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Abstract

Modelling the stochastic evolution of a large-scale fleet or network generally proves to be challenging. This difficulty
may be compounded through complex relationships between various assets in the network. Although a great number
of probabilistic graph-based models (e.g., Bayesian networks) have been developed recently to describe the behaviour
of single assets, one can find significantly fewer approaches addressing a fully integrated network. It is proposed an
extension to the standard dynamic Bayesian network by introducing an additional dimension for multiple elements.
These elements are then linked through a set of covariates which translate the probabilistic dependencies. A Markov
chain is utilized to model the elements and develop a distribution-free mathematical framework to parametrize the
transition probabilities without previous data. This is achieved by borrowing from Cooke’s method for structured
expert judgement and also applied to the quantification of the covariate relationships. Some metrics are also presented
for evaluating the sensitivity of information inserted into the covariate-DBN where the focus is given on two specific
type of configurations. The model is applied to a real-world example of steel bridge network in the Netherlands.
Numerical examples highlight the inference mechanism and show the sensitivity of information inserted in various
ways. It is shown that information is most valuable very early and decreases substantially over time. Resulting
observations entail the reduction of inference combinations and by extension a computational gain to select the most
sensitive pieces of information.

Keywords: Dynamic Bayesian network, Structured expert judgment, Covariates, Orthotropic steel bridges,
Sensitivity

1. Introduction

Degradation modelling in reliability and risk analysis
is a topic that has attracted countless pieces of research
work. Throughout the past decades, researchers have
drawn little attention to fleet- or network-scale prob-
lems. More specifically, in the ground transportation
infrastructure field, a few recent papers treat bridge net-
works (?). As one would expect, when considering sys-
tems on a much larger scale, the number of variables
and uncertainties increases significantly as compared to
looking only locally at individual assets. The former ap-
proach does not further facilitate cost-efficient strategies
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in terms of future maintenance plans at a larger scale.
This has become even more desirable with the growing
use of continuous monitoring that asset managers may
use to either update the current knowledge of a system
or formulate predictions on various key indicators. In
the reliability field many different type of assets are con-
tinuously and efficiently monitored (e.g., roads, build-
ings, bridges, etc.), however it is often cost-prohibitive
and not vital to place a monitoring installation at each
individual asset. By consequence, collected data varies
in size and informativeness from asset to asset so that
much effort is often given to identifying the most rele-
vant and sensitive elements.

Particularly for deterioration modelling, uncertainty
surrounding the degradation process is highly present
from environmental conditions, material properties, etc
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for instance. Markov-based models are now widely ac-
cepted as suitable stochastic processes especially in the
bridge degradation modelling domain (?). It is com-
mon practice to exploit inspection data on various parts
of an asset to model both the component-level and the
overall condition through Markov processes. The main
task in Markov-based models reduces almost exclu-
sively to the assessment of the transition probabilities.
Several general methodologies have been developed to
using condition ratings data as well as those specific to
bridges (?????). In the case where condition ratings are
not available, synthetic condition states can be sampled
from assumed prior distributions or degradation models.
In particular, in ?, condition state values are randomly
generated to represent a range of condition states at each
ten-year interval using Weibull distribution and a Latin
hypercube simulation. However the degradation pattern
comes from knowledge of the specific area of concern
or is somewhat assumed a priori like in ? where a hazard
exponential model is used to derive the Markov transi-
tion probabilities. While almost the entire literature en-
courages the use of either the two methodologies men-
tioned, there is a scarcity of models investigating the
case where very limited field data are to be used.

The objective of this paper is to model the degrada-
tion for a network of ”similarly classified” assets under
very limited data. It is denotes ”similarly classified” as-
sets as those state evolutions are highly correlated. A
new methodology is proposed to parametrize the transi-
tion probabilities of a Markov chain of a particular as-
set. In absence of the aforementioned data, or where
data is very limited, it is proposed a method to quan-
tify the mean duration of the first passage time between
degradation conditions to derive the transition probabil-
ities through a simple linear equation. The expected du-
rations of transitions are elicited by means of the clas-
sical Cooke’s method (?) for combining expert opin-
ions. This provides a procedure that fully quantifies in a
probabilistic way durations of transition. Furthermore,
Cooke’s method also allows us to provide a distribution-
free method in order to obtain the transition probabili-
ties. To our knowledge, this is the first application of
Cooke’s method to parametrize a Markov chain.

Information on underlying mechanisms (covariates)
interacting with one another may be available for some
of the most relevant elements. Their role is twofold:
(1) they serve as factors impacting degradation upon
which the Markov process depends and (2) to gener-
ate a coherent probabilistic framework to address de-
pendency among assets in the network-scale problem.
Multi-dimensional (e.g., spatial) dependencies that may
exist in the network elements are conveyed through

these covariates. The new methodology proposed in
this paper extends the classic framework of dynamic
Bayesian networks (DBNs) by providing an approach
to model the state of a large-scale set of assets in a con-
sistent manner without necessary data for the standard
parametrization approaches. The extended DBN, which
is termed a covariate-DBN, also allows the propagation
of new information from assets for which data is avail-
able into others for which data may be limited. The
conditional probabilities of the DBN are also derived
using the structured expert judgment (SEJ) approach de-
scribed above for the Markov chain.

BNs have been extensively used in reliability and
civil engineering where high-dimensional probabilistic
evaluation is necessary. For discrete BNs, the quantita-
tive burden related to both the quantification of condi-
tional probability assessments and the inference mech-
anism are known to be the main limitations. ?? intro-
duce a high-dimensional probabilistic model using BNs
for safety and risk analysis in the railway domain where
7,820 variables (on separate BNs) have been used. ?
proposed a DBN model for probabilistic assessment
of tunnel construction performance including a mod-
ified version of the Frontier algorithm to perform in-
ference. One of the advantages shown in each of the
three above-cited articles is that BNs can be a power-
ful tool to quantify the risk of extraordinary events. In
this paper it is provided a global methodology through
the so-called covariate-DBN model for asset manage-
ment. Computationally-wise, it is shown that the infer-
ence combinations can significantly be reduced by ad-
vantageously exploiting results regarding the sensitivity
of unexpected events.

The use of embedded covariates in a DBN suggests
an analogy with Markov switching models (?) as they
were introduced to model this type of stochastic pro-
cess by adding conditionality through either observed or
unobserved variables. These types of models were ex-
tensively developed in econometrics and finance whose
main purpose is to capture switching regimes of time
series data. The method’s purpose here is, however,
not to model changes in time series switching regimes
but rather covariates are introduced with the twofold
above-mentioned role. Secondly, modelling degrada-
tion through observable covariates also relates to the
work of ? and ? in survival analysis. Deterioration dy-
namics is driven by continuous stochastic processes and
covariates in both approaches, however, they do not ad-
dress multi-dimensional distributions as is done through
a DBN.

In a very recent paper by ?, they develop a DBN ap-
proach including nodes representing spatial dependency
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across different location for revealing trophic dynamics
in fisheries ecology. However, the proposed framework
is specific to the application considered through spatial
nodes and thus does not offer a general methodology
to address classes of problems discussed above. More-
over, it is emphasized that the spatial characteristic may
not be a systematic factor to generate the network. One
could also think of other links found between multiple
elements, such as common material properties, relation-
ships between physics-based phenomena, etc.

The remainder of the paper is organized as follows.
The following section presents the degradation process
framework combining a discrete Markov process with
a DBN where the two-dimensional network-scale ex-
tension is presented. First, the procedure of estimating
the transition probabilities is detailed. Second, how its
dynamics is influenced by covariates and the network-
scale DBN is formulated. Section 3 introduces the
SEJ method to calibrate the Markov transition probabil-
ities and conditional probabilities in the covariate-DBN
model. Section 4 highlights a bridge network deteri-
oration example based on traffic and load as selected
covariates. Section 5 provides numerical experimen-
tation highlighting the benefits of inference throughout
the covariate-DBN model before drawing final conclu-
sions and providing perspectives on future work.

2. Deterioration framework

A finite discrete-time Markov stochastic process
{D(k)

t , t ≥ 0} is used to model the degradation for ele-
ment k. Whenever possible, it will be omitted super-
script (k) for every stochastic process. The goal is sim-
ply to describe the probability that each of the elements
can be in a particular state at time t conditionally on
the previous state and some selected covariates. co-
variates are used to represent observable random vari-
ables that influence the degradation process {Dt}. To ad-
dress the network-scale issue, an extension of the classic
Dynamic Bayesian network (DBN) framework is pre-
sented.

2.1. Markov Chain
Discrete-time Markov processes have been exten-

sively used in the context of risk, reliability and mainte-
nance management for civil infrastructures (??). The
Markov property mainly characterizes this class of
stochastic processes. Recall that this property stipu-
lates that it is only needed to know where the process
Dt stands at present time t (first order), as opposed to
rely on its complete history, to predict in a probabilis-
tic sense how the process behaves in the future. It is

denoted by {1, ...,Ω} the set in which Dt takes values.
Conventionally, it is written the one time step transi-
tion probability pi, j from state i to j, i, j ∈ {1, ...,Ω}, the
probability P(Dt+1 = j|Dt = i). In the present case it
is assumed a sequential degradation, meaning that only
the pi,i, pi,i+1 > 0 with pi,i + pi,i+1 = 1. As it is as-
sumed that bridges are in the best condition when newly
constructed, P(D0 = 1) = 1. The stochastic process
{Dt, t ≥ 0} that models degradation is usually defined by
the (Chapman-Kolmogorov) equation

P(Dt = j|D0 = 1) = Pt(1, j) (1)

where Pt is the transition probability matrix (TPM) to
the power t and Pt(1, j) refers to row 1 and column j
of Pt, with 1 ≤ j ≤ Ω and for every t ≥ 0,

∑
j P(Dt =

j|D0 = 1) = 1. A set of n ≥ 1 so-called covariates
is further introduced which designate random variables
denoted by Θt = (θ1,t, ..., θn,t) for each time step t, with
(θ1,t, ..., θn,t) ∈ C1 × · · · × Cn, so that the process {Dt} is
dynamically influenced by such quantities. The transi-
tion probabilities are thus given by

pi, j =
∑

c1,...,cn

P(Dt = j|Dt−1 = i, θ1,t = c1, ..., θn,t = cn)

× P(θ1,t = c1, ..., θn,t = cn)
(2)

Covariates may either directly or indirectly impact {Dt}.
An indirect covariate would impact another covariate
rather than directly Dt. This is precisely the reason why
Bayesian networks are used as a suitable framework to
handle the dependence structure and make transparent
its visualization and quantification. The latter is intro-
duced in the section 2.3 where the complete definition
of the new DBN framework is presented.

2.2. Bayesian networks

Bayesian networks (BNs) are probabilistic graphs of
relative recent development as their formalism was put
forward by ?. A compact way of defining BNs can be
divided into two parts, namely graphical and probabilis-
tic denoted by the couple (G,P). Often those are de-
scribed as the qualitative and quantitative features, re-
spectively. A BN is a directed acyclic graph (DAG) and
G = (N ,E), where sets N and E respectively repre-
sent nodes and arcs or arrows. Elements of E will be
expressed as (a; b) whenever {a} is incident to {b}. In
probabilistic terms, nodes are univariate random vari-
ables and arcs translate probabilistic dependencies. The
other part P refers thus to a probabilistic characteriza-
tion through conditional distributions associated to G
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between (sets of) nodes linked by the arcs. The com-
plete characterization of a BN reduces solely to the as-
sessment of the couple (G,P).

A BN encodes the probability density or mass func-
tion on a set of variables X = {X1, ..., XN} by speci-
fying a set of conditional independence statements in
the DAG associated with a set of conditional probability
functions. It thus provides a representation of a high di-
mensional probability distribution on X. The joint prob-
ability mass function fX1,...,XN over variables {X1, ..., XN}

can be expressed as

fX1,...,XN =

N∏
i=1

fXi |pa(Xi) (3)

where pa(Xi) denotes the set of parents for node Xi.
Distributions can be discrete, continuous or a mixture
of both. However in this paper it is exclusively made
use of the discrete case. It is referred to ? and ? for a
broader survey on the remainder classes.

In the same manner it is denoted by X the set of n
variables {X1, ..., Xn}, Y and Z designate sets of n vari-
ables {Y1, ...,Yn} and {Z1, ...,Zn} respectively. Further-
more, it is understood the notation X ⊥ Y|Z to sug-
gest that X and Y are conditionally independent given Z
which is equivalent to write X 6⊥ Y saying that X and Y
are marginally dependent. Likewise, it is used X 6⊥ Y|Z
to make explicit that X and Y are conditionally depen-
dent given Z. As briefly mentioned before, a remark-
able property coming from graph theory that BNs pos-
sess is called the directional separation (d-separation).
The latter transcribes a graphical attribute correspond-
ing to three distinct visual layouts into probabilistic
(in)dependence statements between sets of variables.
The cases of concern regarding the d-separation prop-
erty are summarized as follows:

• X ← Y → Z; this means that X is independent of
Z given Y (X ⊥ Z|Y), however X and Z are not
marginally independent (X 6⊥ Z)

• X → Y → Z; this layout has the same interpreta-
tion as the previous one

• X → Y ← Z; in this case, we have X 6⊥ Y|Z
implying X ⊥ Y

Another feature which makes BNs attractive is symbol-
ized by the ability to perform inference. More specifi-
cally, the network can be used to update the probability
distribution over the state of a subset of variables when
information becomes available for other variables. Re-
garding the foundations of exact inference mechanism,

we refer again to ?. Exact inference in the discrete
case is an NP-hard problem meaning that the complex-
ity is exponential in the number of states and degree1

of nodes. Hence, approximation algorithms like varia-
tional or Monte Carlo methods emerged in order to mit-
igate the computational burden for high dimension and
complex BNs. Readers are referred to ? for a large
review on probabilistic inference for graphical models.
In the bridge engineering field, information can stem
from inspection data, crack measurement testing or even
monitoring systems collecting inputs regarding traffic as
shown in section 4.

In a static discrete BN, nodes stand for discrete ran-
dom variables which are the most common version that
have been developed in risk and reliability modelling
(?). The BN displayed in Fig. 1 shows how the set
Θ of four time-independent covariates, namely Θ =

(θ1, θ2, θ3, θ4), and state node D can be linked when not
accounting for any time nor network dimensions. In this
example, nodes θ2 and θ4 are directly connected to D.
Nonetheless, a more suitable version in the present case
refers to dynamic BNs accounting for time dynamics
through the process {Dt} which is presented in the next
section.

Θ

D
θ1

θ2

θ3
θ4

Figure 1: Static covariate-BN structure

2.3. Covariate-DBN
While BNs are useful for modelling a dependence

structure among random variables, they do not cap-
ture the evolution over time. For modelling dependen-
cies between stochastic processes by direct or indirect
covariates as described above in eq. (2), a convenient
tool is Dynamic Bayesian networks (DBNs). Especially
in degradation modelling, DBNs are a well suited (?).
Time is represented as a discrete time slices or steps
which are connected by directed arcs from nodes in slice
t to nodes in slice t+1. Note that the network structure is
identical in each slice (i.e., does not change over time).
A DBN that contains time-dependent conditional distri-
butions is denoted a non-homogeneous DBN. Further-
more, the dependence between the deterioration nodes

1the degree of a node is understood by the number of edges inci-
dent to it
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is in compliance with the Markovian property. Only
time slice t is dependent on time slice t + 1; thus, only
current information is required to assess the probabilis-
tic evolution (i.e, it is memoryless). Like the static ver-
sion, the characterization of a DBN is defined by the
graph structure at time t, between t and t + 1., and the
assessment of the conditional distributions for t = 0 and
between slices t and t + 1. Similar to the static BNs,
inference may also be performed and there have been
specific algorithms developed for DBN frameworks (?).

it is proposed an extension of the classic DBN for-
mulation to a fleet- or network-level through the covari-
ates introduced above. Network covariates make use of
relationships between one or several elements compos-
ing the network. These could stand, for instance, for
operating and environmental conditions, structure char-
acteristics, material properties, etc. While data may be
unavailable for the key metric of interest (i.e., Dt), in-
formation on various covariates may be obtained. These
covariates can then be used as a means to insert infor-
mation that will be propagated throughout the network
due to their dependence structure with state of interest
Dt. This extends the traditional DBN which contains
only time dependence to additional dependence dimen-
sions. In our model this second dimension is conveyed
by the covariates.

Let Θ
(k)
t = (θ(k)

1,t , ..., θ
(k)
n,t ) be the set of n covariates at

time t for element k of the network. Note the addition
of superscript k for the interdependent network case.
A visual representation example of the extended DBN
model is reported in Fig. 2. It contains n = 4 covari-
ates per time slice t for a network composed of two ele-
ments k = {1, 2}. The set of covariates for each element
k = {1, 2}, Θ

(1)
t and Θ

(2)
t is represented by the big dashed

circles. It is assumed that in our proposed extended
DBN the dependence structure does not change over
time, but may change between elements k. Covariates
may evolve independently or depend on other covari-
ates and may or may not directly impact {Dt}. This is
shown with θ(k)

4,t being independent of (θ(k)
1,t , θ

(k)
2,t , θ

(k)
3,t ) with

k = 1, 2. Precisely, for element 1 the covariates θ(1)
2,t and

θ(1)
4,t are directly impacting {D1

t } whereas for element 2,
θ(2)

1,t and θ(2)
4,t are playing this role. Again, once this struc-

ture is set for each element it is kept over the whole time
horizon. Although not shown in Fig 2, for a given ele-
ment, covariates could also have a time-varying distri-
bution. The latter has already been introduced in ?, but
without incorporating a second dimension as is done.
The connexions across the different elements are thus
made through the set of covariates Θ

(k)
t . It is also shown

in Fig. 2 that θ(k)
1,t and θ(k)

4,t are the covariates perform-

ing the linking task. It is assumed that each element
has the same set of covariates Θ

(k)
t , although the depen-

dence structure between covariates of different elements
may vary according to the data. The DBN structure can
be generalized similarly to what characterizes a classic
DBN. For time epoch 0 ≤ t ≤ S and network element
1 ≤ k ≤ K, there must be specified:

• the covariate dependence structure for each ele-
ment k denoted by G(k)

Θ
= (N (k)

Θ
,E(k)

Θ
) with N (k,t)

Θ
={

Θ
(k)
t

}
, E(k)

Θ
=

{(
pa

(
θ(k)

i,t

)
; θ(k)

i,t

)
, 1 ≤ i ≤ n

}
and its

set of conditional distribution functions P(k)
Θ

={
fθ(k)

i,t |pa
(
θ(k)

i,t

), 1 ≤ i ≤ n
}

• the covariate-to-element dependence structure de-
noted by G(k)

D↓Θ = (N (k)
D↓Θ ,E

(k)
D↓Θ ) with N (k)

D↓Θ ={
D(k)

t

}
, E(k)

D↓Θ =

{(
pa

(
D(k)

t

)↓Θ(k)
t ; D(k)

t

)}
and set

of conditional distribution functions P(k)
D↓Θ ={

f
D(k)

t |pa
(
D(k)

t

)↓Θ(k)
t

}
where pa (X)↓Y designate the set

of parents for node X restricted to node set Y.

• the element-to-element dependence struc-
ture denoted by G

(→)
Θ

= (N (→)
Θ

,E(→)
Θ

)
with N

(→)
Θ

=
{
Θ

(k)
t : 1 ≤ k ≤ K

}
, E(→)

Θ
={(

pa
(
θ(k)

i,t

)
; θ(k)

i,t

)
: pa(θ(k)

i,t ) 1 Θ
(k)
t , 1 ≤ i ≤ n

}
and conditional probability set P

(→,t)
Θ

={
f
Θ

(k)
t |pa

(
θ(k)

i,t

) : pa
(
θ(k)

i,t

)
1 Θ

(k)
t , 1 ≤ i ≤ n

}
The complete covariate-DBN can now be defined for
time horizon S and bridges network size K as BK,S =

{GK,S ,PK,S } where GK,S ,PK,S are summarized, respec-
tively, through each of the graph and probabilistic sets
introduced above.

2.4. Network Sensitivity Analysis

It is proposed a methodology for evaluating the sen-
sitivity of covariate information inserted into the net-
work at different points in both time t and dimension k.
This aids identifying the key elements of the network,
the types of information with the greatest impact, and
when and where to observe the network in order to ob-
tain said information. Recall that the set of covariates
Θ

(k)
t = (θ(k)

1,t , ..., θ
(k)
n,t ) takes values in C1 × · · · × Cn. Let

ωΘ =

(
ωθ(k)

j,t

)
1≤ j≤n
0≤t≤S
1≤k≤K

be the n-by-S -by-K matrix of one

possible combination where each ωθ(k)
j,t
∈ C j ∪ NOI,

represents the possible information that can be inserted

5



Θ
(1)
t

D(1)
t

θ(1)
1,t

θ(1)
2,t

θ(1)
3,t

θ(1)
4,t

. . .. . .

D(2)
t

Θ
(2)
t

θ(2)
1,t

θ(2)
2,t

θ(2)
3,t

θ(2)
4,t

. . .. . .

Figure 2: A two-element Covariate-DBN with 4 covariates at time t

adding the ”no information (NOI)” state. The uncondi-
tional case is simply the matrixωΘ with all entries being
NOI. The total number of possible combinations of in-
jecting evidence for the covariate-DBN model is given
by all the permutations among the set {C1, ...,Cn}

KS

given by

eΘ = ((|C1| + 1) × · · · × (|Cn| + 1))KS − 1 (4)

with T being the time horizon, K the total number of
elements and

∣∣∣C j

∣∣∣ the cardinality of each set C j, j =

1, ..., n. One way to measure the value of the propagated
information is to check how much it affects the poste-
rior probability distribution. Fix bridge 0 ≤ k ≤ K and
degradation state i ∈ {1, ...,Ω}, the following sensitivity
measure can therefore be computed

σi,Θ =

∣∣∣P(D(k)
t = i) − P(D(k)

t = i|ωΘ)
∣∣∣

P(D(k)
t = i)

(5)

This metric may provide insight on when and for what
duration new information should be obtained as well as
the quantity and location deployed across the network.

Let τ = inf
{
t ≥ 0 : ∀ j, k, ωθ(k)

j,t
, NOI

}
, therefore

σi,Θ

= 0 if t < τ
> 0 otherwise

(6)

This means that the earliest piece of evidence be-
ing inserted only impacts the posterior probabilities of
P(D(k)

t = i|ωΘ) for t > τ.

To study how sensitive the network reacts, it is pro-
hibitive to cover the list of all possibilities as eΘ grows
exponentially along K and S . Two different types of
configurations are put forward to gain insight from a
large covariate space: 1) the effect of information be-
ing inserted individually at different points in time and
2) the cumulative effect of inserting information at mul-
tiple points in time. The study is further restricted to the
case where only the same type of information is entered
over time.

For a fixed covariate j ∈ {1, ..., n}, covariate value c ∈
C j, and element k ∈ 1, ...,K, let µ(k)

ω ∈ {0, ..., S } be the

time a single piece of information
(
ωθ(k)

j,t

)
0≤t≤S

is inserted

into the network. Furthermore, let η(k)
ω ∈ {0, ..., S } be

the time up to which consecutive pieces of information
are inserted beginning at t = 0. Then the matrix ωΘ =(
ωθ(k)

j,t

)
0≤t≤S
1≤k≤K

can be a function of η(k)
ω and the binomial

coefficient
(

S
η(k)
ω

)
which gives all possible orderings for a

specific number of pieces of evidence. Thus we obtain

dσi,Θ

dη(k)
ω

= 0 if t ≥ τ
> 0 otherwise

(7)

This shows that for a specific element k and a certain
covariate θ j,t, regardless of the way pieces of infor-
mation are incorporated, i.e. the various permutations
among the set C j, σi,Θ increases or is constant along
η(k)
ω . This result holds for cumulative information incor-

porated across different elements. This results is par-
ticularly desirable in the reliability domain as it high-
lights the usefulness to obtain field data in a temporal
cumulative manner from a specific element or several
of them. Not only does it primarily impact its own pos-
terior distribution but it additionally affects the proba-
bility of the other elements. The sensitivity value (5)
facilitates the quantitative identification of elements in
the network with minor consequence on others and thus
reduce the need of observation.

3. Parametrization through Structured Expert
Judgment

The goal here is to parameterize the transition proba-
bilities of the Markov chain Dt. The classical SEJ model
developed by ? is used which is a performance-based
weighted averaging model to aggregate individual ex-
perts distributions into a single combined one. It is both
a widely accepted (?) and appropriate method when
quantitative data is missing, of dubious quality, or is in-
sufficient for obtaining desired outcomes.
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3.1. Cooke’s model for eliciting expert opinions

The protocol of ? was followed which provides a
clear statement of the questions to be answered, doc-
uments critical underlying assumptions, and establishes
a logical structure for the elicitation interview. Experts
are asked to specify their quantiles (e.g., 5th, 50th and
95th) of an uncertainty distribution regarding variables
of interest and seed variables tailored to the problem
considered. Seed variables are known quantities used to
compute two measures of performance of the experts:
the calibration and information scores. Loosely, cali-
bration measures the statistical likelihood that a set of
experimental results correspond, in a statistical sense,
with the experts assessments. Information measures
the degree to which a distribution is concentrated. The
weights are derived from experts calibration and infor-
mation scores, as measured on seed variables. Seed
variables serve a threefold purpose:

(i) to quantify experts performance as subjective
probability assessors

(ii) to enable performance-optimized combinations of
expert distributions

(iii) to evaluate and hopefully validate the combination
of expert judgments.

3.2. Calibration of pi, j

Several developments must be made in order to apply
the Cooke’s method to parametrize a Markov chain. In-
stead of explicitly eliciting pi, j expected transition time
between consecutive states i to i + 1 are asked. Directly
estimating probabilities should be avoided as perform-
ing such a task is known to be challenging. Quantities
which experts are more familiar with are thus recom-
mended to further derive the ones of interest. In order
to quantify pi, j introduced in eq.(2), the expected time
it takes for a bridge to transit between states i and j is
given by

E[Ti, j] = 1 +
∑
k, j

E[Tk, j]pi,k (8)

where Ti, j = inf{M : DM = j,DM−1 , j, ...,Dm+1 ,
j|Dm = i} is a strictly positive integer random variable
and represents the first passage time from state i to state
j, with 0 ≤ m < M. When j = i we have E[Ti,i] = 1/πi,
where πi is the limit distribution of the Markov chain for
state i, limt→+∞ P(Dt = i) = πi. Typically, as state {Ω} is
the only absorbing state, π = (π1, ..., πΩ) = (0, ..., 1) so
E[Ti, j] = ∞,∀i ≥ j. In the very general case where P
is complete, i.e., when interventions improving the state

of an element are allowed, and the expected transitions
of first passage time matrices are given respectively by

P =


p1,1 . . . p1,Ω
...

. . .
...

pΩ,1 . . . pΩ,Ω


and E =


E[T1,1] . . . E[T1,Ω]

...
. . .

...
E[TΩ,1] . . . E[TΩ,Ω]


from eq. (8), the following linear system of equations
has to be solved

P∗(E − diag(E)) = E − 1 (9)

where ∗ is the usual matrix product operator, diag(E) is
the matrix having the values E[Ti,i] and zeros in each of
the other entries and 1 is the matrix having ones in every
entry. For matrix E, the entry (i, j) (with i , j) is non
infinite if there exists M > 0 such that for any m, 0 ≤
m < M, P(XM = j|Xm = i) > 0 ⇔ PM−m(i, j) > 0.
The latter simply translates quantitatively the fact there
must exist a path starting from state i to reach state j in
order to have a finite (expectation of) first passage time.
Recall that pi,i+pi,i+1 = 1 so only the pi,i or pi,i+1 need be
specified. The case of concern which features sequential
degradation behaviour entails that from eq. (9), for each
i ∈ {1, ...,Ω}, we have

pi,i = 1 −
1

E[Ti,i+1]
(10)

so that Ω − 1 expected transitions have to be elicited.
From eq. (10), E[Ti,i+1] ≥ 1 otherwise it yields pi,i <
0. If an expert gives an estimate where E[Ti,i+1] < 1,
one can simply rescale the time step to a smaller time
unit. Parametrizing the model amounts to calibrating
the quantities P(Dt = j|Dt−1 = i, θ1,t = c1, ..., θn,t = cn)
(eq. (2)) and E[Ti,i+1] (eq. (10)), as the joint distribution
P(θ1,t = c1, ..., θn,t = cn) is assumed to be empirically
obtained. The two main questions are then generated as
follows

Q1 ”Could you provide the 5th, 50th, 95th quantiles of
your uncertainty distribution about the expected
years that it takes for each of the K elements con-
sidered to transit between each of the states in
{1, ...,Ω} ?”

Q2 ”Consider a sample of 100 000 data points each
representing the following event. At time t − 1 a
certain element k was in a certain condition state

7



(1, ...,Ω) and the covariates directly incident to the
process D(k)

t were observed to be in each their pos-
sible states (i.e., cardinality of the state space of
incident covariates). Recall that it is assumed ele-
ments can only deteriorate to their next worse state
or remain in the same state at the next time step.
Out of these 100 000 samples, what is the num-
ber of these assets transitioning to their next worse
state at the next time step ?”

Note that Q1 and Q2 must be elicited for each el-
ement k, thus the number of questions to be asked is
2k. However, the total network size may be dramat-
ically increased while limiting k, by considering dif-
ferent classes in which multiple elements belong to the
same class. This would create classes of i.i.d. elements.
More precisely, the variable κ is introduced as to rep-
resent the number of classes of same type of assets,
each containing a certain number of elements in each
set γi, i = 1, ..., κ such that K =

∑κ
i=1 |γi|. Whenever pos-

sible and in order to lighten the burden of notations, the
κ index can be omitted as the derived results do not ben-
efit additionally from this. The elicitation complexity
of our proposed model is derived from the number of
questions that need to be asked, however, a very large
network can be constructed without needing to elicit re-
sponses for each element if they are of the same class.
This will be detailed in the following sections of our
bridge application in which hundreds of bridges may be
present but only a few classes. In such a context, only
questions on the classes need be elicited and not each in-
dividual bridge in the network. This further highlights
the limited data framework application of this model.

The covariate-DBN methodology is summarized
through the diagram displayed in Fig. 3. The arrows
from the SEJ (Q2) node pointing to eq (2) is more pre-
cisely referring to member P(Dt = j|Dt−1 = i, θ1,t =

c1, ..., θn,t = cn) making the one-to-one correspondence
link between the covariates Θ

(1)
t , ...,Θ(K)

t and the Markov
processes {D(1)

t }, ..., {D
(K)
t }. The latter are specified by

the expectation of the random variable Ti,i+1 (eq. (10))
which is parametrize from SEJ by Q1. The dashed
double-oriented arrow among the covariate sets refers
to the possible dependence relationships between them.
Note that the Fig. 3 only represents one slice in time,
therefore the t subscript has been omitted. To represent
the total time horizon, Fig. 3 would be repeated for all
t ∈ {0, ..., S }.

SEJ (Q2)

Θ
(1)
t , . . . ,Θ(K)

t

{D(1)
t }, . . . , {D(K)

t }

E[T (1)
i,i+1], . . . , E[T (K)

i,i+1]

SEJ (Q1)

possible dependencies across
covariate elements

eq (2) eq (2)

Figure 3: Diagram of the covariate-DBN methodology

4. Bridge Network Application

This section treats degradation modeling for a net-
work of motorway steel bridges. Two different classes
of motorway bridges are specifically considered with a
steel (so-called orthotropic) bridge deck, namely move-
able and fixed. On the network of motorways in the
Netherlands there are approximately 100 steel bridges,
divided into movable and fixed types (?). These types
should be quite representative of the category encom-
passing motorway steel bridges located in the Dutch
bridge network. A key characteristic of a bridge is its
deck plate thickness. The thickness of the bridges may
vary throughout the network. It is assumed that the deck
plate thickness for moveable and fixed bridge is chosen
to be 12mm and 10mm, respectively. Furthermore, the
thickness and type of deck plate overlay are assumed
a 6 mm thick epoxy overlay and a 100 mm asphalt is
applied for moveable and fixed bridges, respectively.

The underlying physical deteriorating process con-
sidered here is fatigue crack growth in the bridge deck
which occurs due to repetitive loading by vehicles’
axles. Fatigue is a degeneration process developing in
time such that it can be detected before they grow so
large that they obstruct the safe use or even integrity of
the structure. It is assumed that the crack growth rate
decreases for increasing deck plate thickness and sur-
face finish. By consequence, the covariates chosen are
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traffic and loading as they are the main endogenous con-
tributors in this mechanism. Data coming from a mon-
itoring system located in the Netherlands is available,
presented subsequently and used to evaluate some of the
conditional probability distribution sets.

4.1. Dependence structure

Traffic and loading covariates are denoted by {T (k)
t }

and {L(k)
t }, respectively. Thus, Θ

(k)
t = (T (k)

t , L(k)
t ), for

any bridge k. The typical dynamic dependence struc-
ture for the deterioration of any bridge k is sequential,
that is, T (k)

t → L(k)
t → D(k)

t for any time slice t. The
edges connecting successively the degradation nodes
D(k)

0 , ...,D(k)
S are translating the temporal aspect of the

model. The traffic covariate is used serve as the depen-
dence link connecting bridges. Traffic dynamics have
been monitored and quantified in the Netherlands, for
instance (?). The set of bridge-to-bridge edges E(→,t)

Θ

is specified through traffic dynamics. A possible lay-
out is shown though in Fig. 4 which captures a distribu-
tion of K bridges across a highway section. In this case,
for a any time step t ≥ 0, nodes {T (k)

t } and {T (k+1)
t } are

bonded in a consecutive manner. A pair of bridges are
(un)conditionally independent given sets of covariates.
This defines the dependence graph structure GK,S ; only
the conditional distribution set PK,S has to be specified.

T (1)
0 L(1)

0

D(1)
0

T (1)
1 L(1)

1

D(1)
1

. . .

T (1)
S L(1)

S

D(1)
S

T (2)
0 L(2)

0

D(2)
0

T (2)
1 L(2)

1

D(2)
1

. . .

T (2)
S L(2)

S

D(2)
S

...
...

...

Figure 4: Example layout of covariate-DBN structure BK,S

4.2. Traffic and load data

Data on traffic and loading is obtained from a Weigh-
In-Motion (WIM) system. In ? the same data coming
from a WIM installation is input to model multidimen-
sional distribution of axle loads together with other re-
lated quantities. A thorough investigation of dependen-
cies between these quantities through a copula repre-

sentation is presented. Here WIM data is used to de-
rive a probability distribution on traffic density defined
as the number of axles per time over a 100m bridge.
In addition, the conditional probability distribution of
loading given traffic density is derived assuming the
covariate-DBN dependence structure presented in the
previous subsection. This monitoring installation was
set on a two-lane (fast and slow) motorway a few kilo-
metres from a steel bridge in the Netherlands. As only
the mechanism of fatigue for orthotropic steel bridges is
investigated, loading coming from fluctuating stresses
caused by vehicles is in general the most important fac-
tor and is seen as a random variable whose distribution
is yearly stationary. The nature of traffic intensity influ-
encing the loading behaviour is also stochastic (?). Both
distributions of loading and traffic are computed given
sample distributions bootstrapped from WIM data. The
data is first exploited so that kernel density estimators
are computed for fast and slow lanes in a congested
traffic configuration. Axles’ positions and weights are
further obtained by queuing all the vehicles the sys-
tem recorded over a month. More precisely, a so-called
’train’ of vehicles is created. By bootstrapping over
a number of fixed vehicles among the total amount of
recorded vehicles, a random distribution of vehicles is
derived. The generated train provides each fast and slow
lane vehicles’ separation, axle position and weight, and
the number of vehicles per lane. The loading moments
are then computed using a finite element method whose
discretization step is that of the triangular Bartlett win-
dow over the span of the bridge. In this case, the highest
loading moment for a vehicle crossing the bridge occurs
when it is located halfway through it.

The scatter plot displaying the number of axles
against loading and the marginal probability distribution
function (PDF) of loading are illustrated in Fig. 5(a) and
5(b), respectively. Both distributions are plotted condi-
tionally on the number of axles being strictly positive.
Equivalently, this means there is always loading on the
bridge. Many of the recordings refer to a no-loading
scenario, namely P(L(k)

t = 0) = P(#axles = 0) = 0.432,
for any k. In this configuration, the load variable is dis-
cretized by setting the following thresholds which are
often used in probabilistic bridge design (ref). A Heavy
loaded situation is seen as all the recorded loads ly-
ing above the 97th quantile bin of the load PDF con-
ditioned on their being at least one axle. Numerically,
this value represents 751.189 kN which can also be writ-
ten as P(L(k)

t ≤ 751.189 kN |#Axles > 0) = 0.97. In
Fig. 5(b) the Heavy load is represented by the shaded
area below the PDF curve. Similarly, for Normal and
Light loading states, values lying in between the 90th
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(a) Scatter plot of the number of axles against loading conditionally on
{#axles > 0}
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(b) Probability distribution of the total load conditionally on {#axles >
0}

Figure 5: Load distribution conditionally on {#axles > 0}

and the 97th quantile bins and below the 90th quantile
bin are chosen respectively. These are shown in Fig 5(a)
through the dark and light grey scatter points for the
Normal and Light loading cases. This way the probabil-
ity distribution fL(k)

t |pa
(
L(k)

t

) is fully determined. For every
time slice t, the quantification of the conditional proba-

bility distribution of traffic nodes
{

fT (k)
t |pa

(
T (k)

t

)}
1≤k≤K

was

in turn obtained from the National Data Warehouse for
Traffic Information (NDW) measurements performed
in 2013 from several Dutch highways (?) and broken
down into a 3-state space {High,Medium, Low}. It is
further denoted by L = {Heavy,Normal, Light} and
T = {High,Medium, Low} the sets that processes L(k)

t

and T (k)
t take, respectively, value in.

4.3. Elicitation results

The complete SEJ experiment is presented in ?. The
elicitation was carried out with three experts on steel
bridge reliability and management. Particularly, the
seed questions refer to historical data on crack length
collected between 2006 and 2011 at a highway steel
bridge in the Netherlands. A typical seed question
asked to the experts is the following:

”An 80 mm crack was detected located in the
deck plate 33 years after construction, what would be

its length the following year?”

By varying the time gap between two crack measure-
ments, the age of the bridge at the time of the first mea-
surement, the crack measurement technique as well as
the crack location, a total number of 12 seed questions
were asked. The remainder of the questionnaire com-
prises the questions of interest Q1 and Q2 which were
introduced in section 3.2. They must be asked for each
element k (moveable of fixed bridge), loading configu-
ration L = {Heavy,Normal, Light} and type of transi-
tion considered (1 → 2, 2 → 3 and 3 → 4), making
a total of 24 items of interest. Q1 allows fully calibrat-
ing the transition probability matrix as shown in eq. (10)
while the second question provides the missing condi-
tional probabilities of node Dt given Dt−1 and Lt as the
covariate-DBN structure introduced in section 4.2 sug-
gests. From notation introduced in section 2, we have{

fD(k)
t |pa

(
D(k)

t

)}
1≤k≤K

. From the law of total probability, we
get

fD(k)
t

(x) =


∑
l∈L

P
(
D(k)

t = x|L(k)
t = l

)
P(L(k)

t = l) t = 0∑
l∈L

∑
y∈{x,x−1}

P
(
D(k)

t = x|D(k)
t−1 = y, L(k)

t = l
)

× P(L(k)
t = l)P(D(k)

t−1 = y)
t > 0

(11)
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In particular, the terms P
(
D(k)

t = x|L(k)
t = l

)
(for t =

0) and P
(
D(k)

t = x|D(k)
t−1 = x − 1, L(k)

t = l
)

are the ones
elicited from Q2. As a consequence, the burden for
experts (i.e, the number of queries) increases in the
number of states Ω for the Markov processes D(k)

t , the
number of edges that are incident to the Markov chain(
E

(k)
D↓Θ

)
, and the number of states of the incident covari-

ates.
Using the results in Table 1 by taking the median val-

ues (50th percentile) together with eq. (10), the corre-
sponding transition probability matrices for each class
of bridge can be derived. Moreover, from eq. (8) and
eq. (10), the complete matrix of expected duration of
transition can be retrieved as well

PM =


0.954 0.046 0 0

0 0.905 0.095 0
0 0 0.834 0.166
0 0 0 1

 ,

PF =


0.976 0.024 0 0

0 0.797 0.203 0
0 0 0.824 0.176
0 0 0 1


EM =


∞ 21.62 32.14 38.16
∞ ∞ 10.52 16.54
∞ ∞ ∞ 6.02
∞ ∞ ∞ 1

 ,

EF =


∞ 41.14 46.08 51.77
∞ ∞ 4.94 10.63
∞ ∞ ∞ 5.69
∞ ∞ ∞ 1


where subscripts M and F denote the moveable and

Table 1: Assessments obtained from the performance based combi-
nation scheme (IT) for expected transitions (Yrs) between sequential
degradation conditions defined in Table 2 after removing one seed
question

Bridge type Transition 5th 50th 95th

1→ 2 3.09 21.62 49.45
Moveable 2→ 3 5.04 10.52 24.59

3→ 4 3.30 6.02 28.18

1→ 2 4.73 41.14 54.60
Fixed 2→ 3 3.81 4.94 20.25

3→ 4 1.15 5.69 34.56

fixed classes, respectively. Backward reasoning also ap-
plies, that is, conditioning on one or more states of the
covariates, the conditional transition probability matrix

can be computed as well as the conditional expectation
matrix using eq. (8). Upon this basis, the annual proba-
bility distribution of process Dt to reach the worst state,
P(Dt = 4|D0 = 1) (eq. (11)), using the IT DM combined
distribution are displayed in Fig. 6 for both moveable
and fixed bridge categories. For each distribution the
median (50th quantile) is presented. The differences in
sensitiveness through inserted information highlighted
by the posterior distributions are quite sharp. Unlike the
case featuring a Normal load, observe that distributions
conditioned on a heavy load do not differ much between
the two classes of bridge considered.
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Figure 6: Performance based combination of the median estimate for
annual probability distribution to reach worst state (see Table 2) for
both Moveable and Fixed bridges classes.

5. Numerical experiment

Various experiments are presented showing the sen-
sitivity of the proposed model for the network-scale ex-
tension using the methodology presented in Section 2.4.
Note that the algorithm used for inference here is based
on the paper of ? that is implemented in the Bayesian
network framework Smile application programming in-
terface (API). It is shown how much the network be-
liefs are modified when information is obtained from
various covariates and elements at different points in
time. As previously discussed, this can lead to pro-
hibitive number of combinations. Scenarios leading to
changing traffic conditions are numerous as well as their
loading characteristics. Examples affecting traffic con-
ditions include maintenance for one or more bridges in
the surrounding network area, traffic accidents or envi-
ronmental disasters.
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Consider a single 4-state condition space for both
bridge categories (fixed and moveable) whose condi-
tions are defined in Table 2.

A hypothetical network of bridges is constructed us-
ing the new covariate-DBN model introduced in section
2.3. The quantification methods used for the condi-
tional probability sets are those introduced in sections
4.2 and 4.3. The network is comprised of four bridges,
three moveable and one fixed, whose layout is simi-
lar to that of Fig. 4 having the same set of covariates
Θ

(k)
t = {T (k)

t , L(k)
t } standing for traffic density and load-

ing. The example related to bridges located at the inter-
section highways A2 and A15 in the Netherlands. A15
has one of the most dense yearly traffic while A2 is more
average (?). We feel that such a configuration resem-
bles many real-world cases. For the example, bridges 1
(fixed) and 2 belong to A15 and bridges 3 and 4 to A2.

A first example of inference is illustrated in Fig. 7
where the CDF of the condition states for Bridges 1 and
3 are plotted at each time step. The left column is the
unconditional (NOI) case and right column shows in-
formation on High traffic inserted for Bridge 1 consecu-
tively in each year from 5 to 10. Observe that probabil-
ity area for state 4 has increased (right column) for both
bridges with respect to the unconditional case. Recall
that Bridge 1 belongs to a highway whose traffic den-
sity (give distribution) is expected to be higher than that
of Bridge 3 (distribution). This shows that the distri-
bution of Bridge 3 is relatively sensitive to information
obtained from Bridge 1. Moreover, inserting informa-
tion that deviates significantly from the expected should
have a greater impact on the sensitivity. The outcome of
inference is mainly governed by the conditional prob-
ability distributions across traffic nodes obtained from
?. For instance, the conditional distribution T (3)

t |T
(2)
t is

given in Table 3. The same tests were carried out using
Low and Medium states individually in the same context
and updated distributions showed minor modification.
Similar observations were also drawn with respect to
Bridges 2 and 4. Fig. 7 showed the cumulative effects of
inserting hight traffic information into the network. The
effect of inserting high traffic information individually
as shown in Fig 8 are examined. The horizontal axis
denotes (µ(k)

ω ) the vertical axis the sensitivity measure
σi,Θ computed as defined in eq. (5) for state i = 4. Each
plot represents a fixed time slice t ∈ {5, 10, ..., S = 50},
the boldest curve represents t = 5 and lightest curve
refers to t = 50. Thus, the ”t = 5” curve represents
the sensitivity at t = 5 of inserting hight traffic infor-
mation individually over the time horizon. Notice that
once information has been inserted posteriorly to the
fixed time epoch (µ(k)

ω > t), the sensitivity drops to zero

as previously detailed in eq (6). The sensitiveness dra-
matically decreases both as information is inserted later
in time and evaluated later in time. Thus, the figure
shows that it is most relevant to insert information as
early as possible and the return on information dramat-
ically decreases over time. The same comments can be
made for Bridge 3 and more generally shows a lesser
amplitude for the σ4,Θ curves. For example, µ(k)

ω peaks
at ∼ 18% for Bridge 1, while the maximum does not
reach 14% for Bridge 3. This reduced sensitivity is to
be expected as it has a downstream impact from where
the information was directly obtained Bridge 1. Similar
tests were performed for the remainder of the network,
namely Bridges 2 and 4, which showed similar behav-
ior.

Likewise, analyses on η(k)
ω were performed as defined

in section 2.4 for cumulative information. Sensitivity
curves for η(k)

ω are displayed Fig. 9. The various grey
gradient curves read in similar fashion to those of the
plots displayed in Fig 8. Compared to the single in-
sertion case (Fig. 7), the sensitivity increases dramati-
cally for every fixed time epoch. This is evidenced by
comparing the ’t = 5’ curves; the sensitivity for Fig. 9
peaks above 120% whereas Fig. 7 (Bridge 1) does not
pass 20%. Most importantly, the figure demonstrates
that more information is always better and information
loses its value over time. The latter can be explained
by the distribution of each state being bounded asymp-
totically by some upper and lower conditional distribu-
tions as shown in Fig. 6. In the case of most or least
expected information being inserted consecutively from
t = 0 throughout the network, the degradation distri-
bution will correspond to respective bounding distribu-
tion. In this numerical experiment, the upper bound cor-
responds to the least expected information (i.e., high
traffic/heavy loading) being inserted. Although, not
demonstrated from the experiment, we believe that re-
gardless of the manner information is inserted (i.e., con-
secutive or not), more information will always have a
greater impact on sensitivity.

6. Conclusions

An extension to the classic dynamic Bayesian net-
work framework which is termed the covariate-DBN is
proposed. a second dimension for K elements is added
as well as method for indirectly linking them through a
set of covariates. It is further proposed a Markov chain
as the underlying stochastic process for the covariate-
DBN. In the case where limited data is available, a for-
mal mathematical framework is developed making use
of Cooke’s method for structured expert judgement to
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Table 2: Bridge condition states
State Definition
1 - Excellent Almost no damage/cracks are present. A new bridge is assumed to start from this state.
2 - Fair At least one crack in the deck plate that can be detected ultrasonically [30mm, 100mm]
3 - Mediocre Multiple cracks are present [30mm, 500mm]; at least one crack requires repair
4 - Poor Multiple significant fatigue cracks with at least one >500mm in the deck plate that needs urgent

repair; this condition does not mean a collapse but a threat to safety and/or functionality.
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Figure 7: Impact of High Traffic Information on the Network

Table 3: Conditional probability distribution of traffic process T (3)
t

given T (2)
t

T (3)
t |T

(2)
t Low Medium High

Low 0.934 0.0448 0.0385
Medium 0.0492 0.879 0.0651
High 0.0168 0.0762 0.8964

parametrize a Markov chain and the covariate relation-
ships between elements in the covariate-DBN. Some
metrics are also presented for evaluating the sensitivity
of information inserted into the covariate-DBN.

The proposal is then applied to a real-world bridge
network application based on steel bridges in the
Netherlands. It is shown how traffic and load informa-

tion may serve as covariates to link bridge elements in
the covariate-DBN. An actual expert judgment elicita-
tion was carried out to parametrize the model using the
prescribed methods. Numerical experiments show that
information is most valuable as early as possible, and
the value of information decreases over time.

While the model is applied to a specific bridge net-
work scenario, different sets of covariates could be envi-
sioned in the same framework. Furthermore, we believe
the model could be expanded to other bridge types and
civil infrastructure. Applications are not only limited
to degradation modelling but could include other fields
and contexts such as financial asset modelling and dis-
ease propagation.

In sections 2.4 and 5, it is shown how one could re-
duce the computational intractability referring to run-
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Figure 8: Sensitivity curves for σ4,Θ plotted against m(1)
ω where the colour gradient from dark to light grey for each curve indicates fixed time

epochs for each plot spaced by 5 years for bridge 1 (left) and bridge 3 (right).
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Figure 9: Sensitivity curves for σ4,Θ (left) where the colour gradient
from dark to light grey for each curve indicates fixed time epochs for
each plot spaced by 5 years. The type of information inserted is state
High for node T (1)

t

ning through all the possible combinations of inference.
In particular, from figures 8 and 9 it is observed that :

• cumulative inserted pieces of information domi-
nate over individual piece of information; in other
words, any inference combination having a lower
number of inserted pieces of information than its
cumulative counterpart will show a less sensitive
change in the posterior distribution. Practically
speaking, continuous monitoring should prevail as
opposed to condition-based (by also taking into ac-
count cost constraints)

• the sensitiveness of the inserted information de-
creases in time so that pieces of evidence inserted
at early epochs should be preferred over later ones.
This means that if significant and unexpected event
are observed (represented by the type of inserted
information), the sensitivity metric is also able to
capture those.

Thus, by advantageously combining the two above ob-
servations, one could selectively opts for the most sen-
sitive combinations of inference. This further results in
substantially decreasing the inference choices.

For discrete BNs the main limitation of the proposed
methodology refers to dimensionality. Our model fur-
ther increases this complexity through the added k di-
mension. Other classes of BNs dealing with continuous
distributions could facilitate the parametrization proce-
dure. For example, a dynamic non-parametric class re-
cently developed (?) could be a useful tool to overcome
this. An extension to influence diagrams would pro-
vide a decision making framework for the underlying
covariate-DBN to facilitate managers applying model
forecasts.
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