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ABSTRACT: Bridge lifetime pose an important challenge in terms of maintenance for decision makers 

or asset managers. In this regard Markov chains have been used successfully in practice as models for 

bridge deterioration. However, one limitation of Markov chains can be the assessment of the transition 

probabilities. In this paper, we propose an approach based on Bayesian networks (BNs) to quantify the 

transition probabilities of the system state. One of the advantages of doing so is that the BN may be 

quantified through physical variables linked to the underlying degradation process in an intuitive way 

through expert judgment combined with field measurements. In addition, the possibility of using 

Bayesian inference allows updating the probabilities when observations become available that could 

provide different relevant views of the long-term degradation. An application to a hypothetical stock of 

steel bridges in the Netherlands is presented and illustrates the method. 

1. INTRODUCTION 

The ministry of Public Works and Water 

Management is responsible for approximately 

3500 bridges in the Netherlands of which more 

than 300 are composed of steel. Steel structures 

are subject to fatigue degradation during their 

lifetime (Sangid 2013), and cracks occur 

frequently due to this degradation. As the whole 

set of bridges is tremendously large, the need of 

flexible models for degradation analysis for 

decision makers and asset managers has 

therefore risen over the past decades. 

Existing literature offers a wide range of 

cross-disciplinary approaches when dealing with 

single and multiple structures that deteriorate. 

Physical models for deterioration have been 

commonly used in practice to date. They indeed 

can attain a great level of detail in the 

understanding of deterioration processes. 

Nevertheless, the uncertain behavior of quantities 

of interest naturally led to taking into account 

probabilistic and/or statistical features in such 

models (see for example Maljaars et al.(2012)). 

Kobayashi et al. (2014)) recently developed a 

pure-probabilistic-based method that principally 

describes the random evolution of three different 
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types of cracks for civil infrastructures. The 

objective lies in describing the performance by 

selecting smartly the cracking condition through 

a competing stochastic process. 

One of most challenging tasks in 

maintaining a network of sophisticated structures 

is to tackle it as a whole instead of seeing it as 

the multiplication of one individual element. 

Frangopol and Bocchini (2012) present a state-

of-the-art review on transportation network 

performance focusing on a bridge network 

example. The main underlying difficulty is 

related to time consuming computations since 

existing models often require the quantification 

of a large number of parameters. Recent 

techniques to overcome this issue happen to be 

efficient though. Bocchini et al. (2013) suggest a 

numerical technique through a Gaussian random 

field for the enhancement of the computational 

efficiency of life-cycle analysis of transportation 

networks under uncertainty. They approached the 

problem of life-cycle analysis whereas this paper 

provides a survey on lifetime issues. 

Reliability modelling also copes with this 

problem as Markov chains and Bayesian 

networks (BNs) have been frequently used. 

Examples of the latter are given in Langseth and 

Portinale (2007). In Straub (2009) a generic 

framework for stochastic modeling of 

deterioration processes is presented, based on 

dynamic Bayesian networks. Furthermore and 

specifically for bridges’ degradation, statistic-

based methods merged with Markov chains are 

put forward. They offer a logical way of 

evaluating transition probabilities since they rely 

on true collected data coming from inspections 

as pointed out in Madanat et al. (1995) and 

Morcous (2006). However, for dealing with a 

fleet of large and complex structures these 

methods can become inappropriate. The latter 

pointed out that they are subjected to the usual 

lack of data in particular concerning the 

assessment of small values for transition 

probabilities. 

In this paper, we propose a model using 

BNs to derive transition rates for Markov chains 

in an intuitive manner. In order to do so, 

carefully selected uncertain physical quantities 

act as influence factors through the probabilistic 

scheme that Bayesian networks offer. These 

quantities are of particular importance as they are 

estimated by an expert elicitation procedure. This 

involves the use of results yielded by Markov 

chain theory that are both easy to derive and 

represent meaningful quantities to experts. 

Our objective is first to analyze the different 

possible configurations of BNs we construct with 

a view to pick the most adapted one with respect 

to the set of bridges we consider. Secondly, we 

are interested in thoroughly quantifying the BNs. 

The expert elicitation method cited above offers 

an innovative and intuitive mechanism. The 

whole process of predicting degradation in a 

probabilistic sense additionally benefits from it.  

In order to achieve this, we divide the paper 

into the following sections. Section 2 provides a 

quick review of the basics on Bayesian networks 

and Markov chains as well as properties induced 

which are of importance to our problem. Section 

3 presents the model formulation and poses the 

actual problem relying on the two above-

mentioned methods. Section 4 introduces a 

numerical example on a set of hypothetical 

bridges and shows some of the results of interest. 

Finally Section 5 draws conclusions brought out 

from the numerical example and delivers 

perspectives and future work. 

2. METHODS 

In order to address the problem, this paper first 

includes two methods that rest upon probability 

theory, namely discrete Bayesian networks and 

discrete-time Markov chains. 

Bayesian networks embed both graph and 

probability theory. They can be seen as directed 

acyclic graphs (DAG) where vertices (also called 

nodes) stand for univariate random variables and 

edges (also referred to as arcs) symbolize direct 

influences between nodes. The direct 

predecessors of a node are called “parents” and 

conversely “children” are immediate successors 

of a particular node. If the set of parents for a 

node is empty we call it a “source” node. A BN 
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encodes the probability density or mass function 

on a set of variables by specifying a set of 

conditional independence statements in the DAG 

associated with a set of conditional probability 

functions. In addition, the possibility of using 

Bayesian inference in the model gives a dynamic 

feature when observations become available. A 

more exhaustive description on BNs can be 

found in Pearl (1988). 

In discrete BNs, nodes represent discrete 

random variables. These models specify 

marginal distributions for source nodes, and 

conditional probability tables (CPTs) for child 

nodes. In practice, there exist two ways of filling 

out the CPTs, that is either make use of available 

data or exploit structured expert judgment 

methods. In our case the latter is employed as 

quantities of interest cannot be accessible 

through data nor be calculated. Next section 

discusses in more details the implemented 

procedure. In summary, BNs turn out to be a 

proficient approach when evaluating 

(un)conditional probability distributions. 

Associating them with Markov chains is 

therefore enticing to investigate. 

Markov chains have demonstrated to be an 

adequate tool for the prediction of bridges 

conditions as reported notably in Mirzaei et al. 

(2012). Also, as outlined in Mašović and Hajdin 

(2014) for managing the Serbian bridge network, 

most worldwide bridge management systems 

have utilized Markov chains adopted them of 

addressing the problem. They indeed offer a 

simple broad frame to manipulate, especially 

when handling numerous and complex structures 

as bridges can be. In regards to deterioration 

issues, the validity of the Markov property has 

been at the same time praised (Scherer and 

Glagola (1994), Skuriat-Olechnowska (2005)) 

and criticized. Specifically concerning the 

transition from the best/initial condition state to 

the second best, the sojourn time is not 

exponentially distributed as the Markov property 

implicitly asserts. In order to overcome this issue 

Sobanjo (2011) used a semi-Markov model with 

a Weibull sojourn. Nonetheless, the choice of the 

semi-Markov model along with a Weibull 

sojourn time distribution with the parameters 

established using the maximum likelihood 

estimate were obtained using historical data for 

specific bridges. The model formulated in detail 

in the next section does not rely on this type of 

data. By consequence it is supposed throughout 

homogenous discrete-time Markov chains. 

The degradation state space Ω  varies 

generally from 3 to 9 states according to 

literature. For instance, Kallen (2007) operates 

with a 4- to 9-state degradation categories space 

while Morcous (2006) leans on a 6-state space. 

In addition, we assume that the deterioration 

process is only allowed at each time unit to either 

remain in the same state or move to the next state 

but cannot move backwards to better states. In 

other words, the worst state is an absorbing state 

for which renovation is highly encouraged but is 

not synonymous with a collapse and all the other 

states are transient. Assume 𝑛 possible states for 

the Markov chain, the transition probability 

matrix is given by 

𝑷 =  

(

 
 

1 − 𝑝12 𝑝12 0 ⋯ 0
0 ⋱ ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋱ 0
⋮ ⋱ ⋱ 1 − 𝑝𝑛−1𝑛 𝑝𝑛−1𝑛
0 ⋯ ⋯ 0 1 )

 
 

 

where 𝑝𝑖𝑗  is the well-known one-step transition 

probability. 

3. MODEL FORMULATION 

We first consider a set of 𝑚  hypothetical steel 

bridges. To each bridge 𝑘 it is coupled a Markov 

chain {𝑋𝑡
𝑘}𝑡>0  having 𝑛  number of states (𝑛 ≥

2) . Define the stochastic process {𝛾𝑡}𝑡>0  that 

serves as a global indicator in regards to the 

health of the entire stock. The outcome of the 

latter is obtained by an aggregation of each 

bridge’s condition. In addition we introduce the 

uncertain physical parameters (covariates) 

influencing the transition probabilities of the 

Markov chains such as load solicitation, bridge’s 

inner geometries, traffic density, etc. While we 

could end up with 20 of them for a single 
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structure (Maljaars et al.(2012)), the problem of 

studying a fleet of bridges forces us to sharply 

decrease this number and conserve the most 

relevant ones. These covariates act subsequently 

as nodes in the BN which in turn implies a 

dependence relationship between them. 

3.1. Construction of the BNs 

Deterministic factors inherent to each bridge are 

analyzed in view to construct the dependence 

structure between the bridges. Among these we 

can cite the geographical location, the highway 

they are part of, their surface area and so forth. 

Once a set of bridges have been picked based on 

these criteria, we build a BN according to each 

selected set. Hence we end up with dissimilar 

BNs each corresponding to a particular selection. 

These differences are expressed in terms of the 

arcs connecting the covariates. Relative to the 

value of these known factors there is also the 

possibility to link some of the covariates 

belonging to different bridges. The advantage of 

doing so is twofold. The first added value is 

directly related to the inability to completely 

monitor the entire network. Measured data would 

say something about the remainder through the 

mechanism of inference. 

 

 
Figure 1: Exact inference in a discrete BN 

 

In Bayesian network theory, inference is a 

central concept (Pearl 1988). Available 

information is inserted and propagates through 

the BN in both top-down and bottom-up manner. 

The distribution is therefore updated which 

eventually gives a dynamic feature to the model. 

For discrete BNs, discrete Bayes’ rule is invoked 

in order to perform and propagate inference. This 

is illustrated in Figure 1 where evidence has been 

observed in state “Heavy” for node Load_Jo. 

This translated in a probabilistic way amounts to 

saying that 𝑃(𝐿𝑜𝑎𝑑_𝑃𝑒 = 𝐻𝑒𝑎𝑣𝑦) = 1. 

3.2. Quantification 

In order to quantify properly the CPTs of each 

physical random quantity, an expert elicitation 

method is summoned based on an innovative and 

indirect bottom-up approach. The choice of 

soliciting experts about quantities which are 

familiar to them seems rather obvious. However 

it turns out that transition probabilities prove 

difficult to elicit directly whereas expected first 

passage time for sequential condition states does 

(Cooke 1991). The link between these quantities 

and transition probabilities allows us then to 

perform the elicitation. Let us first provide with 

the distribution of the first time of passage from 

state i to state j which is defined as 

𝑓𝑖𝑗(𝑡) = 𝑃(𝑋𝑡 = 𝑗, 𝑋𝑡−1 ≠ 𝑗,… , 𝑋1 ≠ 𝑗|𝑋0 = 𝑖) 

and can be expressed as the following recursive 

equation 

 𝑓𝑖𝑗(𝑡) = {
∑ 𝑝𝑖𝑘𝑓𝑘𝑗(𝑡 − 1)𝑘≠𝑗 , 𝑡 > 1

𝑝𝑖𝑗, 𝑡 = 1
 (1) 

The expected first arrival time is thereafter 

assessed by the following formula 

 𝐸[𝑇𝑖𝑗] = 1 + ∑ 𝐸[𝑇𝑘𝑗]𝑘≠𝑗 𝑝𝑖𝑘 (2) 

where 𝑇𝑖𝑗 = inf{𝑠 ∶  𝑋𝑠 = 𝑗|𝑋0 = 𝑖}. 

Notice that for fixed j in Eq. 𝑝𝑖𝑘 (2) we have 

to solve a system of equations that has 𝑐𝑎𝑟𝑑(𝛺) 
equations and unknowns. Complexity in solving 

this equation is therefore directly related to the 

chosen number of bridge condition states. 

The process in quantifying the BN is 

according to following 3-step procedure: 

1. Ask experts their uncertainty distribution 

over the expected first passage time between 

sequential condition states, namely 

𝐸[𝑇12], … , 𝐸[𝑇𝑛−1𝑛] . This can be done for 

example using Cooke’s (Cooke 1991). 

2. Retrieve the transition probability matrix by 

solving the system of equation in Eq. 𝑝𝑖𝑘 (2). 
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3. Compute the CPT’s of each node in the BN 

using Bayes’ rule along with the marginal 

distribution of nodes yielding the transition 

probabilities. 

According to the complexity of the BN (number 

of arcs and states) the above-mentioned 

procedure has to include the assessment of 

marginal distribution as well as sets of 

conditional probabilities for nodes. 

4. NUMERICAL EXAMPLE 

We consider here a BN comprised of 𝑚 = 5 

steel bridges labeled as Ry, Pe, Ma, Jo and Co. 

All bridges are assumed to be located in the same 

highway in the Netherlands and each possessing 

2 covariates which stand for the uncertainty on 

traffic density and load solicitation. Both refer to 

an annual period and are displayed in Figure 2 

labeled as Traffic_Den_”label_of_the_bridge” 

and Load_”label_of_the_bridge” respectively. 

Traffic density represents the number of vehicles 

per kilometer per lane averaged over the total 

number of lanes. In this example we use a 

distribution having 3 states, namely High, 

Medium and Low which correspond to standstill, 

queued and free flow traffic respectively. Node 

Load has in turn 2 states, Heavy and Light which 

are defined with respect to the maximum load 

solicitation capacity each bridge can bear. 

 

 
Figure 2: BN with 5 bridges sequentially linked 

through nodes Traffic_Den 

 

Furthermore we operate here with 𝑛 = 4 

states for space Ω = {𝐺, 𝑌, 𝑂, 𝑅}, where 𝐺 stands 

for Green and represents an “as good as new” 

condition, 𝑌 for Yellow, 𝑂 for Orange and 𝑅 for 

Red in successive deterioration states. State Red 

does not indicate total collapse of the structure 

but rather heavy maintenance required. In an 

attempt to give experts the best possible 

description in regards to the degradation 

mechanisms that are involved, these conditions 

are better qualitatively and quantitatively 

defined. 

The stochastic process 𝛾𝑡  defining the 

global indicator takes value in a 3-state space: 

- State 1: at least 60% of the stock is in state 

Green and the rest in any other state but Red 

- State 2 : all other possible combinations not 

contained in state 1 and 3 

- State 3: at least 60% of the stock is in state 

Red and the rest in any other state but Green 

In this case, bridges are linked consecutively 

through nodes Traffic_Den. This choice comes 

from the fact that they belong to the same 

highway and are closely located between one to 

another. It can be thus plausibly inferred that 

there exists a correlation between their respective 

traffic density. Notice there is here only one 

source node, namely Traffic_Den_Ry, which 

means its marginal distribution is not calculated 

with conditional probabilities. 

The quantification of the CPTs is then 

executed by means of the expert elicitation 

technique. Per bridge, it is asked uncertainty 

distributions over three expected transitions 

between successive states. We assume that when 

newly constructed, bridges are in condition 

Green. More precisely, the following type of 

question is solicited to the expert: 

“We are looking at the 5 highway steel bridges at 

the time of their construction. Could you provide 

with the 5
th

, 50
th

 and 95
th

 quantiles of your 

uncertainty distribution about the expected years 

that it takes for the bridge considered to transit 

between each consecutive state?”. Expert 

subsequently fills out his/her uncertain estimates 

with the help of relevant information on each 
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bridge, such as the span of the bridge, its age, the 

type of deck, the main joining method applied 

(welded, riveted or bolted), and so on. For bridge 

Ry estimates are detailed in Table 1. 

 
Table 1: Expert elicitation estimates (years) for 

bridge Ry (hypothetical estimates). 

Transitions/Quantiles 5
th

 50
th

 95
th

 

Green → Yellow 10.2 13.9 17.6 

Yellow→ Orange 9.4 13.7 16.2 

Orange → Red 9.2 12.6 15.9 

 

Next, the transition probability matrices at 

time zero which corresponds to the year of 

construction are computed. Below it is shown the 

matrix for the 50
th

 quantile for bridge Ry.  

 

𝑷𝑹𝒚 = (

0.9281 0.0719 0 0
0 0.927 0.0730 0
0 0 0.9206 0.0794
0 0 0 1

) 

 

Finally, step 3 of the procedure is carried 

out. An example of the CPTs used is exhibited in 

Table 2. For instance, first cell in Table 2 reads 

𝑃(𝑋𝑡
𝑅𝑦
= 𝐺|𝑋𝑡−1

𝑅𝑦
= 𝐺, 𝐿𝑜𝑎𝑑_𝑅𝑦𝑡−1 = 𝐻𝑒𝑎𝑣𝑦)

= 0.8714 
Other conditional probabilities in the table may 

be read in the same way. Notice that, in addition 

to the questions asked regarding expected 

transition times, we add questions to quantify the 

conditional probabilities of certain nodes in order 

to completely parameterize the BN. Other CPTs 

are interpreted similarly during the 

quantification. 

 
Table 2: CPT of node Green_Ry 

 Heavy 𝐿𝑖𝑔ℎ𝑡 
Green 0.8714 0.9437 

Yellow 0.1286 0.0563 

Orange 0 0 

Red 0 0 
 

Conditionally, on available evidence coming 

from monitoring for instance, we are able to 

distinguish between conditional and 

unconditional distributions. Here, for illustration 

purposes, inference on high traffic density has 

been inserted for bridge Ry taking the value of 

the 50
th

 quantile. In Figure 3 both distributions 

are plotted and we can observe that a continuous 

high traffic density accelerates the time to reach 

the failure state and thus reduces its lifetime. In 

terms of the plotted distribution this translates 

into a more abrupt slope. 

Confidence interval stemming from the 5
th

 

and 95
th

 quantiles shows a relatively large 

uncertainty especially expressed around year 30. 

Figure 3 results from a single expert estimates. 

Typically, combining experts individual 

estimates according to performance in the 

Cooke’s method would result in uncertainty 

bands in the order of individual experts. Notice 

also that the effect of conditionalizing on high 

traffic is smaller than expert’s uncertainty. 

 

 
Figure 3: Expert uncertainty on lifetime distribution 

for bridge Ry 

 

Beyond the fact of having forecasts on each 

individual elements of the network, we are also 

able to establish how the random aggregated 

global indicator behaves. Set Ω𝑅 = Ω ∖ {𝑅}, for 

notation purposes, we use 1 to denote bridge Ry, 

2 for bridge Pe, and so on. Concerning the 

distribution of the process 𝛾𝑛 being in state 1, we 

are seeking the following: 
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𝑃(𝛾𝑡 = 1) = 𝑃 [⋃ {⋃ {{𝑋𝑡
𝑖 ∈𝑚

𝑗=𝑖+1
𝑚−1
𝑖=1

Ω𝑅} ∩ {𝑋𝑡
𝑗
∈ Ω𝑅} ∩ {⋂ {𝑋𝑡

𝑘 = 𝐺}𝑘≠𝑖,𝑗 }}}]  

Recall that if the process 𝛾𝑡 is in state 1, it means 

that the network has at least 60% of bridges 

being in condition Green and the rest of the 

network is in any other state but Red. To 

compute this probability, we first apply the 

principle of inclusion and exclusion. It is the 

well-known formula giving the distribution of 

the union of events which applies to our case. 

Along with it we make use of the directional 

separation property (see Pearl 1988). This allows 

us to separate variables (or nodes) being 

conditionally independent giving another 

variable. We end up computing products of 

univariate conditional distributions instead of 

dealing with multidimensional joint distributions. 

For instance we typically use that the set of 

variables {Green_Ry, Yellow_Ry, Orange_Ry 

Red_Ry} is conditionally independent of 

{Green_Pe, Yellow_Pe, Orange_Pe, Red_Pe} 

giving {Traff_Den_Ry}. Using the same 

methodology, we calculate the distributions of 

state 2 and 3 which are all plotted in Figure 4. 

 

 
Figure 4: Distribution of states 1, 2 and 3 of 𝛾𝑡 

 

From the latter we can distinguish three 

different phases. First we can assert that until 

year 12 the entire network should remain in a 

good condition. Prior to this date it is likely that 

most of the bridges should be in a Green or 

Yellow condition state as probability is equally 

distributed between states 1 and 2 at year 12. 

Then from approximately that year to year 45, 

the distribution mass lies predominantly in state 

2 with a peak reached around year 25. This phase 

is of interest as state 2 regroups most of the total 

possible number of combinations (see previous 

definition). Thus the uncertainty concerning the 

state in which each bridge will be at between 

year 12 and 45 is high. This information will be 

relevant for maintenance purposes for example, 

hence particular attention should be drawn to the 

time span corresponding to this phase. Finally in 

year 45 a crossover occurs between state 2 and 

state 3 distributions. From that year on this leads 

the indicator to have a steadily increasing 

probability to reach state 3 than to any other 

state. 

5. CONCLUSIONS 

This paper has proposed a method to describe the 

lifetime distribution of bridges. Incentives 

fostering the use of this model first lie in its 

tractability and its applicability as it appears one 

could export it to different civil assets. Indeed 

the most challenging task remains the adequate 

use of covariates, this model requires relatively 

small amounts of data which is in general easily 

available. The last two features also allow the 

model to be operational in practice. As for 

extending it to the whole stock of highway steel 

bridges in the Netherlands, it is much likely to be 

feasible since dependencies handled through the 

BN structure corresponds to some extent to the 

geographical location of the bridges. Still a 

general challenge in using discrete BNs is that 

their quantification grows rapidly with the 

number of nodes and states. This model may be 

used to update uncertainty on the bases of 

monitoring or inspections. By examining the 

distribution of the global health state indicator, 

asset managers may be able to describe the 

general “health” of the stock of bridges. 

Increasing or defining states according to the 

requirements of particular applications, this 

would reduce the uncertainty around state 2 for 
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instance and would eventually aim at optimizing 

maintenance costs. 

Future research extending the results 

presented up to now include the elicitation to 

with a panel of experts with the objective to 

combine expert opinions. Extending the model to 

account for maintenance actions shall be taken 

into account in view to come up with a method 

that would cover partial or complete renovations 

as well. The effects of maintenance actions with 

respect to expert’s uncertainty (as shown in 

Figure 3 for example) should also be investigated 

in the future. 
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