , X n then

as n → ∞, where ϕ 0 denotes an optimal transportation potential from

R d y 2 dQ(y) . Hence, there exists a minimizer of V that satisfies z i +

2 ) ≤ M := max 1≤i≤k x i 2 + R d y 2 dQ(y). Adding a constant, if necessary, we see that there is a unique minimizer of V that satisfies

We note that the minimizing z = (z 1 , . . . , z k ) in Proposition 4.2 satisfy z i = ϕ 0 (x i ), i = 1, . . . , k with ϕ 0 = ψ * 0 and ψ 0 the optimal transportation potential from Q to P (which is unique up to the addition of a constant by Theorem 2.1 under (3). Hence, we see that the optimal transportation potential from P to Q is also unique (up to the addition of a constant) in this setup.

We can prove now the announced CLT for W 2 2 (P n , Q) when P is finitely supported.

Theorem 4.3. If P has a finite support, and moreover if Q satisfies (3) and has a finite fourth moment. If X 1 , . . . , X n are i.i.d. r.v.'s with law P and P n denotes the empirical measure on X 1 , . . . , X n , then

as n → ∞, where σ 2 (P, Q) is as in Theorem 4.3.

Proof. We assume that P is as in Proposition 4.2. We can write W 2 2 (P, Q) = max z∈C M M (z) with

, where M n is obtained replacing the p j 's by the empirical frequencies, p n,j 's. We write z n and z 0 for the unique maximizers of M n and M , respectively, given by in Theorem 4.2. By the Central Limit Theorem in R k we have

U with U a centered Gaussian random vector with covariance matrix Σ = [σ i,j ] 1≤i,j≤k , σ i,i = p i (1-p i ), σ i,j = -p i p j , i = j.

when P = Q is the uniform distribution on the d-dimensional unit cube. In this case Theorem 4.1 yields that √ n W 2 2 (P n , Q) -EW 2 2 (P n , Q) → 0 in probability. On the other hand EW 2 2 (P n , Q) is of order n -2/d if d ≥ 5 (see Theorem 1 and subsequent comments in [START_REF] Fournier | On the rate of convergence in Wasserstein distance of the empirical measure[END_REF]) and we cannot have

To conclude, we would like to add two final comments. First, we note that in the case P = Q Theorem 1 in [START_REF] Fournier | On the rate of convergence in Wasserstein distance of the empirical measure[END_REF] yields that (provided d ≥ 5 and assuming that P has finite moment of order q > 2d d-2 ) In the one-dimensional case the problem was considered in [START_REF] Del Barrio | Asymptotics for L2 functionals of the empirical quantile process, with applications to tests of fit based on weighted Wasserstein distances[END_REF], proving weak convergence to some non degenerate and non Gaussian limit law. This case provides some indication that the case P = Q is, essentially, of a different nature and that a nontrivial CLT in that case cannot be obtained with the techniques used in this paper.