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Abstract  

The aim of the study was to evaluate a new process based on crossflow microfiltration for 
concentration and partial purification of lycopene from watermelon. The process included 
sequentially juice extraction, enzymatic liquefaction, crossflow microfiltration and 
centrifugation. Different technological schemes were compared including or not a 
diafiltration step in order to remove soluble solids and increase lycopene purity. 
Microfiltration was performed at 50-60 °C using alumina tubular membranes with average 

pore diameter from 0.2 to 1.4 m and varying the transmembrane pressure from 0.5 to 2.0 
bar. Using the best operating conditions at the crossflow microfiltration step, permeate flux 
was close to 110 L.h-1.m-2 and lycopene concentration was increased 11 times in the 
retentate. Centrifugation at 10,000 g for 10 min, enabled to enhance lycopene concentration 
up to 4 times. Diafiltration allowed to decrease total soluble solids from 100 to 20 g.kg-1 
and so to purify lycopene further. No cis-isomerization was highlighted that proved that the 
process maintained carotenoid integrity. Finally, the optimal processing scheme allowed to 
obtain a natural extract of lycopene 42 times more concentrated and 34 times purer than the 
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initial juice. The results looked very promising for industrial application even if economic 
viability has still to be assessed. 

 

Keywords: microfiltration, carotenoids, diafiltration, antioxidant. 

Introduction 

 

Lycopene is a carotenoid considered as an important fat-soluble food component with 

health benefits. Numerous epidemiologic studies provide strong evidence that lycopene and 

its metabolites are active in several biological activities (Wang, 2007). Its high biological 

activity and enhancing immune function has been published by Bramley (2000), 

Waliszewski et al. (2010), Cruz et al. (2013). Anese et al. (2013) reported that the 

importance of lycopene as a bioactive component is due to a number of epidemiological 

studies have concluded that this carotene-rich foods is associated with a lower risk of some 

degenerative diseases. Also, cell culture assays and dietary intervention have provided 

additional evidence for that lycopene may play a role specifically in preventing prostate 

cancer (Wertz et al. , (2004). 

The Major diet intake of lycopene comes from consumption of tomato and tomato products. 

Another dietary source from south countries was watermelon, one of the most popular fruits 

in the world whose pink or red flesh color is the most attractive feature. Lycopene with β-

carotene were carotenoids responsible for its color and being the main bioactive component 

(Wen et al., (2013).  

According to Tarazona et al. (2013) watermelon juice is naturally rich in lycopene and L-

citrulline, an amino-acid very efficient hydroxyl radical scavenger and thus a strong 

antioxidant. These compounds make watermelon an excellent option in the application in 

the design of functional foods. However watermelon extract has to be adapted to increase 

their availability for effective incorporation in foodstuffs. Perkins and Collins (2006) 

reported that the concentration of lycopene in watermelon  was  around  50 mg.kg-1. 

However these values may drastically vary depending on the variety, maturity and 

according to the harvest time and climatic factors. 
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Lycopene (C40H56) is an open-polyene chain lacking the β-ionone ring structure with 13 

double bonds. Literature reported lycopene as a powerful scavenger of singlet oxygen (a 

reactive oxygen free radical precursor) (Shi et al., (2011). According to Bonn et al. (2010) 

in fresh vegetable products, about 95% of lycopene was in all-trans form which is 

thermodynamically the most stable form and was in food matrices trapped in the pigment-

protein complex localized  in chromoplasts. However, lycopene isomers such as 5 cis, 9 cis, 

13 cis or 15 cis  were reported  in processed foods due to the effect of the application of 

high temperatures, exposure to light or oxygen incorporation. Although these form were 

found in plasma, it was advisable to avoid isomerization, to use soft processing 

technologies (Van Buggenhout et al.,(2010). 

Crossflow microfiltration is a membrane process that is largely used to clarify or to 

stabilize without heating fruit juices like for example tomato juice (Razi et al.,(2012) or 

even watermelon juice and other plant extracts like rosel extract (Cissé et al.,(2011).  

During microfiltration of these products, hydrophobic compounds are generally retained by 

the membrane because they are associated with the insoluble solids. Using this property 

Abreu et al. (2013) applied microfiltration for the concentration of carotenoids from an 

aqueous extract of cashew apple. This process allowed to increase carotenoid concentration 

in the retentate by 10 obtaining a final product with high amount of carotenoids with a great 

potential as yellow natural colorant. In such a case, microfiltration used in diafiltration 

mode could be interesting in order to purify the compounds retained by the membrane 

through removing the soluble fraction.  

 

The aim of this paper was to propose and evaluate an environmentally friendly process 

(without organic solvent) of concentration and purification of lycopene from watermelon 

juice. This process was based on a microfiltration step for obtaining extracts of lycopene 

without modifying its native structure. 
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Materials and methods 

Raw material and processing 

Watermelon fruits (Citrullus lanatus L.) were purchased from the local market in Clapiers 

(Hérault, France). After washing with tap water, they were disinfected with chlorinated 

water (200 mg·kg-1 active chlorine), cut and peeled manually and, then subsequently 

refined in a horizontal pulper Auriol PH3 (Marmande, France) with 0.5 mm mesh. The 

average mass of watermelon juice extraction yield was 62%. Epicarp and seeds represented 

30% and 8% of the final product respectively. The juice was stored at -18 °C until 

processing. Before each test, the juice was macerated at 40-45 °C for 45 min with 100 

mg·kg-1 of the commercial enzyme blends Ultrazym AFP-L or Pectinex Ultra SP-L 

(NOVOZYMES, Bagsvaerd, Denmark). According to the supplier, these preparations are 

obtained from selected strains of Aspergillus niger and Aspergillus aculeatus. They mainly 

consist of celulase and pectinase activities. They have been already used successfully in the 

processing of a large variety of fruit pulps (Silva et al.,(2005); Laorko,(2010); Nattaporn 

and Pranee,(2011); Machado et al., (2012). 

Two processes for the purification and concentration of lycopene were evaluated from watermelon 

juice. In the first one, the juice was  microfiltrated and subsequent centrifugation was performed 

with the retentate obtained. In the second process it was included a diafiltration step with pure 

water prior to centrifugation in order to increase the purity of the final extract (Figure 1). 
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Figure 1. Flow diagram for lycopene extraction, concentration and purification processes. 
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Microfiltration experiments were performed in a pilot equipment of laboratory (3 L feeding 

tank) manufactured by TIA (Bollène, France) with 4 tubular α-alumina membranes in series 

Membralox T1-70 (PALL EXEKIA, Bazet, France) with 55 cm² effective area each. 

Temperature was between 50 and 60°C and crossflow velocity was 6 m·s-1 (Figure 2). 

Selection of pore diameter and transmembrane pressure for microfiltration process were 

defined according to the results of evaluation of filterability of fresh watermelon juice using 

membranes with 0.2, 0.5, 0.8, 1.4 m of average pore diameter and by applying an average 

transmembrane pressure of 0.5 and 2.0 bar. For this optimization of operating conditions, 

the feed composition was maintained constant by recycling whole permeate in the feeding 

tank.  The best operating conditions were selected based on the highest permeate flux (Jp) 

and the best retention of lycopene. Concentration trials were then carried out by extracting 

continuously permeate and maintaining the retentate volume in the circulation loop with 

addition of fresh product. The process was run until a volumetric reduction ratio VRR 

(equation I) between 8 and 10.  

 

 

Figure 2. Scheme of the crossflow microfiltration device. 
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VRR ൌ 1 ൅ ௏௣

௏௥
         (I) 

where Vp and Vr, permeate and retentate volumes (L), respectively. 

 

Diafiltration process was carried out at constant volume until the soluble solids of the 

permeate decreased below 20 g·kg-1. The diavolume is defined according to equation II. 

The conditions of temperature, pressure and flow rate during diafiltration employed were 

the same than those applied during microfiltration. 

 

DV ൌ ௏௪

௏௥
         (II) 

Where Vr and Vw, retentate and added water volumes (L), respectively. 

 

Centrifugation of the retentate was performed in a Beckman-Coulter brand J-E Avanti high 

speed centrifuge (California, USA) by applying an acceleration of 10.000 g for 10 min at 

25°C. These conditions were established according to commonly used operating parameters 

in the juice industry. 

 

Concentration and purification factors have been defined as the ratios between final and 

initial concentrations and purities of lycopene for each operation and for the whole process. 

In our case, purity was expressed based on the total dry matter content of each product.  

 

 

Analyses 

 

Physicochemical characterization 

  

Total soluble solids (TSS) were performed through a digital refractometer Pal3 Pocket 

Atago (Tokyo, Japan) and the total dry matter (TDM) in vacuum oven at 30 mbar according 

to AOAC (1990) procedures. Color was measured through the coordinates L*, a*, b* CIE 

Lab with a manual chromameter CR-410 (Minolta, Tokyo Japan). 

 

Extraction and carotenoid analysis 
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Carotenoid extraction was carried out according to Dhuique-Mayer et al. (2007). Briefly, 2 

g of watermelon juice (or 0.1 to 0.8 g for concentrate plus 10 mL water) were extracted two 

times by ethanol/hexane 4/3 (v/v). The residue was separated by filtration and re-extracted 

by ethanol and hexane. Organic phases were washed and were  evaporated to dryness with 

a rotary evaporator at 37°C. Then, carotenoid extract was dissolved in 1 mL of 50/40/10 

(v/v/v) mixture of dichloromethane, MTBE (methyltertbutyl-ether) and methanol before to 

be injected in HPLC. 

An Agilent 1100 liquid chromatograph equipped with a photodiode array detector was used 

(Massy, France). The separation was carried out with a C30 column (250 x 4.6 mm i.d., 5 

µm, YMC, EUROP Gmbh, Germany). The mobile phase consisted in H2O as eluent A, 

methanol as eluent B, and MTBE as eluent C. Flow rate was fixed at 1 mL· min-1. Column 

temperature was set at 25°C, and injection volume was 20 µL. A gradient program was 

performed according to the following A/B/C elution profile: 40/60/0 for 2 min, 20/80/0 for 

5 min, 4/81/15 for 10 min, 4/11/85 for 60 min, 0/100/0 for 71 min and 40/60/0 for 72 min. 

Absorbance was measured at 470, 450 and 400 nm. The carotenoids were analyzed 

quantitatively by use of external calibration with lycopene and β-carotene. The calibration 

curves were constructed with 5 concentration levels, each in triplicate. Correlation 

coefficients ranged from 0.994 to 0.998. 

 

Antioxidant capacity measurement 

 

Antioxidant capacity of the lipophilic fraction of the process flow was measured according 

to the method applied by Gomes et al. (2013). The procedure is based on the determination 

with a spectrophotometer of the free radical ABTS discoloration (2,2'-azino-bis-3-

etillbenzotiazolin-6-sulfonic acid) when contacted with the oxidant fraction. For carrying 

out the reaction, 200 μL of the hexane extract obtained from each sample was mixed with 

1.8 mL of 7 mM ABTS in ethanol solution, and then the absorbance was measured at 734 

nm in the dark at 30°C after 15 min. The values were calculated using a standard 

calibration curve using Trolox (6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid) 
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as reference antioxidant, and the results were expressed in g eq·Trolox.kg-1. This procedure 

was used based on the results reported by Kuskoski et al. (2005) who concluded that the 

ABTS method is suitable to determine the antioxidant capacity of lipophilic compounds. 

 

 

Results and discussions 

 Selecting operating conditions for microfiltration 

Permeate flux obtained at VRR 1 with membranes with different average pore diameters 

and at different transmembrane pressures were compared in Figure 3. Permeate flux were 

not correlated with the average pore diameter of the membrane. Except for the 1.4 m 

membrane that gave permeate flux clearly lower, all the membranes showed very similar 

performance. In the operating conditions tested, permeate flux were between 125 and 218 L 

h-1 m-2 that is promising in an industrial point of view. Flux classically increased with 

transmembrane pressure except for the 0.8 m membrane. Whatever the operating 

conditions chosen no carotenoid was detected in permeate. Even with pore diameter of 1.4 

μm, the membrane completely retained carotenoids and an increase in transmembrane 

pressure did not affect the retention. This showed that carotenoids were retained with the 

insoluble solids of the juice. Indeed, carotenoids in fruits and vegetables were attached to 

the matrix of the pulp in different degrees of association (Ananthanarayan and Choudhari, 

2007). Typically they were located in chromoplasts with size lower than 2 μm, tightly 

bound to the cell and therefore can be separate by microfiltration processes together with 

insoluble compounds. 

So, membranes with average pore diameter from 0.2 to 0.8 m at transmembrane pressure 

between 1 and 2 bar are well suited for the concentration of carotenoids from watermelon 

juice. The wider pores could be preferred in order to allow microorganism leakage limiting 

its concentration into the retentate during the treatment. 
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Figure 3. Stabilized permeate flux of microfiltration obtained with watermelon juice at 
FRV = 1 and 50°C using membranes with different pore diameters and at different 
transmembrane pressures. 

      

As shown in Figure 4 enzymatic liquefaction enhanced permeate flux in concentration 

mode considerably. For instance at VRR 7, fluxes were increased from 30 % to 100 % 

using commercial enzymatic preparations. Watermelon juice liquefied with Ultrazym and 

microfiltrated with the 0.8 μm membrane at 1 bar pressure gave the best performance. As 

largely described in literature (Vaillant et al.,(2000); Pinelo et al.,(2010); Machado et 

al.,(2012), the coupling of an enzymatic step with the microfiltration was clearly 

highlighted. Modifying the soluble and insoluble polysaccharide profile, this prior 

enzymatic treatment facilitates mass transfers through the porous media of the membrane 

by decreasing the viscosity and the fouling potential of the juice. 

  

 

Average 

pore diameter 

(m) 
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Figure 4. Permeate flux vs. volumetric reduction ratio (VRR) during clarification of 
watermelon juice by microfiltration: examples under different operating conditions. 

 

Applying an enzymatic liquefaction with Ultrazym and a pressure of 1 bar, permeate flux 

could be maintained above 100 L h-1 m-2 until a VRR of 9 was reached. This result makes 

the concentration process of carotenoids very promising economically because high flux 

could be maintained at interesting concentration levels. The results were similar to those 

reported by Gomes et al. (2013), who evaluated the effect of microfiltration on lycopene 

content in fresh watermelon juice using tubular membranes of 0.1 μm. The authors report 

permeate flux around 90 L h-1m-2 at VRR = 6 and 30 °C by applying a crossflow velocity of 

6.4 ms-1 and a transmembrane pressure of 3 bar. 

Carotenoid analysis showed that no losses occurred during microfiltration carried out at 

50°C. On the contrary trials performed at 60 °C leaded to significant damage of all trans 

lycopene. Losses reached between 31 and 42 % after concentrating the product up to a 
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VRR of 8 (around 8 h of filtration). The ratio cis-lycopene /(cis-lycopene + trans- 

lycopene) is increased from 3-4% to 15% probably due to the application of a temperature 

ten degrees higher and to longer process time. 

Finally, the process chosen for lycopene concentration in watermelon juice combined an 

enzymatic liquefaction with Ultrazym preparation (100 mg kg-1, 40 °C, 45 min) with a 

microfiltration on a membrane with average pore diameter of 0.8 m at 1 bar and 50 °C. 

 

 Biochemical and physico-chemical analysis of the process streams 

Process without diafiltration 

 

Table 1 shows the evolution of the main characteristics of the product during the optimized 

process without diafiltration. Concentration factors obtained for all trans lycopene and β-

carotene in the microfiltration step were close to 11. Because they were similar to VRR, it 

confirmed that no significant losses of carotenoids were found in the conditions studied. 

Similarly, Gomes et al. (2013) reported no losses during the production of lycopene from 

watermelon juice by microfiltration. The authors were able to obtain a concentration of 

lycopene in the retentate of 269 mg.kg-1 at VRR 6. Whatever the processing step, the 

proportion of cis-isomer among the total lycopene forms was constant between 3 and 4 %. 

It confirmed that the treatment didn’t generate significant isomerization. As expected, no 

trace of carotenoids was detected in the permeate. No significant differences in total soluble 

solids, acidity and pH were shown in permeate and retentate compared to the raw juice. As 

expected, the 0.8 m membrane didn’t retain any solutes and only insoluble fraction was 

concentrated. 

The amount of lycopene in the process streams expressed in g.kgTDM-1 is indicative of the 

degree of purity of the compound of interest. The purity in the retentate is nine times higher 

than in the feed juice because the amount of lycopene concentrated is directly proportional 

to the fraction of insoluble solids trapped by the membrane. This feature is particularly 

important because it shows that it is possible to make an effective separation of lycopene by 
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physical methods, allowing to concentrate and purify carotenoids without significant 

changes in their original structure. 

The centrifugation of the retentate of the microfiltration step was performed in order to 

obtain a solid residue with a higher concentration. Trans lycopene was even concentrated 4 

times allowing to reach final concentration of 2741 mg.kg-1. Likewise, the concentration of 

β-carotene increased up to 172 mg.kg-1, resulting in a product with a high intake of 

carotenoids, very promising for application in the design of products with nutritional value. 

Moreover centrifugation increased product purity 3 folds. 
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Table 1. Change in product composition during the process without diafiltration (operating conditions optimized, mean and standard 
deviation obtained at the end of the process with n = 3). Nd : not detected. 

Product 
TDM 

(g kg-1) 
TSS 

(g kg-1) 
TA 

(g kg-1) 
pH 

All trans 
lycopene 
(mg kg-1) 

Cis 
lycopene 
(mg kg-1) 

-
carotene 
(mg kg-1) 

Purity of all 
trans 

lycopene 

(g kgTDM-1) 

Antioxydant capacity 
(g eq. Trolox. kg-1) 

Color (L*/a*/b*) 

Raw juice 99 (2) 97 (2) 
0.9 

(0.05) 
5.06    

(0.03) 
58 (5) 2.0 (0.1) 4.0 (0.4) 0.61 - - 

Liquefied juice 101 (1) 99 (2) 
1.3 

(0.02) 
5.09 

(0.05) 
60 (6) 2.0 (0.3) 4.0 (0.6) 0.61 53 (1) 

24.14 (0.31) / 
21.41 (0.42) / 6.45 

(0.39) 

Microfiltration 
retentate 

120 (1) 99 (5) 1.5 (0.1) 
5.20     

(0.06) 
657 (32) 21 (1.6) 50 (1) 5.70 170 (16) 

41.08 (0.29) / 
28.37 (0.39) / 
21.82 (0.03) 

Microfiltration 
permeate 

- 98 (6) 1.5 (0.1) 
5.10    

(0.10) 
Nd Nd Nd - 17.3 (0.2) 

73.31 (0.53 ) / 
1.41 (0.06) / 3.67 

(0.17) 
Centrifugated 
retentate (final 

solid phase) 
179 (3) 123 (9) - 

5.20    
(0.06) 

2741 (143) 111 (7) 172 (7) 15.90 1267 (11) - 
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Process with diafiltration 

In that case, a diafiltration step was performed at the end of the concentration by 

microfiltration, in order to remove the solubilized fraction present and consequently 

increase the purity of the extract. This effect is observed in Table 2. Acidity, pH and 

soluble solids decreased in the retentate diafiltered (called diaretentate) at the end of the 

process, indicating that the water used allowed to remove solutes like sugars and organic 

acids from the retentate. 

As previously, diafiltration did not damage all trans lycopene because we didn’t observed 

any formation of cis lycopene, that always represented 3 % of the whole lycopene present. 

Lycopene was concentrated around 10 times in the retentate, which coincided with the 

VRR reached (no significant loss of lycopene). 
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Table 2. Change in product composition during the process with diafiltration (operating conditions optimized, mean and standard 

deviation obtained at the end of the process, n = 3). Nd : not detected. 

Product 
TDM 

(g kg-1) 
TSS 

(g kg-1) 
TA 

(g kg-1) 
pH 

All trans 
lycopene 
(mg kg-1) 

Cis 
lycopene 
(mg kg-1) 

-carotene 
(mg kg-1) 

Purity of all 
trans 

lycopene 

(g kgTDM-1) 

Antioxydant 
capacity 

(g eq.Trolox. kg-1) 
Color (L*/a*/b*) 

Raw juice 
104 
(0.2) 

103 (1) 0.75       
(0.02) 

5.30   
(0.01) 

60 
(2) 

2 
(0.5) 

7 (0.3) 0.60 - - 

Liquefied 
juice 

105 
(0.3) 

104 (1) 0.86      
(0.02) 

5.40   
(0.01) 

64 
(2) 

2 
(0.1) 

7 (0.1) 0.63 53 (1) 
24.34 (0.21) / 

21.51 (0.52) / 6.65 
(0.49) 

Diaretentate 39 (0.1) 28 (1) 
0.20     

(0.02) 
5.80 

(0.02) 
580 
(39) 

18 
(2) 

47 (1) 15.3 204 (5) 
47.26 (0.31) / 
23.40 (0.12) / 
16.69 (0.13) 

Diapermeate - 20 (1) 
0.10     

(0.02) 
6.00 

(0.02) 
Nd - - - - 

74.21 (0.43) /      
1.39 ( 0.04) / 3.70 

(0.2) 
Centrifugated 
diaretentate 
(final solid 
phase) 

127 (4) 28 (1) 
0.20      

(0.02) 
5.80 

(0.02) 
2495 
(181) 

77 
(8) 

250 (23) 20.3 884 (6) - 
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In summary, the integrated process without diafiltration allowed to obtain a final product 47 

folds more concentrated in lycopene than the raw juice without damaging its structure 

(Table 3). This extract is 26 times purer relative to the feed stream. The main contribution 

of the proposed process is to obtain products with higher added value, rich in carotenoids 

without affecting the characteristics of the natural source. 

 

Table 3. Concentration and purification factors (CF, PF) obtained for all trans lycopene 
during processing with and without diafiltration. 

Processing step Process 

without diafiltration 

(VRR = 10, DV = 0) 

Process 

with diafiltration 

(VRR = 10, DV = 1.3) 

Concentration 

factor 

Purification 

factor 

Concentration 

factor 

Purification 

factor 

Microfiltration or 

diafiltration 

11.3 9.3 9.6 25.5 

Centrifugation 4.2 2.8 4.3 1.3 

Whole process 47.5 26.1 41.3 33.2 

 

The most important contribution of the diafiltration step is the increase of the purity of the 

product. Diafiltered retentate purity was increased 33 folds (Table 3). It was much higher 

than in the previous process because of the reduction of soluble solids and with them the 

total dry matter. Figure 4 shows the behavior of the permeate flux and total soluble solids 

during the diafiltration. Average permeate flux during diafiltration was 114 L h-1m-2 similar 

to the flux obtained during microfiltration; meanwhile total soluble solids decreased 

exponentially in the permeate during processing until reaching 20 g.kg-1 at the end. This 

result is important to assess the profitability of the process depending on the amount of 

water used in the diafiltration and energy required to achieve a greater degree of removal of 
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solids. In that case, the water that was required to remove 72% of total soluble solids was 

1.3 times the amount of the circulating retentate in the concentration loop. 

 

 

Figure 4. Permeate flux (Jp) and total soluble solids (TSS) vs. diavolume during the 
diafiltration step. 

 

In similar way to the first process, centrifugation allowed to increase 4 times the 

carotenoids concentration in the retentate that reached 2500 mg kg-1 for all trans lycopene. 

Moreover, a purification factor of only 1.3 was achieved in that case; this difference is 

attributed to the diafiltered retentate that behave like a partially purified extract resulting 

from the elimination of the soluble solids and therefore the retentate dry matter, whereby 

the centrifugation had a minor contribution to the purification thereof. The yield obtained in 

the centrifugation step was 40 ± 2 g Precipitated.100g retentate
-1, which represent very interesting 

values for the application of this process on an industrial scale.  

 

In summary, by applying the operations detailed in this second process (with diafiltration), 

it is possible to obtain a product with a concentration of lycopene 41 times higher and 33 

purer than in the raw juice. An extract with a higher purity facilitates its application in the 
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design of products because there is less possibility that other components affecting the 

organoleptic properties like aroma and flavor of the matrix to which it will be incorporated. 

 
Lipophilic antioxidant capacity and color analysis of process streams 
 
The antioxidant capacity of hydrolyzed juice was 52.7 g Trolox eq. kg-1. These results are 

below than those reported by Tlili et al. (2011), but the authors admitted that these levels 

are highly influenced by genotype and sampling area in each material studied. Tirzitis and 

Bartosz (2010) showed that the antioxidant activity depends substantially on the method of 

extraction and measurement used. Nevertheless it can be consider the watermelon as a 

major source of bioactive compounds that could contribute significantly to health as part of 

antioxidant supplements.  

 

The increase in antioxidant capacity according to total carotenoid content of the extracts 

obtained from the process products (hydrolyzate juice, permeate, retentate, retentate 

diafiltered, concentrated and diafiltered concentrate) was evaluated by linear regression. 

According to the results, the antioxidant activity of the lipophilic fraction of products is 

proportional to the increase in the total carotenoid content, showing a linear relationship (r2 

= 0.9575), which shows that these compounds are those which constitute the increased 

antioxidant intake. Cuttriss et al. (2011) and Waliszewski and Blasco (2010) report that the 

main feature of bioactivity attributed to lycopene is its antioxidant activity acting as a 

blocker of free radical reactions. 

 

Tarazona-Diaz and Aguayo (2013) concluded that the red reduction in watermelon juice is 

related to a decrease in suspended solids and lycopene content which are responsible for 

this feature. Carbonell et al. (2011) found similar changes in orange juices. Meanwhile, 

samples retained their coordinates have values that exceed twice the values of the juice with 

enzymatic treatment; these results represent an increase in the amount of pigment in the 

stream, however Perkins et al. (2001) indicate that the color coordinates no always 

correlate with the lycopene content, since it depends on the composition of the matrix as 

well as its fruit ripeness. 
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Moreover, retentate with and without diafiltration have different values for L*, a* and b*. 

The final extract without diafiltration had higher values of Chroma, indicating a more 

intense red color. Accordingly diafiltration process had an effect on the color of the 

retentate, which could be associated with changes in pH of the product by reducing the 

percentage of acidity. Sharma et al. (2008), during the evaluation of the degradation 

kinetics of color in watermelon juice, observed  a relationship between the change in pH 

and the changes of color. Color of the retentate stream suggest the possibility of applying 

these products as potential natural dyes in food. 

 

Conclusion 

 
The processing scheme defined in this study allowed to concentrate lycopene from 

watermelon juice up to 48 times and to purify it up to 34 times without generating cis-

isomerization and so keeping lycopene in its native form. Final extract contained around 

2.5 g.kg-1 of lycopene with a purity close to 20 g.kgTDM-1. Interest of diafiltration was 

clearly proved in order to purify carotenoids removing most of soluble solids. Permeate 

flux obtained were very promising to envisage industrial application (above 100 L.h-1.m-2). 

Antioxidant capacity shown by the products was highly correlated with the lycopene 

content in each sample. During the process, an important quantity of permeate is generated. 

This coproduct doesn’t contain any carotenoids but contains the soluble solids especially 

sugars and organic acids of the initial juice. These features suggest the possibility of using 

it in developing clarified fruit drinks for instance. 

These results are very promising for obtaining products with high concentration of 

lycopene and their application as bioactive ingredient in the design of products with added 

value. The next step will be the estimation of the economic viability of the process, the 

study of the stabilization of the extracts obtained, and application to other fruits with a 

higher carotenoid content and other carotenoid profiles. 
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