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Abstract This paper presents incremental algorithms used to compute Betti numbers with

topological maps. Their implementation, as topological criterion for an existing bottom-up

segmentation, is explained and results on artificial images are shown to illustrate the process.
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1 Introduction

In the image processing context, image segmentation is one of the main steps. Currently, most
segmentation algorithms take into account color and texture of regions. Some of them also in-
troduce geometrical criteria, like taking the shape of the object into account, to achieve a good
segmentation. Lesser works use topological information to enhance the segmentation of images.
Topological maps have been developed with this objective in mind (see [1] for details). It aims to
represent all the cells of the image and the incidence relations between these cells so we can easily
compute topological features for each region of an image.

Our work intends to define operations and image processings that profit from topological fea-
tures represented by topological maps to enhance the results. In this paper, we show how topolog-
ical maps are used to integrate topological constraints within an existing bottom-up segmentation
process, defined in [5]. In this work, Betti numbers are the topological invariants used. They
count connected components, tunnels (also called handles) and cavities (sometimes called voids)
for 3D objects. This interpretation gives a visual and comprehensive criterion on the desired ob-
jects in images. Betti numbers are wide studied topological features. For instance, Delfinado and
Edelsbrunner gives a direct method [3] for computing the Betti numbers on simplicial complexes.
Betti numbers are also used in 2D segmentation to control a level set approach of segmentation
[6].

The paper is organized as follow. The topological map, used to represent 3D images is intro-
duced in Sect. 2. Section 3 presents the computation of Betti numbers using topological maps. It
also shows the incremental algorithm that is used during the segmentation process. In Sect. 4 the
implementation of the constraint in the segmentation algorithm is discussed and some results on
artificial images are shown. Section 5 concludes this paper and some perspectives of this work are
given.

2 3D Topological Maps

3D topological maps are an extension of combinatorial maps used to represent partitions of 3D
images into regions. This framework aims to represent all the cells belonging to the border of
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Figure 1: The different parts of the topological map used to represent an image. (a) 3D image.
(b) Minimal combinatorial map. (c) Intervoxel matrix. (d) Inclusion tree of regions.

the regions and to preserve incidence relations between these cells. With these information, the
topological map represents topological relations between regions.

A 3D image is a set of voxels having a grey level value representing the data. In 3D image, the
notion of regions is defined by a 2-connected set of homogeneous voxels. Homogeneity is defined
by a criterion which can be for instance a distance measure.

The 3D topological map uses a 3D combinatorial map to represent the borders of regions. For
instance, a border between two adjacent regions is a face represented in the combinatorial map.
To obtain a memory and time efficient structure, the number of cells in the combinatorial map is
minimized such as no adjacency relation between regions is lost. The obtained combinatorial map
representing the border of regions is called minimal.

The minimal combinatorial map does not represent the inclusion relation between regions. To
preserve this information, an inclusion tree of regions is used. There is a link between regions in
the tree and darts in the combinatorial map as each dart belongs to a region and each region is
attached to a specific dart called representative dart that belongs to the external surface of the
region.

The geometry of regions is given using the intervoxel framework to represent geometry of all
cells of the minimal combinatorial map. This structure is the embedding of the map and thus
allows to compute geometrical features for regions.

The topological map is formed by the association of these three structures representing a 3D
image. Figure 1 shows an example of the topological map representing the image in Fig. 1(a).
The minimal combinatorial map in Fig. 1(b) represents the three regions with 3 volumes, 8 faces,
6 edges and 4 vertices. This is the minimal representation of cells belonging to borders of regions.
Figure 1(c) presents the intervoxel embedding of cells and Fig. 1(d) shows the inclusion tree of
regions.

3 Computation of Topological Features

We are interested in constraining operations on topological maps with topology. Thus we aim to
compute topological features of each region in order to define criteria using topological character-
istics to constrain processes.

Betti numbers are topological invariants for homology groups that count holes in each dimen-
sion and thus represent the topological connectivity of objects. In a 3-dimensional space, as in 3D
images, Betti numbers count connected components (b0), tunnels (b1) and cavities (b2).

For instance the Betti numbers of the 3D object presented in Fig. 2(a) are b0 = 1, b1 = 3 and
b3 = 3.

The computation of Betti numbers is a classical problem in topology and we present here how
they are computed for regions in the topological map. Due to the topological map definition,
regions are sets of 2-connected voxels which means that each region r has only one connected
component and thus b0(r) = 1.
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Figure 2: (a) 3D object with one connected component, three tunnels and three cavities. (b) Union
of two regions rmin and rmax with in dark gray internal marked faces on rmax and in light gray,
the two other surfaces s1 and s2. In this case the merging of the two regions leads to the creation
of a cavity associated to s2. s1 is incident to the external surface of the union and thus does not
lead to the creation of a new cavity.

The number of cavities b2(r) of a region r is given by the number of included connected
component of regions. The inclusion tree of regions is used to retrieve such information. An
interesting property is that the number of surfaces of a region is equal to the number of cavities
plus one. Indeed, for each cavity there is one internal surface and we have to count the external
surface that is unique as there is only one connected component (in general the formula for the
number of surfaces is b2(r) + b0(r)).

The number of tunnels b1(r) of the region r is related to genus of its surfaces. Indeed, genus
g(s) of surface s counts the number of tunnels of the surface. So, the sum of the genus for each
surface of the region counts the number of tunnels for that region.

The genus g of a surface is, when considering closed orientable surfaces, linked to Euler char-
acteristic χ of the surface by g = 2−χ

2 . The Euler characteristic of a surface is computed using the
polyhedral formula. Let be v, e and f the number of vertices, edges and faces of the considered
surface thus the Euler characteristic of the surface is χ = v − e+ f .

As we are interested in regions, the modified Euler characteristic χ′(r) of region r is defined as
the sum of χ(s), ∀s ∈ Surface(r). With this definition, b1(r) that is equal to the sum of genus is:

b1(r) =
∑

s∈Surface(r)

2− χ(s)

2
=

2(b2(r) + 1)− χ′(r)

2

We have shown how Betti numbers are computed using topological map. But this approach
is not well suited for a segmentation process. Thus an incremental approach to compute b1 and
b2 has been defined. To fit with segmentation parameters the incremental computation is defined
when merging two connected regions called r1 and r2 in the following explanations.

Firstly, let define a useful property for regions. There is an order on regions based on the
position of the first voxel of each region in the sweeping order of the image. We have rmin =
min(r1, r2) and rmax = max(r1, r2). According to the definition of topological maps, there are
only two possible configurations:

• rmax is included in rmin;

• rmax and rmin belong to the same connected component of regions.

In the following parts, incremental algorithms used to compute b2 and then b1 are presented
in that order as the incremental computation of b1 needs the b2 value.

3.1 Incremental Computation of b2

The incremental computation of the number of cavities consists in finding changes in number of
cavities when merging the two regions. The initialization part of this algorithm is to compute
for each region the number of cavities. This is done using the classical algorithm that uses the
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inclusion tree of regions. The number of cavities of a region is stored and updated during the
process.

When computing b2 for r = r1 ∪ r2, the first step is to run through the darts of the external
surface of rmax and mark as internal each dart d such as region(β3(d)) = rmin. Thus each face
between the two regions has its darts belonging to rmax marked.

The second step is again to run trough darts of the external surface of rmax and compute
the number k of connected components of darts ignoring internal marked darts. Each connected
component of darts is representing a distinct surface for r1 ∪ r2. The number of newly included
regions can easily be computed from this value: this is k − 1.

Indeed, one of this connected component represent also a surface of rmin. If this surface is the
external surface of rmin then it is also the external surface of r and not a cavity. If this surface is
an internal surface of rmin the cavity is already counted by b2(rmin). A special case is when no
connected component of darts can be found (k = 0): rmax fills a cavity of rmin. The number of
cavities for r has to decrease and this is taken into account by the formula.

Finally the number of cavities is obtained by adding k−1 to the sum of the number of cavities
of the two regions.

b2(r) = b2(r1) + b2(r2) + k − 1

Figure 2(b) presents an example of a classic configuration. The two regions, rmin and rmax

have no inclusion. The external surface of rmax has been proceeded. The dark grey face is the only
internal face. The two light grey ones, s1 and s2, represent two discovered connected components.
s1 is corresponding to the external surface of r = rmin ∪ rmax and is not the surface of a new
cavity. s2 on the contrary is an internal surface for r and bound a new cavity. In this case, k = 2
and b2(r) = 1 as there is a new void.

3.2 Incremental Computation of b1

The main idea behind the incremental computation of b1(r) is to look for changes in the modi-
fied Euler characteristic χ′(r). Using the general formula with b2(r) computed incrementally in
Sect. 3.1, b1(r) is then computable. In the initialization part of the incremental algorithm, number
of cells of each region is computed. This may be computed incrementally during the extraction of
the topological map using the algorithm proposed in [2]. Thus χ′ is stored and then updated for
each region during the process.

When looking to r = r1 ∪ r2, we are interested by the number of cells that will be removed
when merging the two regions r1 and r2. These cells are the ones that belong to internal faces
marked during the incremental computation of b2(r). So darts of the external surface of rmax are
covered and each cell that fully belongs to internal marked faces is counted. A cell fully belongs
to internal marked faces when at least one dart used to represent the cell is marked as internal
and when each other dart belongs either to rmin or rmax. This step gives vint, eint and fint which
are respectively the number of vertices, edges and faces that fully belong to internal marked faces.
These values are used to compute χ′

int.
The final step is to compute χ′(r) = χ′(r1) + χ′(r2) − 2χ′

int and use this value to compute
the number of tunnels b1(r) with general formula. Removed cells are counted twice in χ′(r1) and
χ′(r2). This explain why χ′

int is subtracted twice.

b1(r) =
2(b2(r) + 1)− χ′(r)

2

4 Topologically Constrained Segmentation

In a previous work, a bottom-up segmentation process as been defined [5]. It uses an existing
criterion based on the notion of contrast. In this work, the predicate that guides the segmentation
process is extended using a topological constraint on Betti numbers.
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4.1 Implementation during a bottom-up segmentation process

The bottom-up segmentation process uses a two steps algorithm. In a first part, regions are merged
in a disjoint-set forest represented by union-find trees of regions (see [4] for more details). This is
the high level view of the segmentation. The incremental computation algorithms used to obtain
b1 and b2 have been adapted with a special darts coverage that uses union-find trees of regions to
run through regions by taking into account symbolic merged regions.

In the initialization part of the segmentation χ′ and b2 is computed for each region as requested
by the two incremental algorithms. Then algorithms are used to obtain the new number of tunnels
and cavities. If both contrast and topological criteria allow the merge of regions, the stored values
are updated in the high level representation. Finally, when all merging have been done, we use
the last step of the segmentation algorithm to produce the corresponding topological map.

Several criteria on Betti numbers may be written such as a criterion that only allows the
number of cavities to decrease. Another possibility may be to disallow changes of topology when
merging two regions: when merging two regions the sum of their Betti numbers should be equal
to the resulting Betti numbers (no tunnels and cavities created nor filled). A third option, used in
this work, is to threshold Betti numbers: if resulting Betti numbers are greater than thresholds,
then the merging is denied.

4.2 Results

To show results of segmentation, a constraint on Betti numbers is applied to artificial images.
Figure 3 shows results of segmentation. For each figure, the maximal Betti numbers are given
using the notation Betti(b1,b2) where bi is the maximal allowed value for the i-th Betti number.

Let us discuss about the results shown in Fig. 3. The first image presented in Fig. 3(a) is an
empty sphere segmented by constraining the number of tunnels and cavities to zero. Only one voxel
is not merged with the other. This allows the dark region to have required topological properties
according to the Betti numbers criterion. The three last figures represent the segmentation of a
2-torus part of an image according to different Betti numbers thresholds. For each of these images
a 3D view of the main regions is given as well as a slice view of the image with all the regions
having a different color. In Fig. 3(b) the Betti criterion allows the apparition of a region with 2
tunnels. The 2-torus has been segmented. In Fig. 3(c) tunnels and cavities are disallowed. This
lead to 3 regions representing the 2-torus. On the slice view, as in the previous image, small
regions are adjacent to the 2-torus. These regions cannot be merged with the 3 main regions due
to the contrast criterion. They also cannot be merged with the surrounding region since it has
a cavity which means that b2 is greater than the threshold. Figure 3(d) shows the segmentation
obtained without allowing tunnels but allowing a cavity. The 3 main regions are the same but the
slice view shows less small adjacent regions since many of them have been allowed to merge with
the surrounding region.

These results show a bit of the influence of the Betti criterion during the bottom-up segmen-
tation.

5 Conclusion

In this paper a topological criterion is used to constrain the topology of regions during a segmen-
tation process. Betti numbers, classical topological invariants, have been used. They count the
number of connected components, in our case always one, the number of tunnels of a region as
well as the number of cavities. We have shown how to compute these two last values both us-
ing information represented by topological maps and incrementally during a segmentation process.
Some details about implementation of topological constraints have been discussed and finally some
experiments show possibilities of topologically constrained segmentation in the image processing
context.

In future works, we are looking into other uses of the Betti criterion. Currently, the thresholding
criterion is used to deny some configurations during the segmentation process. As shown in the
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Figure 3: Experiments on 3D artificial images. The maximal value allowed on b1 and b2 is given
for each images by Betti(b1,b2). On the last three images, a slice of the image is provided to
show the amount of different regions around the segmented part of the 2-torus. (a) Sphere with
Betti(0,0). (b) 2-torus with Betti(2,0). (c) 2-torus with Betti(0,0). (d) 2-torus with Betti(0,1).

results it leads to the impossibility to obtain the desired segmentation. Some other proposed
criteria will be tried as well as new ones and experiments have to be achieved with real images.
For instance, the criterion can be used as a segmentation checker. In this case, the segmentation
process is non-controlled until the end. The result is checked and if the configuration is not correct
using the incremental computation, we may know if a good segmentation has been obtained and
thus allow to process the image again and stop when the good configuration occurs.

We are also interested in defining new operations on topological map like the splitting of regions
and being able to guide the split according to topological criteria. For instance, splitting a 2-torus
region into two 1-torus regions may be a useful task.
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