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1 INTRODUCTION 

Highway bridges are subject to continuous degrada-
tion caused by various events, from environmental 
impact to an increasing traffic load. The Netherlands 
is densely populated with large bridges. An over-
view of the spatial distribution of large bridges (span 
greater than 150m) is displayed in Figure 1 for the 
South Holland region. Most of which are ageing as 
more than 60% of the stock was built prior to the 
1970s. Managing and maintaining them is a costly 
business. Ensuring that safety levels as well as envi-
ronmentally quality criteria are met as well as 
providing comfort to users are the top priorities. The 
Dutch authorities in charge of their maintenance are 
thus challenged to take decisions on inspection, re-
pair, renovation/rebuilding. 

The ability to model degradation behavior and 
subsequently schedule maintenance decisions as far 
in advance as possible significantly helps in saving 
time and money in order to build long-term viable 
strategies and extend their service lifetime. In prac-
tice, asset managers make use of lifetime and deteri-
oration models parametrized with available data to 
develop predictions on degradation for single bridg-
es (van Noortwijk & Frangopol (2004)). Neverthe-
less, bridge owners are also often responsible for a 
whole road network with multiple bridges and, 
therefore, need to make decisions on a network or 
stock level. Frangopol & Bocchini (2012) provide an 
up-to-date state-of-the-art review on this subject. 

A network of bridges is comprised of elements or 
underlying factors that interact between each other. 

Thus, dependencies are natural and important to ac-
count for. Moreover, these factors can be determinis-
tic or random, hence a probabilistic methodology is 
logical choice. Another desirable characteristic is the 
capacity to efficiently insert available evidence in 
terms of computational demand. This would dynam-
ically update the degradation model in addition to 
future decision plans. Optimizing costs locally on 
single bridges and globally with respect to the whole 
network as well as finding the best balance between 
the various maintenance decisions are the keys to 
success. Thus, the development of a model that en-
compasses these unique features of our problem is 
the goal of this paper. 

Bayesian networks (BNs) comply very well with 
the requirements cited above. They offer an intuitive 
understanding of (un)conditional dependencies and a 
comprehensive visual representation. Models that re-
ly on BNs in the area of reliability and risk-analysis 
are numerous (Weber et al. 2012). For bridge degra-
dation modelling, Imran Rafiq et al. (2014) used 
Dynamic BNs (DBNs) that are BNs with a time-
indexed sequence of nodes. For the decision-making 
part, recent developments provide efficient algo-
rithms to solve optimization issues as extensions of 
BNs. An extended version of Influence Diagrams 
(IDs) that facilitates long-term plan computations is 
the central focus in finding optimal solutions to our 
problem. 

In this paper, we propose a BN-based approach to 
optimize decision related costs in the context of 
bridge network maintenance management. Mainte-
nance is regarded as imperfect in the sense that the 
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ABSTRACT: Maintenance for highway bridges is crucial in order to keep the network in a satisfactory condi-
tion for users but is also a costly affair. This paper proposes a dynamic, Bayesian network-based model to 
provide cost-efficient strategies in the context of bridge network management. Characteristics related to un-
certainties in both the degradation phase and subsequent maintenance strategies are handled through the de-
sirable probabilistic dependencies properties BNs possess. The extension to a specific version of Influence di-
agrams allows formulating the optimization part of the problem in order to eventually provide long-term 
strategies as well as minimize expected costs. To that end, a case study that tackles both conditional and un-
conditional cases is presented. 



system is not as good as new with probability one 
after performing such actions. The model depicts a 
method using Limited Memory Influence Diagrams 
(LIMIDs) which are BNs augmented with decision 
and utility nodes. Moreover, the quantification of the 
BN is carried out by an expert elicitation method as-
sociated with field measurements. 

The remainder of the paper is organized as fol-
lows. Section 2 introduces BNs’ semantics and the 
way to exploit them for decision-making through an 
extended version of Influence Diagrams known as 
LIMIDs. Section 3 formulates the model in detail 
and provides optimal strategies taking into account 
imperfect maintenance assumptions. Section 4 pre-
sents a case study on a set of hypothetical network 
of highway bridges. Section 5 draws conclusions 
and discusses future work. 

2 BAYESIAN NETWORKS 

2.1 Basics and notations 

Formally introduced by Pearl (1988), Bayesian net-
works are a compact graphical way to represent 
probabilistic dependencies relationships (arcs) be-
tween elements of the graph (nodes) that stand for 
discrete or continuous random variables. BNs are di-
rected acyclic graphs which induces a “parent-child” 
hierarchy for each node, the only exception being for 
source and leaf nodes having no parents and chil-
dren respectively. Denoted by (𝑋1, … , 𝑋𝑛) a set of n 
nodes and 𝑝𝑎(𝑋𝑖) the set of parent nodes of 𝑋𝑖, each 
variable is associated with a conditional probability 
table (CPT) of that variable given its parents,. 
𝑃(𝑋𝑖|𝑝𝑎(𝑋𝑖)).. From the simple chain rule of proba-
bility we can derive the multidimensional joint dis-
tribution of the whole network as 

𝑃(𝑋1, … , 𝑋𝑛) = ∏ 𝑃(𝑋𝑖|𝑝𝑎(𝑋𝑖))
𝑛
𝑖=1  (1) 

A BN is completely determined once the graph 
and the entailed dependence structure are specified 
for the qualitative part. The quantitative component 
consists of feeding the BN with the (un)conditional 
probability distribution for every variable to com-
pletely determine the joint distribution of Eq.(1). 
The ability to insert evidence can then be performed 
throughout the graph in both a bottom-up and top-
down manner. Inference is an attractive feature BNs 
possess and is undoubtedly enticing to update fore-
casts on the basis of observations. Mathematically, it 
consists of the use of simple Bayes’ formula for 
conditional probability. However, according to the 
complexity of the graph, this operation may quickly 
become intractable so recent developments on more 
adapted algorithms were proposed (Murphy 2002). 
One shall understand complexity through both the 
degree of nodes, which is the number of edges inci-
dent to it, together with their number of states. 

2.2 Influence Diagrams 

BNs can be extended to IDs (Howard & Matheson 
1984), that is, augmented with decision and utility 
nodes in addition to random variable (chance) 
nodes, displayed as square, diamond and ellipse 
shapes, respectively. By definition, IDs inherit BNs’ 
semantics. Furthermore, all types of dependencies 
with respect to decision and utility nodes must be 
specified as follows. A decision node d is a parent of 
chance node c if the distribution of c can depend on 
decision d. A decision node 𝑑1 is a parent of deci-
sion node 𝑑2 if the choice of alternative for decision 
𝑑1 is known to the decision maker when decision 𝑑2 
is taken and may influence that decision. When 
chance node c is a parent of a decision node d it in-
dicates that the value of c will be known when deci-
sion d is taken and might influence that decision. 
Arcs into value nodes represent the decision makers’ 
(expected) utility given the states of its parents. 

IDs have been utilized in the area of maintenance 

decision-making. Cai et al. (2009) proposed an ID to 

minimize risks costs and provide cost-effective 

maintenance strategy for civil aircraft maintenance. 

Hao (2000) used IDs and sequential hypothesis test-

ing to minimize potential loss regarding failed in-

spections for bridges. However, aspects of degrada-

tion modelling and network dependencies have not 

been investigated. 

Partially motivated to overcome the structural 

limitations of IDs mainly regarding the no-forgetting 

property (which stipulates that each decision node 

and its parents are parents to all subsequent decision 

nodes), Zhang et al. (1994) introduced Decision 

networks. This later was extended by Lauritzen & 

Nilsson (2001) who proposed LImited Memory IDs 

(LIMIDs). Solving a LIMID means finding a strate-

gy that maximizes the expected utility over the set of 

Figure 1. Map of large highway bridges in the South Holland 
region 

 



utility nodes. A policy is a set of rules that describes 

the decision to opt for as a function of available in-

formation. A strategy is simply a set of policies of 

all decision nodes. Similarly for BNs, LIMIDs face 

the challenge of complexity and this motivated sci-

entific literature to search for more efficient ways to 

cope with this problem (see for instance Mauá et al. 

2012). 

In LIMIDs, a rather strong assumption is asserted 

saying that past decisions or data have no impact 

whatsoever on the current ones. Lifting the no-

forgetting property defines this memoryless feature 

for LIMIDs. The latter sharply reduces the computa-

tional burden when the time horizon becomes large 

and results in a more dynamic method that does not 

yet prevent including time-dependent mechanisms. 

In addition, the ability to accommodate multiple-

values nodes that amounts to relaxing the single-

value node constraint has to do again with condi-

tional independence, in cases where costs can be de-

pendent for instance. In fact these two aspects lead 

to a more compact set of situations that can be han-

dled. 

3 MODEL FORMULATION 

In this paper we assume a network of 𝑚 bridges and 
time horizon 𝑇, both integers. Each bridge can take 
up to a finite number of condition states in a set de-
noted by Ω = {1, … , 𝑛}, state 1 being the best state. 
We further assume bridges can only deteriorate se-
quentially between those states and newly construct-
ed bridges are supposed to be in the best condition. 
Because of its adequacy with our assumptions, the 
Markov chain structure parametrizes the BNs. The 
parameters of the chain itself, namely the one-time-
step transition probabilities 𝑝𝑖𝑗 , 𝑖, 𝑗 ∈ Ω, are assessed 
through expert judgment (see Kosgodagan et al. 
2015 for the procedure). For the sake of complete-
ness, expert assessments are used to quantify the re-
mainder CPTs. 

In combination with expert assessments, field 
measurements are used to obtain a statistical distri-
bution for some of the random variables. The im-
portance of these factors (covariates) is twofold. On 
one hand they can impact degradation - often in a 
causal manner (e.g. nature of the traffic, environ-
mental conditions, loading, etc.) - and secondly we 
can reasonably assume dependencies between them 
in different locations in the network. In this sense 
the network is constructed and inference mecha-
nisms update available information and propagate 
beliefs on the remainder of the network. 

We use the expert estimates to derive a distribu-
tion that serves to model degradation. For the best 
state, the probability of the event that a bridge 

𝑘 (1 ≤ 𝑘 ≤ 𝑚) being in this condition at time t is 
simply given by 𝑃(𝐵𝑡

𝑘 = 1) = (𝑝11
𝑘 )

𝑡
. Concerning the 

other states 𝑗 > 1, the same distribution is given by 
the following recursive formula 

𝑃(𝐵𝑡+1
𝑘 = 𝑗) =

{
𝑃(𝐵𝑡

𝑘 = 𝑗) + 𝜙1,𝑗
𝑘 (𝑡 + 1) − 𝜙1,𝑗+1

𝑘 (𝑡 + 1)𝟏𝑗<𝑛

𝑃(𝐵0
𝑘 = 𝑗) = 0

 (2) 

where 

𝜙𝑖,𝑗
𝑘 (𝑡) = 𝑃(𝐵𝑡

𝑘 = 𝑗, 𝐵𝑡−1
𝑘 ≠ 𝑗,… , 𝐵1

𝑘 ≠ 𝑗|𝐵0
𝑘 = 𝑖) 

stands for the first time t that a bridge 𝑘 has reached 
state j being in state i at time 0, and 𝟏Θ = 1 if asser-
tion Θ is true and 0 otherwise. 

One time slice corresponds to one year of elaps-

ing time. Decision nodes have finite discrete states 

as well as utility nodes. Furthermore decision action 

types include both preventive (repairs) and correc-

tive (full renovation) maintenance. In practice, many 

maintenance techniques are available each having 

repercussions on a bridge being in a specific state 

and transitioning to a better one. We denote by 𝐴 the 

set of available repairs actions in which decision 

nodes take values. We assume 𝐴 has the same cardi-

nality as Ω. Maintenance can thus be viewed as im-

perfect - except for the replacement case - if the sys-

tem is not as good as new with probability one after 

performing such actions. For an exhaustive discus-

Figure 2. LIMID modelling the bridge network decision prob-
lem 



sion on this topic we refer to Pham & Wang (1996). 

In the area of bridge reliability, imperfect mainte-

nance can be interpreted for instance as cracking in-

spection where the probability of detection depends 

on the crack size. 

In order to account for a broad variety of out-

comes, given a bridge being in a state 𝑖, we assume 

that each action type 𝑟 ∈ 𝐴 has probability 𝑝𝑟 to 

reach state 𝑖 − 𝑟 + 1, and probability 1 − 𝑝𝑟 to reach 

state 𝑖 − 𝑟 + 2, with 1 < 𝑖, 𝑟 ≤ 𝑛 and 𝑟 ≤ 𝑖. Note 

that for the case 𝑖 > 𝑟, 𝑝𝑟 = 1 to reach state 1. We 

also assume all actions take negligible time with re-

spect to our time unit, in other words actions are 

considered instantaneous. Note that for a corrective 

maintenance action, this assumption could be re-

laxed in order to take into account the downtime pe-

riod needed to perform the replacement that would 

have an incidence on traffic disruption on other 

bridges for instance. The model outputs an optimum 

policy regarding each decision epoch. This is per-

formed by the Single Policy Update (SPU) algorithm 

(Lauritzen & Nilsson 2001). 
The LIMID structure is displayed in Figure 2. For 

a particular time slice 𝑡 and bridge 𝑘, the structure is 
comprised of chance nodes that can represent two 
different entities, namely the degradation process 𝐵𝑡

𝑘 
modelled through Eq. (2) and the random covariates, 
𝑅𝐶𝑡

𝑘. The latter represents a set of nodes having an 
effect on degradation as mentioned before and in do-
ing so several dependence configurations can be 
constructed between those. In the same way, deci-
sion and utility nodes are labelled 𝑑𝑡

𝑘 and 𝑢𝑡
𝑘 respec-

tively. Lastly, a utility node 𝑃𝑡
𝑘 represents a penalty 

according to a bridge condition, as a consequence, 
for example, of traffic restrictions or disruptions. 

 
Table 1. Variable domains and distributions 

Variable States Conditional probability distribution 

𝐵0
𝑘 1 - Perfect 

2 - Fair 

3 - Bad 

4 - Poor 

𝑃(𝐵0
𝑘 = 𝑖) = {

1 𝑖𝑓 𝑖 = 1
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝐵𝑡
𝑘 1 - Perfect 

2 - Fair 

3 - Bad 

4 - Poor 

𝑃(𝐵𝑡+1
𝑘 = 𝑖|𝐵𝑡

𝑘 = 𝑗, 𝑑𝑡
𝑘 = 𝑙) = 

{
 
 
 
 
 

 
 
 
 
 
1 𝑖𝑓 𝑖 = 1; 𝑗 = 1,2; 𝑙 = 3,4

𝑃(𝐵𝑡
𝑘 = 𝑖) 𝑖𝑓 𝑖 = 𝑗; 𝑙 = 1 

1 − 𝑃(𝐵𝑡
𝑘 = 𝑖) 𝑖𝑓 𝑗 = 𝑖 + 1; 𝑙 = 1

1 𝑖𝑓 𝑖 = 𝑗 = 4; 𝑙 = 1
1 𝑖𝑓 𝑖 = 1; 𝑙 = 2
𝑝2 𝑖𝑓 𝑖 = 𝑗 + 1; 𝑙 = 2
1 − 𝑝2 𝑖𝑓 𝑖 = 𝑗, 𝑙 = 2
𝑝3 𝑖𝑓 𝑖 = 𝑗 + 2, 𝑙 = 3

1 − 𝑝3 𝑖𝑓 𝑖 = 𝑗 + 1, 𝑙 = 3
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝑇𝑟𝑎𝑓𝑓𝑡
1 1 - Standstill 

2 - Queue 

3 - Free flow 

𝑃(𝑇𝑟𝑎𝑓𝑓𝑡
1 = 𝜏): obtained from field measurements 

𝑇𝑟𝑎𝑓𝑓𝑡
𝑘 1 - Standstill 

2 - Queue 

3 - Free flow 

𝑃(𝑇𝑟𝑎𝑓𝑓𝑡
𝑘 = 𝜏|𝑇𝑟𝑎𝑓𝑓𝑡

1 = Τ): obtained from field measurements 

𝐿𝑜𝑎𝑑𝑡
𝑘 1 - Heavy 

2 - Light 
𝑃(𝐿𝑜𝑎𝑑𝑡

𝑘 = 𝐿): obtained from field measurements 

𝑑𝑡
𝑘 1 – Do nothing 

2 – Partial repair 

3 – Advanced repair 

4 - Renovation 

Distribution is randomly chosen and iteratively updated according to the re-

quirements of the SPU algorithm. 

𝑢𝑡
𝑘 NA 

𝑢𝑡
𝑘 =

{
 
 

 
 0 𝑖𝑓 𝑑𝑡

𝑘 = 1

−𝐶𝑅1 𝑖𝑓 𝑑𝑡
𝑘 = 2 

−𝐶𝑅2 𝑖𝑓 𝑑𝑡
𝑘 = 3

−𝐶𝑅3 𝑖𝑓 𝑑𝑡
𝑘 = 4

 

𝑃𝑡
𝑘 NA 

𝑃𝑡
𝑘 =

{
 
 

 
 0 𝑖𝑓 𝐵𝑡

𝑘 = 1

−𝐶𝑃1 𝑖𝑓 𝐵𝑡
𝑘 = 2 

−𝐶𝑃2 𝑖𝑓 𝐵𝑡
𝑘 = 3

−𝐶𝑃3 𝑖𝑓 𝐵𝑡
𝑘 = 4

 



Furthermore we emphasize the role played by the 
arcs defined in section 2.2 according to three types: 
 Orange arcs represent “time links” between two 

consecutive epochs. It is reasonable to assume 
that a decision affects the bridge condition at the 
next time step. In addition, an incidence from de-
cision nodes to some of covariates can also be 
possible. 

 Blue arcs stand for dependence within the stock; 
as previously assumed, those are translated 
through physical covariates in a consecutive fash-
ion. 

 Black arcs by default represent dependencies in 
determined time slice and bridge. 
 
As decisions depend intrinsically on the degrada-

tion process and the fact that maintenance is chosen 
to be imperfect, strategies are optimized taking into 
account these two characteristics to output the best 
trade-off minimizing costs. 

4 NUMERICAL APPLICATION 

For this numerical example, the following parameter 
values are taken: 𝑚 = 3 bridges, 𝑇 = 20 years and 
𝑛 = 4 condition states for Ω and type of actions for 
the set 𝐴. As emphasized previously, we assume 
maintenance to be imperfect and we assume 
𝑝2 = 0.85 and 𝑝3 = 0.75. In addition, we set penal-
ty and costs values as follows. Whenever a bridge 
reaches state 2, 3 and 4, penalties are set to 𝐶𝑃1 = 1, 
𝐶𝑃2 = 3, 𝐶𝑃3 = 15 and 𝐶𝑅1 = 1, 𝐶𝑅2 = 5, 𝐶𝑅3 = 25 
respectively. 

The covariates chosen in this example represent 
traffic density and loading such that the distribution 
of loading depends on traffic density, the latter being 
a source node. In fact, the choice of opting for these 
two factors is first because they often happen to be 
the most relevant ones influencing degradation, for 
instance regarding fatigue for steel bridges. Second, 
as outlined in Figure 1, a spatial concentration of 
bridges entailing dependencies in terms of traffic 
motivates the usage of BNs. Traffic density is under-
stood here as the number of vehicles per kilometer per 
lane averaged over the total number of lanes. In doing 
so, traffic density can take three different values, 
namely Standstill, Queue and Free flow. Nodes 
providing information on loading have two states, 
Heavy and Light, separated by a threshold related to 
a proportion of the maximum load solicitation capaci-
ty a bridge can bear. These maintenance assumptions 
together with domains and distributions of each var-
iable are detailed in Table 1. 

Decisions directly depend on loading and degra-
dation. Implementing the values introduced above, 
the SPU outputs unconditional policies for each de-
cision node (60 in our example). In addition, the to-
tal expected utility is equal to 101.34. The SPU al-

gorithm outputs 3 main different policies which in 
this case are all the same regardless of the bridge 
considered. Those are distinguished according to the 
following time frames. The first time frame ranges 
from year 0 to year 3 and the policy prescribes ac-
tion type 1, meaning “Do Nothing”, to be performed. 
This is in line with the model’s assumption since for 
a worst-case scenario a bridge can reach state 4 only 
in year 3. The next time frame starts from year 3 to 
year 16, a more elaborated policy is prescribed. In 
fact, we first observe that the nature of loading does 
not shape the policy. Whenever a bridge is in condi-
tion 1, action type 1 is chosen. Furthermore, if a 
bridge is in condition 2 or 3, action type 2 is pre-
scribed and for a bridge being in state 4 maintenance 
type 3 is selected. This specific policy is displayed 
in Table 2. We can assert that this strategy is intend-
ed to be sound as the occupied time frame is wide 
and thus entails a balanced long-term strategy should 
no new information becomes available. Policies for 
the remaining time frame, i.e. 18 ≤ 𝑡 ≤ 20, consist 
essentially in choosing maintenance type 1. As the 
horizon is getting close the algorithm opts for null 
costs for the few years left. 

Conditional on inserting various types of pieces 
of evidence that increase or decrease probabilistic 
posterior beliefs for degradation (for instance in ob-
serving state High or Low of node Load), we end up 
obtaining policies that differ from the unconditional 
case. For illustration purposes, we condition on evi-
dence that probabilistically worsen degradation as it 
is crucial to investigate. However the opposite event 
or mixture of both can be envisaged as well in order 
to have a broader views on other possible scenarios.  

When locking evidence on state Standstill for 
node Traffic, differences are observed in policies oc-
cupying the longest time frame, namely the one dis-
played in Table 2. Instead of ranging from year 3 to 
year 17, the same policy now ranges from year 3 to 
year 10. The remainder of the interval displayed in 
Table 3 now differs regarding the maintenance ac-
tion to be taken when a bridge is in state 3, that is, 
type 3 is picked while type 2 was chosen for the un-
conditional case. Thus when traffic density is in a 
Standstill state, it further leads to an increase in 
terms of loading and risk-related to poor condition 
as mentioned earlier. Given so, the model reacts in 
the sense that a more costly policy is selected to pre-
serve a satisfactory reliability level. In this particular 
case, the total expected utility rises to 110.02. 

 
Table 2. Unconditional decision policy for bridge 1 

3 ≤ 𝑡 ≤ 17 𝐿𝑜𝑎𝑑𝑡
1 =  1 𝐿𝑜𝑎𝑑𝑡

1 =  2 

𝐵𝑡
1 1 2 3 4 1 2 3 4 

𝑑𝑡
1 = 1 1 0 0 0 1 0 0 0 

𝑑𝑡
1 = 2 0 1 1 0 0 1 1 0 

𝑑𝑡
1 = 3 0 0 0 1 0 0 0 1 

𝑑𝑡
1 = 4 0 0 0 0 0 0 0 0 



Table 3. Decision policy for bridge 1 conditionally on available 
evidence on state Standstill for node Traffic for bridge 1 

11 ≤ 𝑡 ≤ 17 𝐿𝑜𝑎𝑑𝑡
1 =  1 𝐿𝑜𝑎𝑑𝑡

1 =  2 

𝐵𝑡
1 1 2 3 4 1 2 3 4 

𝑑𝑡
1 = 1 1 0 0 0 1 0 0 0 

𝑑𝑡
1 = 2 0 1 0 0 0 1 1 0 

𝑑𝑡
1 = 3 0 0 1 1 0 0 0 1 

𝑑𝑡
1 = 4 0 0 0 0 0 0 0 0 

 
Table 4. Decision policy for bridge 2 conditionally on available 
evidence on node Traffic for bridge 1 

15 ≤ 𝑡 ≤ 17 𝐿𝑜𝑎𝑑𝑡
2 =  1 𝐿𝑜𝑎𝑑𝑡

2  =  2 

𝐵𝑡
2 1 2 3 4 1 2 3 4 

𝑑𝑡
2 = 1 1 0 0 0 1 0 0 0 

𝑑𝑡
2 = 2 0 1 0 0 0 1 1 0 

𝑑𝑡
2 = 3 0 0 1 1 0 0 0 1 

𝑑𝑡
2 = 4 0 0 0 0 0 0 0 0 

 
From the network level perspective, conditionali-

ty has also an impact yet small on other bridges. Pol-
icies remain unchanged except for those lying in the 
time frame ranging from year 15 to year 17 as indi-
cated in Table 4. While loading does not influence 
the decision type to be chosen, as bridges age and 
their reliability decrease, repair type 3 is preferred 
over type 2 in the unconditional case. Note that the 
same policy is also selected for the remainder of the 
bridges. Observe that maintenance type 4, assimilat-
ed to a full renovation, has not been taken into ac-
count by the model in any of the above situations. 
This is likely due to the fact that time horizon is yet 
too small to account for such maintenance that in-
volves much larger costs. 

5 CONCLUSIVE REMARKS 

This paper has proposed a model to optimize 
maintenance decisions in the context of network 
bridge management. Various aspects have been in-
troduced including imperfect maintenance and both 
conditionality and unconditionality characteristics in 
regards to availability of information. The latter 
proves to be a key component of the model in order 
to dynamically incorporate knowledge so that the 
whole network benefits from it. Furthermore, differ-
ent combination of type of pieces of information to 
be inserted could also be performed in order to in-
vestigate further impacts on policies. Also, when ex-
amining the case related to Table 4, the model shows 
how imperfect maintenance is optimized. In fact, on-
ly for a short amount of time such a policy is pre-
scribed which guarantees a cost-efficient strategy. 
This should be regarded with importance as a gen-
eral incentive when dealing with uncertainty around 
maintenance actions but as to properly evaluate the 
relevance of inserted information as well. 

The attractiveness of inference has to be mitigat-
ed though since the quantification of the BN plays a 
crucial role in the sensitivity of propagated evidence. 
However the ability to propagate available infor-
mation that would come from several bridges at 
once or a subnetwork of such would further 
strengthen beliefs at a bigger scale of the stock. Ad-
ditionally, the optimization part could integrate other 
types of dependencies. Regarding the decision pro-
cess for instance, limited or shared maintenance re-
sources or even budget constraint would further lead 
to prioritize maintenance interventions on certain el-
ements of the networks. 
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