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Central Limit Theorems for empirical transportation cost

in general dimension

Eustasio del Barrio∗and Jean-Michel Loubes
IMUVA, Universidad de Valladolid and IMT, Université Paul Sabatier, Toulouse

May 2, 2017

Abstract

We consider the problem of optimal transportation with quadratic cost between a

empirical measure and a general target probability on R
d, with d ≥ 1. We provide

new results on the uniqueness and stability of the associated optimal transportation po-

tentials, namely, the minimizers in the dual formulation of the optimal transportation

problem. As a consequence, we show that a CLT holds for the empirical transporta-

tion cost under mild moment and smoothness requirements. The limiting distributions

are Gaussian and admit a simple description in terms of the optimal transportation

potentials.

Keywords: optimal transportation, optimal matching, CLT, Efron-Stein inequality.

1 Introduction

The analysis of the minimal transportation cost between two sets of random points or of
the transportation cost between an empirical and a reference measure is by now a classical
problem in probability, to which a significant amount of literature has been devoted.

In the case of two sets of n random points, say X1, . . . , Xn and Y1, . . . , Yn in R
d, the object

of interest is

Tc,n = min
σ

1

n

n
∑

i=1

c(Xi, Yσ(i)),

where σ ranges is the set of permutations of {1, . . . , n} and c(·, ·) is some cost function. Tc,n is
usually referred to as the cost of optimal matching. This optimal matching problem is closely
related to the Kantorovich optimal transportation problem, which, in the Euclidean setting
amounts to the minimization of

I[π] =

∫

Rd×Rd

c(x, y)dπ(x, y),

with π ranging in the set of joint probabilities on R
d × R

d with marginals P,Q. Here P and
Q are two probability measures on R

d and the minimal value of I[π] is known as the optimal
transportation cost between P and Q. The cost functions c(x, y) = ‖x − y‖p have received
special attention and we will write Wp

p (P,Q) for the optimal transportation cost in that case.
It is well known that with this choice of cost function Tc,n = Wp

p (Pn, Qn), with Pn and Qn
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denoting the empirical measures on Pn and Qn. A related functional of interest is Wp
p (Pn, Q),

the transportation cost between the empirical measure on the sample X1, . . . , Xn and a given
probability Q.

How large is the cost of optimal matching, Wp
p (Pn, Qn)? Under the assumption that

X1, . . . , Xn are i.i.d. with distribution P , Y1, . . . , Yn are i.i.d. with distribution Q and P and
Q have finite p-th moment is is easy to conclude that Wp

p (Pn, Qn) → Wp
p (P,Q) almost surely.

One might then wonder about the rate of approximation, that is, how far is the empirical
transportation cost from its theoretical counterpart. Much effort has been devoted to the case
when P = Q, namely, when the two random samples come from the same random generator.
In this case Wp

p (P,Q) = 0 and the goal is to determine how fast does the empirical optimal
matching cost vanish. From the early work [1], followed by the important contributions [17],
[18], [19] and [8], it is known that the answer depends on the dimension d. In the case when
P = Q is the uniform distribution on the unit hypercube Wp(Pn, Qn) = O(n−1/d), if d ≥ 3,
with a slightly worse rate if d = 2. The results for d ≥ 3 were later extended to a more general
setup covering the case when P = Q has bounded support and a density satisfying some
smoothness requirements. The one-dimensional case is different. If p = 1 then, under some
integrability assumptions W1(Pn, P ) = OP (n

−1/2), with
√
nW1(Pn, P ) converging weakly to a

non Gaussian limit, with, see [3]. If p > 1 then it is still possible to get a limiting distribution
for

√
nWp(Pn, P ), but now integrability assumptions are not enough and the available results

require some smoothness conditions on P (and on its density), see [4] for the case p = 2.
In fact, see [5], the condition that P has a positive density in an interval is necessary for
boundedness of the sequence

√
nE(Wp(Pn, P )) if p > 1.

This paper provides CLT’s and variance bounds for the quadratic transportation cost be-
tween an empirical measure based on i.i.d. observations and a probability on R

d or between
two sets of d-dimensional i.i.d. observations. More precisely, we will consider i.i.d. Rd valued
random variables (r.v.’s in the sequel) X1, . . . , Xn with common distribution P and an addi-
tional probability Q on R

d. We will write Pn for the empirical measure on X1, . . . , Xn and
will give CLT’s for W2(Pn, Q) (see our Theorem 4.1). We also extend this result to CLT’s
for W2(Pn, Qm) when Qm is the empirical measure on a further independent sample of i.i.d.
r.v.’s, Y1, . . . , Ym, with law Q.

Beyond the theoretical interest of the problem, we would like to emphasize the potential
impact on statistical applications of our results. Quoting from [16], the transportation cost
distance ‘is an attractive tool for data analysis but statistical inference is hindered by the
lack of distributional limits’. This has led to some attempts provide some distributional
limits in different setups. In [13] a related (but different) problem is considered. There the
sample X1, . . . , Xn consists of i.i.d. Gaussian r.v.’s (this is extended to cover elliptical models
as well) and CLT’s are given for the transportation between the underlying Gaussian law
and a Gaussian law with estimated parameters (see Theorems 2.1 and 2.2 there). To our
best knowledge the only work that deals with the issue of distributional limit laws for the
transportation cost between empirical measures is [16] (see Theorem 1 there). However, the
problem considered there is of a different nature. Both generating probabilities P and Q

are assumed to have finite support. This allows to deal with the transportation cost as a
functional of the multinomial vector of empirical frequencies, and the result follows from the
directional Hadamard differentiability of this functional. On the other hand we focus on the
case when the probabilities P and Q are smooth (or at least one of them) and this requires
the exploration of alternative methods of proof.

Our approach to the transportation cost between empirical measures comes from a closer
analysis of the Kantorovich duality. We give a self-contained description of this in Section 2
below. For the moment we limit ourselves to note that the transportation cost W2

2 (P,Q) can
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be expressed as

W2
2 (P,Q) =

∫

Rd

‖x‖2dP (x) +
∫

Rd

‖y‖2dQ(y) + 2 min
(ϕ,ψ)∈Φ

J(ϕ, ψ),

where Φ denotes the set of pairs of functions (ϕ, ψ) ∈ L1(P )×L1(Q) such that ϕ(x)+ψ(y) ≥
x · y and J is the linear functional

J(ϕ, ψ) =

∫

Rd

ϕdP +

∫

Rd

ψdQ.

If (ϕ, ψ) is a minimizing pair in Ψ for J we will refer to ψ as an optimal transportation
potential for the transportation of Q to P . The motivation for the name comes from the fact
that, provided Q has a density, the optimal transportation problem is equivalent to the Monge
transportation problem, that is,

W2
2 (P,Q) = min

T :Q◦T−1=P

∫

Rd

‖x− T (x)‖2dQ(x),

(here and in the sequel Q◦T−1 denotes the law induced from Q by the measurable map T ). A
minimizing T in the Monge problem is called an optimal transportation map from Q to P . It
is well known (see, e.g., Theorem 2.12 in [20]) that the optimal transportation map is unique
if Q has a density and, in fact, it is the unique map of the form ∇ψ with ψ a proper, lower
semicontinuous, convex function, that maps Q to P (see details below). It is also true that
∇ψ is an optimal transportation map if and only if ψ is an optimal transportation potential.
Beyond uniqueness, it is also known that optimal transportation maps enjoy some stability:
if Pn → P in W2

2 distance then the optimal transportation map from Q to Pn converges
Q- almost surely to the optimal transportation map from Q to P . Optimal transportation
potentials do not enjoy uniqueness or stability in general. However, we show in this paper
that they are essentially unique (up to the addition of a constant) and that suitable versions
can be chosen for which stability does hold.

Once we have proved these stability results, our approach to the CLTs for the empirical
transportation cost relies on a rather simple application of the Efron-Stein variance inequality
(see Section 3). Related techniques had been used to provide exponential concentration bounds
for the empirical transportation cost (see [2]). Here we give only variance bounds, but get two
main advantages. First, these variance bounds hold in great generality, requiring only finite
fourth moments (in [2] a bounded support is assumed for the exponential bounds). Second,
they can be adapted to prove a linearization result that yields as a direct consequence our
CLT’s that are presented in Section 4. The Efron-Stein method for variance inequalities boils
down to bounding the moments of the increase that results in replacing a member of a sample
by an independent copy. This is particularly convenient in optimal transportation, where a
solution which is optimal for a sample results in or can be transformed into a different solution
which is not optimal for the transformed sample, but yields a workable bound for the increase
in transportation cost. We would like to mention that we use this observation both for the
primal and the dual formulation of the transportation problem and that both uses are needed
to prove our linearization result.

Finally, to end this introduction, we would like to explain the particularities that made
ourselves constrain our approach to the quadratic cost. While it was this quadratic case that
historically received first a closer attention, the theory has then broadened and much of the key
results have been extended to more general costs. Of course, the Kantorovich duality holds in
much greater generality. Equivalence to the Monge version of optimal transportation requires,
however, some additional assumptions, related to strict convexity of the cost function. It does
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hold for the cost ‖x − y‖p with p > 1 and there are uniqueness and stability results for the
optimal transportation maps in this more general setup (see [10]). However, our approach
to prove uniquess and stability of optimal transportation potentials relies on tools from the
theory of graphical convergence of multivalued maps (a particular case of set convergence in
the Painlevé-Kuratowski sense, see details in Section 2 below) which are particularly suited
for the analysis of convex functions and their subgradients. We expect that similar results
will be developed to enable to handle version related to generalized concavity, which would
allow to extend the approach in this paper to costs ‖x− y‖p with p > 1. This will be covered
in a future work.

2 Uniqueness and stability of optimal transportation

potentials.

An essential component in our approach is the Kantorovich duality, which we succintly describe
next and refer to the excellent monographs [12], [20] or [21] for further details. Given Borel
probabilities P and Q on R

d with finite second moment, the optimal transportation problem
(with quadratic cost) is the problem of minimization of I[π] =

∫

Rd×Rd ‖x − y‖2dπ(x, y) in

π ∈ Π(P,Q), the set of Borel probability measures on R
d ×R

d with marginals P and Q. It is
convenient to consider the equivalent problem of maximization of Ĩ[π] =

∫

Rd×Rd x · ydπ(x, y)
(note that I[π] =

∫

‖x‖2dP (x) +
∫

‖y‖2dQ(y) − 2Ĩ[π]). We denote by Φ the set of pairs of
functions (ϕ, ψ) ∈ L1(P )× L1(Q) such that

ϕ(x) + ψ(y) ≥ x · y

for every x and y. We write also

J(ϕ, ψ) =

∫

Rd

ϕdP +

∫

Rd

ψdQ. (2.1)

Then,
min

(ϕ,ψ)∈Φ
J(ϕ, ψ) = max

π∈Π(P,Q)
Ĩ[π]. (2.2)

With this result, to which we will refer as the Kantorovich duality, we are summarizing a
number of different facts. First, the functional Ĩ[π] admits a maximizer in Π(P,Q); second,
the functional J(ϕ, ψ) admits a minimizer in Φ; finally, the optimal values are equal (see for
instance Theorems 1.3 and 2.9 in[20]). Furthermore, the maximizing pair for J , (ϕ, ψ), can
be taken to be a pair of lower semicontinuous, proper convex conjugate functions, that is,
ϕ(x) = ψ∗(x), where

h∗(x) = sup
y∈Rd

(x · y − h(y))

denotes the convex conjugate of h (note that
∫

ϕdP +
∫

ψdQ ≥
∫

ψ∗dP +
∫

ψ̃dQ since ϕ ≥ ψ∗

if (ϕ, ψ) ∈ Φ)). This results in a more precise description of the maximizers of Ĩ[π], as follows.
For any π ∈ Π(P,Q) and any (ψ∗, ψ) in Φ we clearly have

J(ψ∗, ψ) =

∫

Rd×Rd

(ψ∗(x) + ψ(y))dπ(x, y) ≥
∫

Rd×Rd

x · ydπ(x, y) = Ĩ[π].

The Kantorovich duality (2.2) entails that (ψ∗, ψ) is a minimizer of J and π is a maximizer
of Ĩ if and only if

∫

Rd×Rd

(ψ∗(x) + ψ(y)− x · y)dπ(x, y) = 0,
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that is, if and only if the nonnegative function ψ∗(x) + ψ(y)− x · y vanishes π-almost surely.
The condition ψ∗(x)+ψ(y)−x·y = 0 holds if and only if x ∈ ∂ψ(y) (if and only if y ∈ ∂ψ∗(x)).
Here ∂ψ(y) denotes the subgradient of ψ at y, that can be written as

∂ψ(y) = {z ∈ R
d : ψ(y′)− ψ(y) ≥ z · (y′ − y) for all y′ ∈ R

d},

which is a nonempty set if ψ is a proper convex function and y belongs to the interior of its
domain (see [14] for further details). If ψ is differentiable at y then ∂ψ(y) = {∇ψ(y)}, where
∇ denotes the usual gradient. We note that convex functions are locally Lipschitz, hence, by
Rademacher’s Theorem (see, e.g., p. 81 in [9]) they are differentiable at almost every point in
the interior of their domain. These facts can be used to prove that if Q does not give mass
to sets of Hausdorff dimension d− 1 (in particular if Q is absolutely continuous with respect
to ℓd, the Lebesgue measure on R

d), then (see Theorem 2.12 in [20]) (ψ∗, ψ) is a minimizing
pair for J if and only if Q ◦ (∇ψ)−1 = P and then π = Q ◦ (∇ψ, Id)−1 maximizes Ĩ. The map
T = ∇ψ is known as the optimal transportation map from Q to P and is Q-a.s. unique: if ψ1

were a further convex function such that Q ◦ (∇ψ1)
−1 = P then ∇ψ = ∇ψ1 Q-almost surely.

Unlike the optimal transportation map, the optimal transportation potential, that is a
convex, lower semicontinuous ψ such that (ψ∗, ψ) minimizes J (equivalently, a convex, lower
semicontinuous ψ such thatQ◦(∇ψ)−1 = P ), is not unique, since, obviously J(ψ∗−C, ψ+C) =
J(ψ∗, ψ) for every C ∈ R. However, under some additional regularity on Q we can ensure
that this is the only way to produce a different optimal transportation potential. Our next
result would be trivial if we were imposing further smoothness assumptions on the convex
potentials: two differentiable functions on a convex domain that have the same gradient are
equal up to addition of a constant. What we show next is that, for convex functions, having
a common gradient at almost every point is enough to reach the same conclusion.

Lemma 2.1 Assume ψ1 and ψ2 are finite convex functions on a nonempty convex, open set
A ⊂ R

d such that
∇ψ1(x) = ∇ψ2(x) for almost every x ∈ A.

Then there exists C ∈ R such that ψ1(x) = ψ2(x) + C for all x ∈ A.

Proof. For i = 1, 2, we write ∂ϕi(x) for the subgradient of ϕi at x ∈ A, namely, the set
of z ∈ R

d such that ϕi(y) − ϕi(x) ≥ z · (y − x) for all y ∈ R
d. We also write Si(x) for the

set of points z ∈ R
d such that z = limn→∞∇ϕi(xn) for some sequence xn which satisfies

limn→∞ xi = x. Then ∂ϕi(x) is the closure of the convex hull of Si(x) (see Theorem 25.6, p.
246 in [14]; note that the normal cone to a point in the interior of the domain of a convex
function is simply {0}). Now, assume that z ∈ S1(x), with z = limn→∞∇ϕ1(xn) and xn is some
sequence converging to x ∈ A. Denote by B ⊂ A the set such that A− B has null Lebesgue
measure while for x ∈ B ϕi, i = 1, 2 are differentiable at x with ∇ϕ1(x) = ∇ϕ2(x). We note
that ∇ϕ1 is continuous in the set of points of differentiability of ϕ1 (Theorem 25.5 in [14]).
Hence, for each n we can find x̃n ∈ B such that ‖xn− x̃n‖ ≤ 1

n
and ‖∇ϕ1(xn)−∇ϕ1(x̃n)‖ ≤ 1

n
.

But then x̃n → x and ϕ1(x̃n) = ϕ2(x̃n) → z, which shows that z ∈ S2(x) and implies that
S1(x) ⊂ S2(x). By symmetry, we also have S2(x) ⊂ S1(x). Now, two convex functions with
equal subgradient at every point are equal up to the addition of a constant (see Theorem 24.9
in [14]; we note that although the statement of this Theorem considers convex functions on R

d

the proof can be reproduced verbatim for convex functions on a smaller convex, open domain
in R

d). This completes the proof. �

As a consequence of Lemma 2.1, we obtain uniqueness of optimal transportation potentials
(up to the addition of a constant) under suitable regularity assumptions.
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Corollary 2.2 Assume that P and Q are Borel probabilities on R
d with finite second moments

and
Q has a positive density in the interior of its convex support. (2.3)

Then, if ψ1, ψ2 are convex, lower semicontinuous convex functions such that J(ψ∗
1 , ψ1) =

J(ψ∗
2 , ψ2) = min(ϕ,ψ)∈Φ J(ϕ, ψ), with J(ϕ, ψ) as in (2.1), there exists C ∈ R such that ψ2 =

ψ1 + C in the interior of the support of Q. In particular, ψ2 = ψ1 + C Q-a.s..

Proof. Uniqueness of the optimal transportation map and (2.3) ensure that∇ϕ1(x) = ∇ϕ2(x)
for almost every x ∈ A, the interior of the support of Q. Lemma 2.1 allows to conclude that
ϕ2(x) = ϕ1(x) + C for some constant C and every x in the interior of A. The conclusion
follows from the fact that the boundary of a convex set has zero Lebesgue measure.

�

Remark 2.3 Uniqueness of the optimal transportation potential fails without assumption
(2.3). As a counterexample, consider the probability P giving mass 1

2
to the points −1, 1 and

assume that Qε is the uniform law on the set (−ε− 1,−ε)∪ (ε, 1 + ε), ε > 0. Non-decreasing
maps are optimal. Hence, the optimal transportation map from Qε to P is Tε(x) = −1,
x < 0, Tε(x) = 1, x > 0. The maps ψε,L(x) = −x, x ≤ −L

2
, ψε,L(x) = x + L, x ≥ −L

2
,

0 < L < ε, are continuous, convex and satisfy ψ′
ε,L = Tε Qε a.s. . Hence, they are optimal

transportation potentials. However, if L1 6= L2, then there is no choice of a constant C such
that ψε,L2

= ψε,L1
+ C Qε a.s. . This example can be easily adapted to general dimension.

�

We turn now to stability in optimal transportation problems. We will assume that Q is a
regular probability measure on R

d (in the sense of (2.3)) and Pn, P are probabilities satisfying
W2(Pn, P ) → 0. It is well known (see Theorem 3.4 in [7]) that the optimal transportation
maps from Q to Pn, say Tn, converge Q-a.s. to T , the optimal transportation map from Q to
P . Here we will provide stability results for the optimal transportation potentials.

A main tool in our approach will be the concept of graphical convergence of multivalued
maps, which is a particular case of set convergence in the Painlevé-Kuratowski sense. We
include next a brief summary of some related key facts and refer to [15] for a detailed account
of the main results on the topic.

Given a sequence of subsets {Cn}n≥0 of R
d, its outer limit, to be denoted lim supn→∞Cn is

the set of points x ∈ R
d such that x = limj→∞ xnj

for some subsequence nj and some choice
of points xnj

∈ Cnj
, while the inner limit (denoted lim infn→∞Cn) is the set of points x ∈ R

d

such that x = limn→∞ xn for some sequence xn such that x∈Cn for all n ≥ n0 (for some n0).
Obviously, lim infn→∞Cn ⊂ lim supn→∞Cn. When these two sets are equal (to C, say) then
the sequence Cn is said to converge to C in the Painlevé-Kuratowski sense. The limiting sets
are necessarily closed and, in fact, it makes no difference to replace Cn by its closure in all
these definitions (see Proposition 4.4 in [15]).

A multivalued map, T , from R
d to Rd is a map that assigns to each x ∈ R

d, a set T (x) ⊂ R
d.

The domain of T is the set of x ∈ R
d such that T (x) 6= ∅, while the graph is the subset

gph(T ) =
{

(x, t) ∈ R
d × R

d : t ∈ T (x)
}

.

Multivalued maps can be identified with subsets of R
d × R

d. Given a set T ⊂ R
d × R

d

we can define the map T̃ by the rule T̃ (x) = {t ∈ R
d : (x, t) ∈ T} and then he graph of

T̃ equals T . This identification allows to define convergence of multivalued maps in terms
of set convergence of their graphs in the Painlevé-Kuratowski sense. More precisely, the
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sequence of multivalued maps {Tn}n≥1 from R
d to R

d is said to converge graphically to T if
the graphs gph(Tn) converge to gph(T ) in the Painlevé-Kuratowski sense, see Chapter 5 in
[15] for details. For convenience, we include next two results about convergence of sets and
multivalued maps. The first one is a characterization of graphical convergence, which is just
a rewriting of Proposition 5.33 in [15]. The second is a key result on sequential compactness
in the Painlevé-Kuratowski sense.

Proposition 2.4 The sequence of multivalued maps {Tn}n≥1 converges graphically to T if
and only if for every x ∈ R

d the following two conditions hold:

(a) if xn → x, yn ∈ Tn(xn) for large n and there is a subsequence ynj
→ y, then y ∈ T (x),

(b) if y ∈ T (x) then there exist sequences {xn}, {yn} with xn → x, yn ∈ Tn(xn) for large n
and such that yn → y.

Theorem 2.5 (a) Assume that {Cn}n≥1 ⊂ R
d satisfies that for some ε > 0 and some

subsequence {nj} Cnj
∩B(0, ε) 6= ∅ for every j ≥ 1, where B(0, ε) denotes the open ball

of radius ε centered at the origin. Then there exists a subsequence {njk} and a nonempty
subset C ⊂ R

d such that Cnjk
converges to C in the Painlevé-Kuratowski sense.

(b) Assume that {Tn}n≥1 is a sequence of multivalued maps from R
d to R

d such that for
some bounded sets C,D ⊂ R

d and some subsequence {nj} there exist xnj
∈ C with

Tnj
(xnj

)∩D 6= ∅ for all j ≥ 1. Then there exists a subsequence {njk} and a multivalued
map, T , from R

d to R
d, with with nonempty domain such that Tnjk

converges graphically
to T .

Proof. We note that the assumption in (a) is simply a rewriting of the assumption in Theorem
4.18 in [15] (the condition that the sequence of sets does not escape to the horizon). Similarly,
(b) follows from Theorem 5.36 in [15].

�

The link between optimal transportation and the theory of multivalued maps comes from
the fact that a transportation plan π is optimal (a minimizer for Ĩ) if and only its support
is contained in the graph of the multivalued map ∂ψ for some proper, lower semicontinuous,
convex ψ (recall the discussion above; see also Theorem 2.12 in [20]). It is well known that
subgradients of convex maps can be characterized in terms of monotonicity or cyclical mono-
tonicity. A multivalued map T from R

d to R
d is monotone if (t1− t0) · (x1−x0) ≥ 0 whenever

ti ∈ T (xi), i = 0, 1. It is cyclically monotone if fo every choice of m ≥ 1, points x0, . . . , xm
and elements ti ∈ T (xi), i = 0, . . . , m, we have

t0 · (x1 − x0) + t1 · (x2 − x1) + · · ·+ tm · (x0 − xm) ≤ 0.

A monotone multivalued map is maximal monotone if its graph cannot be enlarged without
losing the monotonicity property and similarly for maximal cyclically monotone maps. It
is easy to see that every cyclically monotone map is also monotone. It is also true that a
maximal cyclically monotone map is maximal monotone and, in fact, a multivalued map T

has the form T = ∂ψ for some proper, lower semicontinuous, convex ψ if and only if T is
maximal cyclically monotone (see Theorems 12.17 and 12.25 in [15]; Theorem 12.17 is often
referred to as ‘Rockafellar’s Theorem’).

In our stability result for optimal transportation potential we will make use of the following
result on convergence of cyclically monotone maps. While it follows easily from related known
results, we have not been able to find it in the literature and therefore states its result in the
following theorem.
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Theorem 2.6 If a sequence of cyclically monotone maps {Tn} from R
d to R

d converges graph-
ically then the limit map, T , must be cyclically monotone. If the Tn are maximal cyclically
monotone then T is also maximal cyclically monotone.

Assume {ψn} is a sequence of proper, lower semicontinuous, convex maps from R
d to R

such that for some bounded sets C,D ⊂ R
d and some subsequence {nj} there exist xnj

∈ C

with ∂ψnj
(xnj

) ∩ D 6= ∅ for all j ≥ 1. Then there exists a subsequence {njk} and a proper,
lower semicontinuous, convex map, ψ, from R

d to R, with subgradient with nonempty domain
such that ∂ψnjk

converges graphically to ∂ψ.

Proof. Take ti ∈ T (xi), i = 0, . . . , m. The points (xi, ti) belong to the graph of T , hence they
are belong to lim infn→∞ gph(Tn) and, consequently, there are sequences (xn,i, tn,i) ∈ gph(Tn)
(for large enough n) such that (xn,i, tn,i) → (xi, ti), i = 0, 1, . . . , m. By cyclical monotonicity
we have

tn,0 · (xn,1 − xn,0) + tn,1 · (xn,2 − xn,1) + · · ·+ tn,m · (xn,0 − xn,m) ≤ 0.

Taking limits we conclude that

t0 · (x1 − x0) + t1 · (x2 − x1) + · · ·+ tm · (x0 − xm) ≤ 0.

Therefore T is cyclically monotone. If Tn are maximal cyclically monotone then they are
maximal monotone. By Theorem 12.32 in [15] T must be maximal monotone. Hence, it
is also maximal cyclically monotone (if we could enlarge the graph of T preserving cycli-
cal monotonicity, then the enlarged graph would also be monotone, contradicting maximal
monotonicity).

For the second part we use Rockafellar’s theorem and part (b) of Theorem 2.5.
�

Finally, we quote a technical result relating graphical convergence of subgradients of convex
functions to pointwise convergence of the convex functions themselves. A proof follows easily
from Theorem 12.35 and Exercise 12.36 in [15].

Proposition 2.7 Assume ψ, {ψn} are proper, lower semicontinuous, convex maps from R
d to

R such that ∂ψn converges to ∂ψ graphically and there is a sequence (xn, tn) with tn ∈ ∂ψn(xn)
and a pair (x0, t0) with t0 ∈ ∂ψ(x0) satisfying (xn, tn) → (x0, t0) and ψn(xn) → ψ(x0). Then,
if ψ is finite at x, x̃n → x and lim infn→∞ ∂ψn(x̃n) 6= ∅ we have

lim
n→∞

ψn(x̃n) = ψ(x).

We are now ready for the announced result on stability of optimal transportation poten-
tials.

Theorem 2.8 Assume Q satisfies (2.3) and Qn, Pn ,P are probabilities such thatW2(Pn, P ) →
0 and W2(Qn, Q) → 0. If ψn (resp. ψ) are optimal transportation potentials from Qn to Pn
(resp. from Q to P ) then there exist constants an such that if ψ̃n = ψn−an then ψ̃n(x) → ψ(x)
for every x in the interior of the support of Q, hence, for Q-almost every x.

Proof. We write πn for an optimal transportation plan for Qn, Pn and π for the optimal
transportation plan for Q,P . We recall that π is unique and π = Q ◦ (Id,∇ψ)−1. π is
concentrated in the graph of ∂ψ, that is, in the closed set {(x, y) ∈ R

d × R
d : ψ(x) + ψ∗(y) =

x · y} = {(x, y) ∈ R
d × R

d : y ∈ ∂ψ(x)}. It is easy to see that πn → π weakly. As before, we
denote by A the interior of the support of Q. We write Ã for the set of x ∈ A such that ψ is

8



differentiable at a. Then Q(Ã) = Q(A) = 1. Furthermore (see Theorem 25.5 in [14]) ∇ψ is
continuous at every differentiability point x ∈ A. Fix x0 ∈ Ã and set y0 = ∇ψ(x0). Now, for
every ε > 0 there exists δ > 0 such that ‖∇ψ(x)− y0‖ ≤ ε if x ∈ Ã and ‖x− x0‖ ≤ δ. Hence,
π(B(x0, δ) × B(y0, ε)) ≥ Q(B(x0, δ)) = η > 0 by Assumption (2.3), and weak convergence
implies that πn(B(x0, δ)×B(y0, ε)) ≥ η

2
for large enough n. But πn is concentrated in the graph

of ∂ψn, hence, there exists (xn, yn) with yn ∈ ∂ψn(xn), ‖xn − x0‖ < δ, ‖yn − y0‖ < ε. Taking
δn → 0 and εn → 0 we see that we can find a subsequence (xn′ , yn′) with yn′ ∈ ∂ψn(xn′) such
that xn′ → x0 and yn′ → y0. This implies that (x0, y0) ∈ lim sup gph ∂ψn. Also, by Theorem
2.6 there exists a proper, lower semicontinuous, convex function ρ such that ∂ψn converges
graphically to ∂ρ (along a subsequence; we keep the same notation for the subsequence).
Then we see that y0 ∈ ∂ρ(x0). We can consider now x ∈ Ã, y = ∇ψ(x) and apply the same
argument to conclude that y ∈ ∂ρ(x). This implies that dom (ρ) ⊃ A. Hence ρ must be
differentiable and ∇ρ(x) = ∇ψ(x) at almost every point in A. We conclude, using Lemma
2.1, that ρ = ψ +C in A, hence, subtracting a constant, if necessary, ρ = ψ in A. Finally, we
can set an = ψn(xn)−ψ(x0) and replace ψn(x) with ψ̃n−an to have ψ̃n(xn) = ψ0(x0) = ρ(x0).
Applying Proposition 2.7 we obtain that ψ̃n(x) → ρ(x) = ψ(x) for all x ∈ Ã, hence (see
Theorem 7.17 in [15]) ψ̃n(x) → ρ(x) = ψ(x) for all x ∈ A. This completes the proof.

�

Remark 2.9 Theorem 2.8 extends known results about stability of optimal transportation
maps. In fact, it covers the case Qn = Q. In this case ψn is differentiable at almost every
x ∈ A. From the proof of Theorem 2.8 we have graphical convergence of ∂ψn to ∂ρ with ρ = ψ

in A. This implies (see, e.g., Exercise 12.40 (a) in [15]) that ∇ψn(x) → ∇ψ(x) at almost every
x ∈ A, that is ∇ψn → ∇ψ Q-a.s.. This stability result for optimal transportation maps is
contained in Theorem 3.4 in [7] or in [11]. Our result applies to a non-smooth setup in that
the Qn’s are not assumed to have a density (on the other hand, we need to impose additional
regularity assumptions on Q to ensure convergence of the convex potentials).

�

Under some moment assumptions the stability result in Theorem 2.8 can be complemented
with L2 convergence. As in the Introduction, in our next result W4 denotes the transportation
cost metric associated to the cost function c(x, y) = ‖x − y‖4. We note that the condition
W4(Pn, P ) → 0 implies the weaker assumption W2(Pn, P ) → 0 and also that the conclusions
in Theorem 2.10 do not depend on the particular choice of the potential ψ since all the possible
choices are Q-a.s. equal up to the addition of a constant.

Theorem 2.10 Assume that Q,P, {Pn}n≥1 are probabilities on R
d with finite fourth moment

with Q satisfying (2.3) and write ψ (resp. ψn) for a proper, lower semicontinuous function
such that ∇ψ (resp. ∇ψn) is the optimal transportation map from Q to P (resp. from Q to
Pn). Then ψ, ψn ∈ L2(Q). Furthermore, if W4(Pn, P ) → 0, then taking ψ̃n as in Theorem 2.8
we have that ψ̃n → ψ in L2(Q).

Proof. We keep the notation for A and U as in the proof of Theorem 2.8 and the choice of
x0 ∈ U and write z0 = ∇ψ(x0). Then

ψ(x) ≥ ψ(x0) + z0 · (x− x0), x ∈ R
d. (2.4)

On the other hand, since z0 ∈ ∂ψ(x0) we have ψ(x0) + ψ∗(z0) = x0 · z0, hence, x0 ∈ ∂ψ∗(z0)
and .

ψ∗(z) ≥ ψ∗(z0) + x0 · (z − z0), z ∈ R
d. (2.5)
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But optimality implies that ψ(x) + ψ∗(∇ψ(x)) = x · ∇ψ(x) Q-a.s.. Therefore, using (2.5) we
conclude that, Q-a.s.,

ψ(x) ≤ x · ∇ψ(x)− ψ∗(z0)− x0 · (∇ψ(x)− z0) = ψ(x0) + (x− x0) · ∇ψ(x). (2.6)

Combining (2.4) and (2.6) we see that

|ψ(x)− ψ(x0)| ≤ |(x− x0) · ∇ψ(x0)|+ |(x− x0) · ∇ψ(x)|
≤ ‖x− x0‖2 + 1

2
‖∇ψ(x0)‖2 + 1

2
‖∇ψ(x)‖2, Q− a.s.

By assumption ‖x−x0‖2 is in L2(Q). Also, since, ∇ψ transports Q to P ,
∫

‖∇ψ(x)‖4dQ(x) =
∫

‖z‖4dP (z). This shows that ψ ∈ L2(Q). The same argument works for ψn or ψ̃n, in fact,

|ψ̃n(x)− ψ̃n(x0)| ≤ ‖x− x0‖2 + 1
2
‖∇ψn(x0)‖2 + 1

2
‖∇ψn(x)‖2, Q− a.s.

Now, ‖∇ψn(x)‖4 → ‖∇ψ(x)‖4 Q-a.s. and
∫

‖∇ψn(x)‖4dQ(x) →
∫

‖∇ψ(x)‖4dQ(x). Hence,

the sequence ‖∇ψn(·)‖4 is Q-uniformly integrable, and the same applies to ψ̃2
n, which combined

with Theorem 2.8 proves that ψ̃n → ψ in L2(Q).
�

3 Variance bounds.

We turn now to concentration bounds and Central Limit Theorems for the empirical L2-
Wasserstein distance on d-dimensional data. From this point we assume that Pn denotes
the empirical measure on X1, . . . , Xn, i.i.d. r.v.’s with distribution P and P and Q are
Borel probabilities on R

d with finite second moments. A main tool in our proofs is the
Efron-Stein inequality for variances, namely, that if Z = f(X1, . . . , Xn) with X1, . . . , Xn

independent random variables, (X ′
1, . . . , X

′
n) is an independent copy of (X1, . . . , Xn) and Zi =

f(X1, . . . , X
′
i, . . . , Xn) then

Var(Z) ≤ 1

2

n
∑

i=1

E(Z − Zi)
2 =

n
∑

i=1

E(Z − Zi)
2
+.

We refer, for instance, to [6] for a proof. In the particular case when X1, . . . , Xn are i.i.d. and
f is a symmetric function of x1, . . . , xn all the values E(Z − Zi)

2
+ are equal and the bound

simplies to
Var(Z) ≤ nE(Z − Z ′)2+ (3.1)

with Z ′ = f(X ′
1, X2, . . . , Xn).

We show first a variance bound for W2
2 (Pn, Q).

Theorem 3.1 If Q has a density and P and Q have finite fourth moments then

Var(W2
2 (Pn, Q)) ≤

C(P,Q)

n
,

where C(P,Q) = 8
(

E(‖X1 −X2‖2‖X1‖2) + (E‖X1 −X2‖4)1/2
(

∫

Rd ‖y‖4dQ(y)
)1/2)

.
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Proof. We write Z = W2
2 (Pn, Q). The assumption that Q has a density ensures the existence

of an otimal transportation map, T , from Q to Pn. Hence, denoting Ci = {y ∈ R
d : T (y) =

Xi} we have Q(Ci) =
1
n
and

Z =
n

∑

i=1

∫

Ci

‖y −Xi‖2dQ(y).

Let us consider an additional random variableX ′
1 with law P , independent ofX1, . . . , Xn, write

P ′
n for the empirical measure on X ′

1, X2, . . . , Xn and Z ′ = W2
2 (P

′
n, Q). Let us also denote by

T ′ the o.t.m. from Q to P ′
n and C ′

1 = {y ∈ R
d : T ′(y) = X ′

1}, C ′
i = {y ∈ R

d : T ′(y) = Xi},
i = 2, . . . , n. Then

Z ′ =

∫

C′

1

‖y −X ′
1‖2dQ(y) +

n
∑

i=2

∫

C′

i

‖y −Xi‖2dQ(y),

while

Z ≤
∫

C′

1

‖y −X1‖2dQ(y) +
n

∑

i=2

∫

C′

i

‖y −Xi‖2dQ(y).

This implies that

Z−Z ′ ≤
∫

C′

1

(‖y−X1‖2−‖y−X ′
1‖2)dQ(y) ≤ ‖X1−X ′

1‖
(1

n

(

‖X1‖+‖X ′
1‖
)

+2

∫

C′

1

‖y‖dQ(y)
)

,

from which we conclude that

E(Z − Z ′)2+ ≤ 8

n2
E(‖X1 −X ′

1‖2‖X1‖2) + 8E
(

‖X1 −X ′
1‖2

(

∫

C′

1

‖y‖dQ(y)
)2)

. (3.2)

We note now that
∫

C′

1

‖y‖dQ(y) ≤
(

∫

C′

1

1dQ(y)
)3/4(

∫

C′

1

‖y‖4dQ(y)
)1/4

=
1

n3/4

(

∫

C′

1

‖y‖4dQ(y)
)1/4

.

By exchangeability we have
∫

C′

1

‖y‖4dQ(y) d
=

∫

C1

‖y‖4dQ(y) d
=

∫

Cj
‖y‖4dQ(y), for all j =

2, . . . , n. This shows that

E
(

∫

C′

1

‖y‖4dQ(y)
)

=
1

n
E
(

n
∑

j=1

∫

Cj

‖y‖4dQ(y)
)

=
1

n

∫

Rd

‖y‖4dQ(y),

which, combined with the above estimate yields

E
(

∫

C′

1

‖y‖dQ(y)
)4

≤ 1

n4

∫

Rd

‖y‖4dQ(y).

From this bound, (3.2) and Schwarz’s inequality we obtain

E(Z − Z ′)2+ ≤ 8

n2

(

E(‖X1 −X ′
1‖2‖X1‖2) + (E‖X1 −X ′

1‖4)1/2
(

∫

Rd ‖y‖4dQ(y)
)1/2)

.

This and the Efron-Stein inequality for variances complete the proof.
�

Theorem 3.1 provides a simple bound with explicit constants for the variance of W2
2 (Pn, Q)

and implies tightness of
√
n(W2

2 (Pn, Q)− E(W2
2 (Pn, Q))) with the only requirement of finite

fourth moments and a density forQ. Next, we present a different application of the Efron-Stein
inequality that will result in an approximation bound from which a CLT can be concluded.
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Theorem 3.2 Assume that P and Q satisfy (2.3) and have finite moments of order 4+ δ for
some δ > 0. Write ϕ0 for the optimal transportation potential from P to Q. If

Rn = W2
2 (Pn, Q)−

∫

Rd

(‖x‖2 − 2ϕ0(x))dPn(x),

then
nVar(Rn) → 0

as n→ ∞.

Proof. We will argue as in the proof of Theorem 3.1. We write ψ0 = ϕ∗
0 for the optimal

transportation potential from Q to P . Without loss of generality we can assume that Xi =
∇ψ0(Ui), i = 1, . . . , n, X ′

1 = ∇ψ0(U
′
1), with U1, . . . , Un, U

′
1 i.i.d. r.v.’s with law Q. We note

that, with probability one, W2(Pn, P ) → 0 and we can apply Theorem 2.8. Hence, if write ψn
for the suitable centered optimal transportation potentials from Q to Pn that satisfy ψn → ψ0

Q-a.s., and ϕn = ψ∗
n, then

ϕn(∇ψ0(x)) → ϕ0(∇ψ0(x)) (3.3)

for Q almost every x.
Next, we write P ′

n for the empirical measure on X ′
1, X2, . . . , Xn and

R′
n = W2

2 (P
′
n, Q)−

∫

Rd

(‖x‖2 − 2ϕ0(x))dP
′
n(x).

Now, the Efron-Stein inequality (3.1) implies that it suffices to show that

n2E(Rn −R′
n)

2
+ → 0 as n→ ∞. (3.4)

We show first that n(Rn − R′
n)+ → 0 a.s.. We write ψ′

n for the optimal transportation
potential from Q to Pn and ϕ′

n = (ψ′
n)

∗.
We note that

W2
2 (Pn, Q) =

∫

Rd

(‖x‖2 − 2ϕn(x))dPn(x) +

∫

Rd

(‖y‖2 − 2ψn(y))dQ(y)

and similarly for W2
2 (P

′
n, Q) replacing (ϕn, ψn) with (ϕ′

n, ψ
′
n). Also, by optimality,

W2
2 (P

′
n, Q) ≥

∫

Rd

(‖x‖2 − 2ϕn(x))dP
′
n(x) +

∫

Rd

(‖y‖2 − 2ψn(y))dQ(y).

Hence,

Rn − R′
n ≤ 2

∫

Rd

(ϕ0(x)− ϕn(x))dPn(x)− 2

∫

Rd

(ϕ0(x)− ϕn(x))dP
′
n(x)

=
2

n

[

(ϕ0(X1)− ϕn(X1))− (ϕ0(X
′
1)− ϕn(X

′
1))

]

=
2

n

[

(ϕ0(∇ψ0(U1))− ϕn(∇ψ0(U1)))− (ϕ0(∇ψ0(U
′
1))− ϕn(∇ψ0(U

′
1)))

]

.

Combining this bound with (3.3) we conclude that n(Rn − R′
n)+ → 0 a.s., as claimed. To

complete the proof it suffices to show that n2(Rn − R′
n)

2
+ is uniformly integrable. Since

n(Rn − R′
n) = n

(

W2
2 (Pn, Q)−W2

2 (P
′
n, Q)

)

−
(

(‖X1‖2 − 2ϕ0(X1))− (‖X ′
1‖2 − 2ϕ0(X

′
1))

)

,
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and (‖X1‖2 − 2ϕ0(X1)) and (‖X ′
1‖2 − 2ϕ0(X

′
1)) have finite second moment (recall Theorem

2.10), this will follow if we prove that n2
(

W2
2 (Pn, Q) −W2

2 (P
′
n, Q)

)2

+
is uniformly integrable.

For this last goal we write Z = W2
2 (Pn, Q), Z

′ = W2
2 (P

′
n, Q) and recall from the proof of

Theorem 3.1 that

n(Zn − Z ′
n)+ ≤ ‖X1 −X ′

1‖
(

(

‖X1‖+ ‖X ′
1‖
)

+ 2n

∫

C′

1

‖y‖dQ(y)
)

,

keeping the notation there for C ′
1. Since X1, X

′
1 have finite fourth moment, we only need to

prove that
(

n‖X1 − X ′
1‖

∫

C′

1

‖y‖dQ(y)
)2

is uniformly integrable. To check this we argue as

above to see that
(

∫

C′

1

‖y‖dQ(y)
)4+δ

≤ 1

n3+δ

(

∫

C′

1

‖y‖4+δdQ(y)
)

and, as a consequence,

E
(

n

∫

C′

1

‖y‖dQ(y)
)4+δ

≤ nE
(

∫

C′

1

‖y‖4+δdQ(y)
)

=

∫

Rd

‖y‖4+δdQ(y) <∞.

Finally, we use Schwarz’s inequality to see that

E
(

n‖X1 −X ′
1‖

∫

C′

1

‖y‖dQ(y)
)2+ δ

2 ≤
(

E‖X1 −X ′
1‖4+δ

)
1

2

(

∫

Rd

‖y‖4+δdQ(y)
)

1

2

.

This entails that
(

n‖X1−X ′
1‖

∫

C′

1

‖y‖dQ(y)
)2

is uniformly integrable and completes the proof.

�

We consider next a version of the variance bounds in Theorems 3.1 and 3.2 suited to the
two-sample empirical transportation cost. Thus, we assume that X1, . . . , Xn are i.i.d. r.v.’s
with law P , Y1, . . . , Ym are i.i.d. r.v.’s with law Q, independent of the Xi’s, Pn denotes the
empirical measure on the Xi’s and Qm the empirical measure on the Yj ’s.

Theorem 3.3 If P and Q have densities and finite fourth moments then

Var(W2
2 (Pn, Qm)) ≤

C(P,Q)

n
+
C(Q,P )

m
,

where C(P,Q) is defined as in Theorem 3.1.
If P and Q satisfy (2.3) and have finite moments of order 4 + δ for some δ > 0, n → ∞,

m→ ∞, n
n+m

→ λ ∈ (0, 1) and set

Rn,m = W2
2 (Pn, Qm)−

∫

Rd

(‖x‖2 − 2ϕ0(x))dPn(x)−
∫

Rd

(‖y‖2 − 2ψ0(y))dQm(y),

then
nm

n +m
Var(Rn,m) → 0.

Proof. We note first that, as a function of X1, . . . , Xn, Y1, . . . , Ym, W2
2 (Pn, Qm) is symmetric

in its first n variables, as well as in its last m. Hence, using the Efron-Stein inequality we see
that

Var(W2
2 (Pn, Qm)) ≤ nE(Z − Z ′)2+ +mE(Z − Z ′′)2+,
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where Z = W2
2 (Pn, Qm), Z

′ = W2
2 (P

′
n, Qm), Z

′′ = W2
2 (Pn, Q

′
m), P

′
n is the empirical measure

on X ′
1, X2, . . . , Xn, Q

′
m is the empirical measure on Y ′

1 , Y2, . . . , Ym and X ′
1, Y

′
1 are independent

r.v.’s, independent of the Xi’s and Yj’s, with X ′
1 having law P and Y ′

1 with law Q. To
bound E(Z − Z ′)2+ we write π (resp. π′) for the optimal transportation plan from Pn to
Qm (resp. from P ′

n to Qm). We write also πi,j for the probability that π assigns to the pair
(Xi, Yj), and similarly for π′

i,j , ci,j = ‖Xi − Yj‖2 and c′i,j for the costs associated to the data
X ′

1, X2, . . . , Xn, Y1, . . . , Ym. Then Z
′ =

∑n
i=1

∑m
j=1 c

′
i,jπ

′
i,j and Z ≤ ∑n

i=1

∑m
j=1 ci,jπ

′
i,j . Hence,

noting that ci,j = c′i,j for i ≥ 2 we see that

Z − Z ′ ≤
m
∑

j=1

π′
1,j(c1,j − c′1,j) ≤ ‖X1 −X ′

1‖
m
∑

j=1

π′
1,j(‖X1‖+ ‖X1‖′ + 2‖Yj‖).

Since
∑m

j=1 π
′
1,j =

1
n
we obtain that

Z − Z ′ ≤ ‖X1 −X ′
1‖
( 1

n
(‖X1‖+ ‖X1‖′) + 2

m
∑

j=1

π′
1,j‖Yj‖

)

.

From this point we can argue as in the proof of Theorem 3.1 to conclude that E(Z − Z ′)2+ ≤
C(P,Q)
n2 . We note that, again in this setup, we have by exchangeability

E
(

m
∑

j=1

π′
1,j‖Yj‖4

)

=
1

n
E
(

n
∑

i=1

m
∑

j=1

π′
i,j‖Yj‖4

)

=
1

n
E
( 1

m

m
∑

j=1

‖Yj‖4
)

=
1

n
E‖Y1‖4.

Similarly, we see that E(Z − Z ′′)2+ ≤ C(Q,P )
m2 and this proves the first claim.

For the second claim we argue as in the proof of Theorem 3.2. We keep the notation P ′
n,

Q′
m as above and set

R′
n,m = W2

2 (P
′
n, Qm)−

∫

Rd

(‖x‖2 − 2ϕ0(x))dP
′
n(x)−

∫

Rd

(‖y‖2 − 2ψ0(y))dQm(y),

R′′
n,m = W2

2 (Pn, Q
′
m)−

∫

Rd

(‖x‖2 − 2ϕ0(x))dPn(x)−
∫

Rd

(‖y‖2 − 2ψ0(y))dQ
′
m(y).

Again, the Efron-Stein inequality shows that it suffices to prove that n2E(Rn,m−R′
n,m)

2
+ → 0

and m2E(Rn,m − R′′
n,m)

2
+ → 0. We prove the first of these two claims, the other following by

symmetry. We write ϕn for the optimal transportation potential from Pn to Qm and ψn = ϕ∗
n.

We note that Theorem 2.8 ensures that we can center the φn’s to ensure that ϕn → ϕ0 P -a.s..
Also, as above,

W2
2 (Pn, Qm) =

∫

Rd

(‖x‖2 − 2ϕn(x))dPn(x) +

∫

Rd

(‖y‖2 − 2ψn(y))dQm(y),

while

W2
2 (P

′
n, Qm) ≥

∫

Rd

(‖x‖2 − 2ϕn(x))dP
′
n(x) +

∫

Rd

(‖y‖2 − 2ψn(y))dQm(y).

From this we see that

Rn,m − R′
n,m ≤ 2

∫

Rd

(ϕ0(x)− ϕn(x))dPn(x)− 2

∫

Rd

(ϕ0(x)− ϕn(x))dP
′
n(x)

=
2

n

[

(ϕ0(X1)− ϕn(X1))− (ϕ0(X
′
1)− ϕn(X

′
1))

]

and this shows that n(Rn,m−R′
n,m)+ → 0 a.s.. Arguing as in the proof of Theorem 3.2 we can

check that n2(Rn,m − R′
n,m)+ is uniformly integrable. Hence, we conclude that n2E(Rn,m −

R′
n,m)

2
+ → 0 and complete the proof. �
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4 CLTs for empirical transportation cost

As a direct consequence of the approximation bounds in Theorems 3.2 and 3.3 we arrive to
the main results in this paper, namely, central limit theorems for the empirical transportation
cost and the optimal matching cost.

Theorem 4.1 (Central Limit Theorem for empirical quadratic transportation cost)
Assume P and Q are probabilities on R

d that satisfy (2.3) and have finite moments of order
4 + δ for some δ > 0. If X1, . . . , Xn are i.i.d. r.v.’s with law P and Pn denotes the empirical
measure on X1, . . . , Xn then

nVar(W2
2 (Pn, Q)) → σ2(P,Q) :=

∫

Rd

(‖x‖2 − ϕ0(x))
2dP (x)−

(

∫

Rd

(‖x‖2 − ϕ0(x))dP (x)
)2

and √
n
(

W2
2 (Pn, Q)− EW2

2 (Pn, Q)) →
w
N(0, σ2(P,Q))

as n→ ∞, where ϕ0 denotes an optimal transportation potential from P to Q.
Furthermore, if Y1, . . . , Ym are i.i.d. r.v.’s with law Q, independent of the Xi’s, Qm denotes

the empirical measure on Y1, . . . , Ym and n→ ∞, m→ ∞ with n
n+m

→ λ ∈ (0, 1), then

nm
n+m

Var(W2
2 (Pn, Qm)) → (1− λ)σ2(P,Q) + λσ2(Q,P )

and

√

nm
n+m

(

W2
2 (Pn, Qm)− EW2

2 (Pn, Qm)) →
w
N(0, (1− λ)σ2(P,Q) + λσ2(Q,P )).

To end this Section we provide an additional CLT for W2
2 (Pn, Q) which does not require

smoothness on P , but only on Q. Now a finite fourth moment for Q will suffice, but P will be
assumed to have finite support. The proof will use the following special form for the quadratic
transportation cost to a finitely supported probability.

Proposition 4.2 Assume P has finite support, {x1, . . . , xk} ⊂ R
d, with P{xi} = pi, i =

1, . . . , k and Q is a Borel probability on R
d with finite second moment then

W2
2 (P,Q) =

∫

Rd

‖x‖2dP (y) +
∫

Rd

‖y‖2dQ(y)− 2min
z∈Rk

V (z),

where V is the convex function

V (z1, . . . , zk) =
k

∑

i=1

pizi + E max
1≤j≤k

(

xj · Y − zj
)

, (4.1)

and Y is a random vector with distribution Q.
If Q≪ ℓd, the d-dimensional Lebesgue measure, then V is differentiable and

∇V (z) = (p1, . . . , pk)− (Q(A1(z)), . . . , Q(Ak(z))),

where
Aj(z) =

{

y ∈ R
d : (xj · y − zj) > max

i 6=j
(xi · y − zi)

}

, j = 1, . . . , n.

Finally, if Q satisfies (2.3) then z minimizes V if and only ∇V (z) = 0 and there is a unique

z such that ∇V (z) = 0, zi+
‖xi‖2

2
≥ 0, i = 1, . . . , k and

∑k
i=1 pi(zi+

‖xi‖2

2
) = max1≤i≤k ‖xi‖2+

∫

Rd ‖y‖2dQ(y).
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Proof. From duality theory for optimal transportation we know that

W2
2 (P,Q) =

k
∑

i=1

pi‖xi‖2 +
∫

Rd

‖y‖2dQ(y)− 2 min
(z,ψ)∈Φ

[

k
∑

i=1

pizi +

∫

ψ(y)dQ(y)
]

,

where Φ is the class of pairs (z, ψ) such that z ∈ R
k, ψ ∈ L1(Q) and

xj · y ≤ zj + ψ(y), 1 ≤ j ≤ k, y ∈ R
k.

Since
ψ(y) ≥ ψ̃(y) := max

1≤j≤k
(xj · y − zj)

and (z, ψ̃) ∈ Φ we see that

min
(z,ψ)∈Φ

[

k
∑

i=1

pizi +

∫

ψ(y)dQ(y)
]

= min
z∈Rd

V (z)

with V as in the statement (4.1), which is obviously convex. Let us fix now z ∈ R
k, set

ψ(y) = max1≤j≤k(xj · y− zj) and consider z̃j = supy∈Rd(xj · y−ψ(y)). Since zj ≥ xj · y− u(y)

for all y we have z̃j ≤ zj , j = 1, . . . , n. Let us now set ψ̃(y) = max1≤j≤n(xj · y − z̃j). Then
we have ψ̃(y) = max1≤j≤n(xj · y − z̃j) ≥ max1≤j≤n(xj · y − zj) = ψ(y). On the other hand,
z̃j + ψ(y) ≥ xj · y for all j and y implies ψ(y) ≥ max1≤j≤n(xj · y − z̃j) = ψ̃(y). Hence, ψ̃ = ψ

and V (z̃1, . . . , z̃k) ≤ V (z1, . . . , zk). If pi > 0 then the last inequality is strict unless z̃i = zi.
From this point we assume that Q has a density. Then a minimizing pair (z, ψ) in Φ must

satisfy zj = supy∈Rd(xj · y − ψ(y)) and ∇ψ is the optimal transportation map from Q to P .
Since, on the other hand, ψ(y) = max1≤j≤n(xj ·y−zj) we see that ∇ψ(y) = xj if y ∈ Aj(z) and
the condition Q(Aj(z)) = pj, j = 1, . . . , k is necessary and sufficient for z to be a minimizer
of V .

If Q satisfies (2.3) then the polyhedral sets that are mapped by ∇ψ onto the xi’s are
uniquely determined up to differences in the boundaries, which entails that any two minimizers
u, ψ̃ satisfy ψ̃ = ψ + L for some constant L. Consequently, two minimizers, z, z̃ of V must
satisfy z̃i = zi − L, i = 1, . . . , k.

For the claims about the differentiability of V it suffices to focus on

Ṽ (z) = E max
1≤j≤k

(

xj · Y − zj
)

and note that

Ṽ (z + h)− Ṽ (z)−
k

∑

j=1

hjQ(Aj(z))

=

k
∑

j=1

E
[(

max
1≤i≤k

(

xi · Y − (zi + hi)
)

−
(

xj · Y − (zj + hj)
)

)

IAj(z)(Y )
]

.

It is easy to check that 0 ≤
(

max1≤i≤k
(

xi · Y − (zi + hi)
)

−
(

xj · Y − (zj + hj)
)

)

IAj(z)(Y ) ≤
2max1≤j≤k |hj|, while, as h→ 0,

(

max1≤i≤k
(

xi · Y − (zi + hi)
)

−
(

xj · Y − (zj + hj)
)

IAj(z)(Y )
eventually vanishes (except, possibly, if Y belongs to the boundary of Aj(z)). Then, from
dominated convergence we conclude that

Ṽ (z + h)− Ṽ (z)−∑k
j=1 hjQ(Aj(z))

‖h‖ → 0
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as ‖h‖ → 0, proving that Ṽ , and therefore, V are differentiable. Obviously, the condition
∇V (z) = 0 is exactly the necessary and sufficient condition for z to be a minimizer of V
shown above.

Finally, let us fix z ∈ R
k and write ψ(y) = max1≤j≤k(xj · y − zj). Since

ψ(y) +
‖y‖2
2

≥ ‖xj + y‖2
2

− zj −
‖xj‖2
2

≥ −zj −
‖xj‖2
2

we see that a := infyRd

(

ψ(y) + ‖y‖2

2

)

a is finite. As noted above, V remains unchanged if we
replace (z1, . . . , zk) by (z1 + a, . . . , zk + a) and ψ(y) becomes ψ(y)− a. As a consequence, in
the minimisation of V it suffices to consider points (z1, . . . , zk) such that

inf
y∈Rd

(

ψ(y) +
‖y‖2
2

)

= 0. (4.2)

Let us assume that (4.2) holds and consider z̃j = supy∈Rd(xj · y − ψ(y)). As above, we have

z̃j ≤ zj , j = 1, . . . , n, ψ̃(y) = max1≤j≤k(xj · y − z̃j) = ψ(y) and V (z̃1, . . . , z̃k) ≤ V (z1, . . . , zk).
We observe now that

z̃j +
‖xj‖2
2

= sup
y∈Rd

(

xj · y +
‖xj‖2
2

− ψ(y)
)

≥ sup
y∈Rd

(

− ‖y‖2
2

− ψ(y)
)

= − inf
y∈Rr

(

ψ(y) +
‖y‖2
2

)

= 0.

On the other hand,

V (z̃1, . . . , z̃k)+
1

2

k
∑

i=1

pi‖xi‖2+
1

2

∫

Rd

‖y‖2dQ(y) =
k

∑

i=1

pi

(

z̃i+
‖xi‖2
2

)

+

∫

Rd

ψ(y)+
‖y‖2
2

dQ(y),

which, by (4.2), implies that

k
∑

i=1

pi

(

z̃i +
‖xi‖2
2

)

≤ V (z̃1, . . . , z̃k) +
1

2

k
∑

i=1

pi‖xi‖2 +
1

2

∫

Rd

‖y‖2dQ(y).

Nonnegativity of W2
2 (P,Q) shows that minz∈Rk V (z) ≤ 1

2

(

∑k
i=1 pi‖xi‖2 +

∫

Rd ‖y‖2dQ(y)
)

.

Hence, there exists a minimizer of V that satisfies zi +
‖xi‖

2

2
≥ 0 and

∑k
i=1 pi(zi +

‖xi‖
2

2
) ≤

M := max1≤i≤k ‖xi‖2 +
∫

Rd ‖y‖2dQ(y). Adding a constant, if necessary, we see that there is a

unique minimizer of V that satisfies zi +
‖xi‖2

2
≥ 0 and

∑k
i=1 pi(zi +

‖xi‖2

2
) =M .

�

We note that the minimizing z = (z1, . . . , zk) in Proposition 4.2 satisfy zi = ϕ0(xi),
i = 1, . . . , k with ϕ0 = ψ∗

0 and ψ0 the optimal transportation potential from Q to P (which is
unique up to the addition of a constant by Theorem 2.1 under (2.3). Hence, we see that the
optimal transportation potential from P to Q is also unique (up to the addition of a constant)
in this setup.

We can prove now the announced CLT for W2
2 (Pn, Q) when P is finitely supported.

Theorem 4.3 If P has a finite support, and moreover if Q satisfies (2.3) and has a finite
fourth moment. If X1, . . . , Xn are i.i.d. r.v.’s with law P and Pn denotes the empirical measure
on X1, . . . , Xn, then

√
n
(

W2
2 (Pn, Q)−W2

2 (P,Q)
)

→
w
N(0, σ2(P,Q))

as n→ ∞, where σ2(P,Q) is as in Theorem 4.3.
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Proof. We assume that P is as in Proposition 4.2. We can write W2
2 (P,Q) = maxz∈CM

M(z)
with

M(z) =
k

∑

j=1

pj‖xj‖2 +
∫

Rd

‖y‖2dQ(y)− 2
k

∑

j=1

pjzj − 2Ṽ (z),

Ṽ (z) = Emax1≤j≤k
(

xj ·Y − zj
)

and CM = {z ∈ R
d : zi+

‖xi‖2

2
≥ 0, i = 1, . . . , k;

∑k
i=1 pi(zi+

‖xi‖
2

2
) = M}. Similarly, W2

2 (Pn, Q) = maxz∈CM
Mn(z), where Mn is obtained replacing the

pj’s by the empirical frequencies, pn,j’s. We write zn and z0 for the unique maximizers of Mn

and M , respectively, given by in Theorem 4.2. By the Central Limit Theorem in R
k we have

Un := [
√
n(pn,j − pj)]1≤j≤k →

w
U with U a centered Gaussian random vector with covariance

matrix Σ = [σi,j ]1≤i,j≤k, σi,i = pi(1 − pi), σi,j = −pipj , i 6= j. Without loss of generality we
can assume that Un → U a.s.. Note that, in particular,

Mn(z)−M(z) =
1√
n

k
∑

i=1

Un,i(‖xi‖2 − 2zi). (4.3)

On the other hand, the choice of zn guarantees that it is a bounded sequence. Assume that,
through a subsequence, zn → ẑ. Then Mn(zn) → M(ẑ) (here we are using the continuity of
Ṽ . For any fixed z we have M(z) = limn→∞Mn(z) ≤ limn→∞Mn(zn) = M(ẑ). Hence, ẑ is

a maximizer of M . But obviously ẑi +
‖xi‖

2

2
≥ 0 and

∑k
i=1 pi(ẑi +

‖xi‖
2

2
) = M . Hence, by

uniqueness, we must have ẑ = z0, that is, zn → z0 a.s.. From this fact we see that
√
n(W2

2 (P,Q)−W2
2 (P,Q)) =

√
n(Mn(zn)−M(z0))

=
√
n(Mn(zn)−M(zn)) +

√
n(M(zn)−M(z0)). (4.4)

Now, by optimality we see that
√
n(Mn(z0)−M(z0))−

√
n(Mn(zn)−M(zn)) ≤

√
n(M(zn)−

M(z0)) ≤ 0. Also, from (4.3) we see that
√
n(Mn(zn) −M(zn)) → ∑k

i=1 Ui(‖xi‖2 − 2z0,i),√
n(Mn(z0)−M(z0)) →

∑k
i=1 Ui(‖xi‖2−2z0,i) a.s.. As a consequence,

√
n(M(zn)−M(z0)) → 0

a.s. which, together with (4.4), shows that

√
n(W2

2 (Pn, Q)−W2
2 (P,Q)) →

w

k
∑

i=1

Ui(‖xi‖2 − 2z0,i).

A simple computation shows that the right hand side in this last display is a centered Gaussian
random variable with variance σ2(P,Q) as in Theorem 3.1.

�

Remark 4.4 We note that, provided Q has a finite moment of order 4 + δ for some δ > 0,
the linearization bound in Theorem 3.2 can be adapted to cover this setup and conclude that

nVar(W2
2 (Pn, Q)) → σ2(P,Q)

and √
n
(

W2
2 (Pn, Q)− E(W2

2 (Pn, Q))
)

→
w
N(0, σ2(P,Q)).

On the other hand, the centering constants E(W2
2 (Pn, Q)) in Theorem 4.1 cannot be replaced

in general by W2
2 (P,Q). As an example, consider the case when P = Q is the uniform

distribution on the d-dimensional unit cube. In this case Theorem 4.1 yields that
√
n
(

W2
2 (Pn, Q)− EW2

2 (Pn, Q)
)

→ 0

in probability. On the other hand EW2
2 (Pn, Q) is of order n−1/d if d ≥ 3 (see [18]) and we

cannot have
√
nW2

2 (Pn, Q) → 0 (otherwise we would conclude that EW2
2 (Pn, Q) = o(n−1/2)).

�
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