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Abstract

In this article, we consider the problem of �xed-time observer for nonlinear systems, that is a �nite-time observer whose settling
time can be bounded independently of the initial condition. We consider a large class of nonlinear systems which includes two
main classes: linearizable systems up to input-output injection and uniformly observable systems. Furthermore, the e�ect of
noise and uncertainty is analyzed.

Key words: high-gain observer; �nite-time stability

1 Introduction

Observability of nonlinear systems has been character-
ized within either a di�erential geometric framework [20]
or a di�erential algebraic framework [13,14]. Once this
question is answered for a given system then a practi-
cal solution to reconstruct the non measured state has
to be worked out. This motivated an increasing number
of works on nonlinear observers design during the last
decades leading to a great variety of solutions. A �rst
one, which consists in �nding a change of coordinates
such that the resulting system is linear, has been consid-
ered in [12] using algebraic tools. A second one, based
on the Lyapunov auxiliary theorem and a direct change
of coordinates, can be found in [2]. A third strategy for
the class of uniformly observable systems use high-gain
observers [18,15,1]. Other methods usually rely on a spe-
ci�c structure such as backstepping, adaptive observers,
H∞ observer, etc.

All the above mentioned approaches deal with asymp-
totic convergence, while �nite-time stability has recently
become an active area of research [8,9] for the follow-
ing reasons: better disturbance rejection and robustness
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properties [40] are obtained (because, for system with
�nite settling-time, the static equivalent gain is "in�-
nite"), this �nite-time reponse property is a possible tool
for separation principle of nonlinear systems and are well
adapt to very severe time response constraint. For ex-
ample, such property is useful for the synchronization
of chaotic signals (with application in secure communi-
cation) [32] or for walking robots [33]. Sliding mode ob-
servers, which are widely used, allow �nite-time conver-
gence, see [17,31], but they are not smooth. Other ap-
proaches have been considered in order to obtain �nite-
time convergence such as moving horizon observers in
[29] or delay systems in [28] but they can hardly be gen-
eralized to wider classes of nonlinear systems. Quite re-
cently, homogeneity [9,7] was used to obtain �nite-time
convergence property [9]. Finite-time observers based
on recursive construction can be found in [3,4] but the
complexity increases with the system's dimension since
the corrective term is composed of nested polynomial
terms. Another alternative is to design �nite-time ob-
servers using as simple gains as the one obtained in the
linear case. This track has accomplished considerable
progress [32,38,27]. Other observers with time varying
gains or additional assumptions have been developed in
[37,39,25,26]. In this article, we are interested in a par-
ticular kind of stability, namely �xed-time stability. A
system is �xed-time stable if it is �nite-time stable and
if its settling time can be bounded independently of the
initial condition. This terminology has been adopted re-
cently in [34,35].

Here we provide �xed-time convergent observers for a
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class of nonlinear systems which includes: the class of
linearizable systems up to input-output injection and
the class of uniformly observable systems, subject to un-
certainty and noise. One of the main advantage of the
proposed observer is the simplicity of the gains selec-
tion, since they are set o�-line by solving the same Ric-
cati equation as in the linear case. Furthermore, a gen-
eral class of corrective terms for the �xed-time conver-
gence is here proposed, generalizing the existing ones (for
�nite-time convergence). If there is no uncertainty and
no noise, the error is proved to converge in �nite-time
to the origin. Whereas in the presence of uncertainty
and/or noise, the error converges toward a ball whose
radius depends on the bound of the noise and/or uncer-
tainty. In both cases, the settling time can be bounded
independently of the initial conditions. The two last fea-
tures are new, indeed, to the authors best knowledge the
simplest gains proposed in the literature are those given
in [38,27], the �rst one is only semi-global and the second
one does not provide a bound independent of the initial
conditions for the settling time. Furthermore the e�ect
of uncertainty and noise has never been studied for this
approach.

The article is organized as follows. Section 2, provides
some notations and de�nitions. In section 3 a �xed-time
observer is proposed for a large class of nonlinear sys-
tems. Then, section 4 gives convergence results in both
cases with or without noise/uncertainity. Convincing
simulations are given in section 5. Finally, section 6 con-
cludes the article.

2 Notations and de�nitions

In the paper the following notations are used:

• R+ = {x ∈ R : x ≥ 0} and R∗+ = {x ∈ R : x > 0};
• Rn+ = (R+)

n
, with n ∈ N;

• dxcα = sign(x).|x|α, with α > 0 and x ∈ R;
• ‖.‖ denotes the euclidean norm;
• λm(M) and λM (M) are respectively the lowest and
the greatest eigenvalue of the square matrix M ;

• δrλ
4
= diag(λr1 , . . . , λrn) for all r = (r1, . . . , rn) ∈ Rn+

and λ ∈ R+;
• the function ν is de�ned as

ν(x, α, β) =

{
dxcα if |x| < 1

dxcβ if |x| ≥ 1
, (1)

with x ∈ R, α ∈ R+ and β ∈ R+;
• the matrix A ∈ Rn×n and the vectors B ∈ Rn×1, C ∈

R1×n are de�ned by

A =



0 1 0 0 0

0 0 1 0 0
...
...
...
. . .

...

0 0 0 0 1

0 0 0 0 0


, B =


0
...

0

1

 , C =


1

0
...

0



T

; (2)

• ∆θ
4
= diag

(
1, 1θ , · · · ,

1
θn−1

)
with θ ≥ 1;

• F (K,x, α)
4
= (k1dxcα1 , . . . , kndxcαn)T with x ∈

R, α > 0 and K = (k1, . . . , kn);
• a continuous function φ : R+ → R+ is said to be
of class K∞ if φ is strictly increasing, φ(0) = 0 and
limr→+∞ φ(r) = +∞.

One of the key-property used in this article is homogene-
ity which is de�ned hereafter.

De�nition 1 A function V : Rn → R is homogeneous
of degree d with respect to the weights (r1, . . . , rn) ∈ Rn+
if V (δrλx) = λdV (x), for all λ > 0 and x ∈ Rn. A vector
�eld f : Rn → Rn is homogeneous of degree d with re-
spect to the weights (r1, . . . , rn) ∈ Rn+ if for all 1 ≤ i ≤ n,
the i-th component fi is an homogeneous function of de-
gree ri+d. A dynamical system ẋ = f(x) is homogeneous
of degree d if the vector �eld f is homogeneous of degree
d.

Let f : R+×Rn → Rn be a continuous vector �eld, such
that f(0, 0) = 0. Consider the system{

ẋ(t) = f(t, x(t))

x(0) = x0
. (3)

De�nition 2 [35]

• The equilibrium point x = 0 of the system (3) is said
to be globally �nite-time stable if it is globally asymp-
totically stable and any solution x(t) starting from x0
reaches the equilibrium at some �nite moment, i.e.
x(t) = 0, for all t ≥ T (x0), where T : Rn → R+ is the
so-called settling time function.

• If in addition the settling-time function T (x0) is
bounded by some positive number Tmax > 0, i.e.
T (x0) ≤ Tmax, for all x0 ∈ Rn, the system (3) is said
to be globally �xed-time stable.

Remark 1 This last de�nition can be easily adapted for
a compact set instead of an equilibium point.

3 Fixed-time observer design

When designing observers for nonlinear systems, two
main classes of systems are considered: linearizable sys-
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tems up to input-output injections and uniformly ob-
servable systems. In the �rst case, methods for turning
systems into a linear system up to input-output injection
through di�eomorphism can be found in [23,24,11], and
through immersion in [6,21]. In the second case of uni-
formly observable systems, due to the nonlinearity struc-
ture of the obtained system, authors use mainly high-
gain linear corrective term leading to at least a semi-
global exponential convergence of the error (global con-
vergence can be performed when the nonlinearity has a
Lipschitz property). Due to the obtained structure dif-
ferent corrective terms can be selected:

• proportional to the output error, which gives expo-
nential convergence,
• proportional to the power of the output error (with
power less than one) as in [32,38], which gives semi-
global �nite-time convergence,
• a linear combination of the two previous ones, which
gives global �nite-time convergence.

Here, we will design an observer whose observation error
converges to zero in �xed time: for this, a new nonlinear
corrective term will be introduced.

3.1 The class of system under consideration

We consider the class of uncertain systems which are dif-
feomorphic to the following triangular form up to input-
output injection:
ẋ(t) = Ax(t) + ϕ(y(t), u(t), u̇(t), . . . , u(r)(t), x(t))

+Bd(t)

y(t) = Cx(t) + n(t)

,

(4)
where x ∈ Rn is the state, u = (u1, . . . , um) ∈ Rm is
the known input (derivatives are known up to order r),
y ∈ R is the measured output, d ∈ R is an unknown
exogenous signal (disturbance, modeling error, . . . ), n
is the noise on the output and A,B,C are de�ned by
(2). In the rest of the paper the time dependence of
the variables will be omitted when it is clear from the
context: x(t) will be denoted x and so on. In addition,
ϕ(y, u, u̇, . . . , u(r), x) will be denoted as ϕ(·, x): the dot
means that the function depends on the known variables
y, u, u̇, . . . , u(r). The functionϕ is analytic, withϕ(·, 0) =
0 and has a triangular structure, that is ϕi(·, x) only
depends on ·, x1, . . . , xi. When the function ϕ does not
depend on y and the input derivatives (i.e.ϕ(·, x) reduces
to ϕ(u, x)), we recover the triangular form introduced in
[18,19] for uniformly observable nonlinear systems. On
the contrary, when the function ϕ does not depend on
x, the model reduces to:{

ẋ = Ax+ ϕ(y, u, u̇, . . . , u(r)) +Bd

y = Cx+ n,
(5)

and thus, (4) also covers the class of nonlinear system
linearizable up to input-output injection.

The design of an observer for the system (4) will be
carried out under the following assumptions:

Assumption 1 (nonlinearity) the function ϕ is glob-
ally Lipschitz with respect to x with constant l;

Assumption 2 (input) all input derivatives are

bounded by u0 ∈ R+, that is |u(j)i (t)| ≤ u0, for all t ≥ 0
and 1 ≤ i ≤ m, 0 ≤ j ≤ r;

Assumption 3 (perturbation) the unknown func-
tion d is essentially bounded, i.e. ∃δd > 0; ess supt≥0 ‖d(t)‖ ≤
δd;

Assumption 4 (noise) the noise signal n is essentially
bounded, i.e. ∃δn > 0; ess supt≥0 ‖n(t)‖ ≤ δn.

Remark 2 Assumption 1 includes a large class of
functions such as C1 functions with uniformly bounded
derivative. Assumptions 2 to 4 correspond to physical
limitations of the di�erent signals, indeed, the noise,
uncertainty and the input have �nite energy. These as-
sumptions have already been discussed in the literature,
since they are the same as the ones used for the classical
high-gain observer (see [18,10] for example).

3.2 Observer and its corrective term

An observer for the system (4) is given by:

˙̂x = Ax̂+ ϕ(·, x̂) +Nα,β(K, θ, e1 + n), (6)

and its associated error equation is:

ė = Ae+ ∆ϕ(·, x, x̂) +Bd−Nα,β(K, θ, e1 + n), (7)

where θ ≥ 1, ∆ϕ(·, x, x̂) = ϕ(·, x)−ϕ(·, x̂) and ei = xi−
x̂i, i = 1, . . . , n, note that e1 +n = x1 +n− x̂1 = y−Cx̂.
When ϕ(·, x) reduces to ϕ(u, x)), by proper selection of
Nα,β we recover the high-gain observer introduced in
[18,19] for uniformly observable nonlinear systems. For
such high-gain observer the gain K is selected as:

K = (k1, . . . , kn)
4
= S−1CT , (8)

with S the symmetric positive de�nite matrix solution
of the Riccati equation:

S +ATS + SA− CTC = 0. (9)

The proof of the error convergence is based on the Lya-
punov function:

V (e) = eTSe, e ∈ Rn. (10)
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The corrective term in (6) is chosen in the following form
(in order to obtain �xed-time convergence):

Nα,β(K, θ, e1) =
(
θk1µ

α1,β1(e1), . . . , θnknµ
αn,βn(e1)

)T
,

(11)
where the powers αi, βi will be speci�ed later on and
µα,β : R → R is such that the following assumption
holds:

Assumption 5 (corrective term)

(i) for every compact set C ⊂ Rn\{0} and for all
ε > 0, there exists λ0 > 0, λ∞ > 0 such that for all

λ ∈ (0, λ0] we have maxx∈C

∣∣∣µα,β(λx)λα − µα,β(x)
∣∣∣ ≤

ε and for all λ ∈ [λ∞,+∞) we have maxx∈C∣∣∣µα,β(λx)λβ
− µα,β(x)

∣∣∣ ≤ ε ;
(ii) for every compact set C ⊂ Rn\{0} and for all ε >

0, there exists βM > 1 > αm > 0 and γ ≥ 1
such that for all α ∈]αm, 1[, β ∈]1, βM [ we have
maxx∈C

∣∣µα,β(λx)− γx
∣∣ ≤ ε;

(iii) for all ε > 0, δ > 0, there exist class K∞ functions
τ1, τ2 such that for all x ∈ R, z ∈ [−δ, δ], α ∈]1−ε[,
β ∈]1, 1 + ε[, the following inequality holds

∣∣µα,β(x)− µα,β(x+ z)
∣∣ ≤ τ1(δ)|x|β−1 + τ2(δ).

Remark 3 Condition (i) corresponds to the homogene-
ity in the bi-limit of the function µα,β (see [3]), it should
be noted that the bounds λ0 and λ∞ depend on the com-
pact set C and ε. Condition (ii) means that the behavior
of the corrective term is close to a linear behavior when
α, β are close to 1. Condition (iii) is a kind of weak Lip-
schitz property which will be useful for the convergence
analysis in presence of noise/perturbation.

Example 1 There are several possible corrective terms
which verify assumption 5 such as:

µα,β(x) =−dxcα − dxcβ , (12)

µα,β(x) =−sign(x)
(
|x|αk + |x|

β
k

)k
, k > 0, (13)

µα,β(x) =

{
−dxcα if x ≤ 1

−dxcβ if x > 1
. (14)

4 Observer �xed-time convergence

In the design of observer (6) we have introduced a
bi-limit homogeneous corrective term (11) in order to
obtain �xed-time convergence of the observation error.
When ∆ϕ(·, x, x̂) = 0, approximation at 0 or at∞ of (7)

is closely related to the behavior of the following system:
ė1 = e2 − k1de1cα1

...

ėn−1 = en − kn−1de1cαn−1

ėn = −knde1cαn

, (15)

where K is selected according to (8) and the powers αi
are given by

αi = iα− (i−1), α ∈]1−1/n,+∞[, i = 1, . . . , n. (16)

With such powers, system (15) is homogeneous of
degree (α − 1) with respect to the weights r(α) =
(r1(α), . . . , rn(α)) de�ned by ri(α) = (i − 1)α − (i −
2), i = 1, . . . , n. There exist several methods for con-
structing an homogeneous Lyapunov function for the
system (15) such as in [36]. But here we use the key
fact that the 1-level set of the homogeneous Lyapunov
function is exactly the 1-level set of the quadratic Lya-
punov function used in the linear case. Using this, one
can shows (all proofs are postponed to appendices):

Theorem 1 There exists ε > 0 such that for all α ∈
]1 − ε, 1 + ε[, the system (15) is asymptotically stable.
Furthermore, an homogeneous Lyapunov function, of de-
gree 2 with respect to the weights (r1(α), . . . , rn(α)), for

the system (15), whose 1 level set is exactly H 4
= {e ∈

Rn | eTSe = 1}, is given by

Wα

(
δ
r(α)
λ z̃

)
= λ2Wα(z̃) = λ2V (z̃), (17)

for all λ > 0, z̃ ∈ H. The derivative of the Lyapunov
function along the solutions of the system (15) veri�es
the following inequality

Ẇα(e)|(15) = 〈∇Wα(e), fα(e)〉 ≤ −3

4
(Wα(e))

1+α
2 . (18)

Where fα(e) denotes the right-hand side of (15). Us-
ing such a construction for the Lyapunov function we
can build two Lyapunov functions (one for each approx-
imation): at 0 (resp. ∞) denoted by Wα, α < 1 (resp.
Wβ , β > 1). Due to approximations of Nα,β(K, θ, e1) at
0 and at ∞, and the fact that we aim at getting �xed-
time error convergence, the �powers� αi, βi in (11) have
to be selected according to (16) with α ∈ (1 − 1/n, 1)
and β > 1. Let us denote

H0 = {δr(α)λ z̃ |λ ∈]0, 1], z̃ ∈ H}, (19)

H∞ = {δr(β)λ z̃ |λ ∈ [1,+∞[, z̃ ∈ H}.

Note that the sets H0 and H∞ are equal to {e ∈
Rn | eTSe ≤ 1} and {e ∈ Rn | eTSe ≥ 1}, respectively.
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Then, the candidate Lyapunov function is de�ned as:

Wα,β(e) =

{
Wα(e) if e ∈ H0

Wβ(e) if e ∈ H∞
. (20)

Using this constructed Lyapunov function, we obtain:

Theorem 2 Assume that Assumptions 1 to 5 hold. Let
K be given by (8), then there exist ε > 0 and θ∗ ≥ 1 such
that for all θ > θ∗, α ∈]1 − ε, 1[ and β ∈]1, 1 + ε[, the
following holds:

• when d = n = 0, the origin of the error system (7) is
globally �xed-time stable, its settling time T (e0), where
e0 = x(0)− x̂(0), is bounded by

T (e0) ≤ 4

θ

(
1

1− α
+

1

β − 1

)
, (21)

• otherwise there exists a neighborhood of the origin of
the error system (7) wich is globally �xed-time stable.
More precisely, we have

Wα,β(e(t)) ≤
( c
θ
δd + θn−1τ(δn)

)2
+ Γe−k(t−T

∗),

(22)
for all t ≥ T ∗, e ∈ Rn, where Wα,β is de�ned by (20),
k,Γ, T ∗, c > 0 are constants and τ is a class K∞ func-
tion all independent on the initial error e(0), further-
more c and τ are both independent on θ.

Remark 4 Inequality (22) shows that the error due to
the uncertainty will decrease as θ increases, but in the
mean time, the error due to the noise will increase. Hence,
there exists an optimal value for θ such that the overall
error is minimum.

This result can be adapted for the linearizable system
case and assumptions 1-2 are no more needed:

Corollary 1 Assume that Assumptions 3 to 5 hold. An
observer for the system (5) (when ϕ(·, x) is independent
of x) is given by (6) with θ = 1, which reads as:

˙̂x = Ax̂+ ϕ(y, u, u̇, . . . , u(r)) +Nα,β(K, 1, e1 + n).

Let K be given by (8), then there exists ε > 0 such that
for all α ∈]1− ε, 1[, β ∈]1, 1 + ε[, the following holds:

• when d = n = 0, the origin of the error system is
globally �xed-time stable, its settling time T (e0), where
e0 = x(0)− x̂(0), is bounded by

T (e0) ≤ 2

(
1

1− α
+

1

β − 1

)
. (23)

• otherwise there exists a neighborhood of the origin of
the error systemwich is globally �xed-time stable. More
precisely, we have

Wα,β(e(t)) ≤ (cδd + τ(δn))
2

+ Γe−k(t−T
∗) (24)

for all t ≥ T ∗, where c, k, T ∗ > 0 are constants and
τ a class K∞ function, all independent on the initial
error e(0).

Remark 5 Note that the bound (23) on the settling time
is not obtained directly from the bound (21) of Theorem
2 by setting θ = 1. Indeed, a di�erent over-valuation of
the derivative of the Lyapunov function can be obtained
since the nonlinear function ϕ in system (5) does not
depend on the state x.

5 Simulations

Let us consider the following system:


ẋ1 = x2 − sin(x1)

ẋ2 = x3 − x1 + sin(x1 + x2)

ẋ3 = − sin(x1 + x2 + x3) + d

y = x1 + n

where d = 10 and n is a white noise of variance
σ2 = 2 with zero mean. The observer given by (6) with
µα,β(x) = ν(x, α, β) can be written as:


˙̂x1 = x̂2 − sin(x̂1) + θk1ν (x1 − x̂1, α1, β1)
˙̂x2 = x̂3 − x̂1 + sin(x̂1 + x̂2) + θ2k2ν (x1 − x̂1, α2, β2)
˙̂x3 = − sin(x̂1 + x̂2 + x̂3) + θ3k3ν (x1 − x̂1, α3, β3)

The gain is given by K = (3, 3, 1) and the powers are
chosen as α = 0.99 and β = 1.2.
Two sets of simulations are given. The �rst one illus-
trates the e�ect of the noise and uncertainty on the do-
main of convergence and is reported on Figure 1. For
these simulations, the initial conditions are chosen as
x(0) = [10;−100; 100]T and x̂(0) = [0; 0; 0]T . More pre-
cisely, only the observation error for x3 is reported, since
this component is the most a�ected by the noise and un-
certainty. As stated in Theorem 2, we can see that the
error due to the uncertainty decreases as θ increases, but
the error due to the noise increases while θ increases.
The optimal value of θ is comprised between 4 and 5.
The second one illustrates the �xed-time property of the
proposed observer and is reported on Figure 2. In this
case, the proposed observer is compared with the classi-
cal high-gain observer from [18] and the �nite-time ob-
server from [38], the tunning parameter is set as θ = 3
for every observer.
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Fig. 1. Comparison of the error e3 = |x3 − x̂3| for di�erent
values of θ.

6 Conclusion

In this article, we have proposed a �nite-time observer
with bounded settling time for a general class of nonlin-
ear systems subject to noise and uncertainty. This class
of systems includes the class of linearizable systems up
to input-output injection and the class of uniformly ob-
servable systems. The gains of this observer are exactly
the same than for the classical high-gain observer, which
makes it easy to tune. Furthermore, we have shown that
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Fig. 2. Comparison of the time of convergence for di�erent
initial conditions.

the error converges, in �xed time, toward zero if there
are no noise and uncertainty and toward a ball whose
radius depends on the noise and the uncertainty bound
otherwise.
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A Technical Lemmas

The following technical lemmas will be used throughout
the appendices.

Lemma 1 [30, Lemma 26.8] Consider the product space
X × Y where Y is compact. If N is an open subset of
X × Y containing the slice {x0} × Y of X × Y , then N
contains some tube W × Y about {x0} × Y , where W is
a neighborhood of x0 in X.

Lemma 2 Let ε > 0 and

g : R+ × [1− ε, 1 + ε] → R+

(x, y) 7→ g(x, y)
(A.1)

be a C1 function on R∗+×]1 − ε, 1 + ε[ verifying the fol-
lowing assumptions:

i) limx→0 g(x, y) = 0, uniformly with respect to y;
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ii) limx→+∞ g(x, y) = +∞, uniformly with respect to
y;

iii) {x ∈ R+ | g(x, 1) = 1} = {1};
iv) g(1, y) = 1 for all y ∈ [1− ε, 1 + ε];

v) ∂g
∂x (1, 1) 6= 0.

Then, there exists ε∗ > 0 such that for every y ∈]1 −
ε∗, 1 + ε∗[ we have

{x ∈ R+ | g(x, y) = 1} = {1} (A.2)

Proof (by contradiction) Assume that for all ε̃ > 0 there
exists ỹ ∈]1− ε̃, 1 + ε̃[ and x̃ 6= 1 such that g(x̃, ỹ) = 1.
On one hand, one can construct a sequence (xk, yk) such
that yk converges toward 1 and such that g(xk, yk) = 1
and xk 6= 1 for all k ∈ N. Because of assumptions i) and
ii), there exists ς > 0 such that one can extract a subse-
quence of xk contained in

[
ς, 1ς
]
. Since this subsequence

is contained in the compact set
[
ς, 1ς
]
, one can further

extract a convergent subsequence x̃k converging toward
1 because of assumption iii) and the continuity of g.
On the other hand, applying the implicit function the-
orem given for instance in [5, Th. 13.7] to g by using
assumption v) shows that there is a neighborhood of 1
such that for every y in this neighborhood, the equation
g(x, y) = 1 possesses only one solution. By assumption
iv), this solution is given by (1, y), which contradicts
the existence of the previously constructed subsequence.
2

Lemma 3 Consider the following ordinary di�erential
equation{
ẋ(t) = −k1ν(x(t), γ1, γ2) + k2ν(x(t), γ3, γ4)

x(0) > 0
(A.3)

with k1, k2 > 0, γ1 < 1, γ2 > 1, γ1 > γ3 > 0 and
γ2 > γ4 > 0. Then, there exist constants T, k3,Γ > 0
independent of x(0) such that

x(t) ≤ ν
(
k2
k1
,

1

γ1 − γ3
,

1

γ2 − γ4

)
+ Γe−k3(t−T ) (A.4)

for all t ≥ T .

Proof One shall prove (A.4) when k2
k1

< 1 (the case
k2
k1
≥ 1 being similar is omited). Let us show �rstly that

after a time T > 0, the solution x(t) of (A.3) veri�es
x(t) < 1 for any x(0) > 0, then, for x(0) < 1 one shows

that the equilibrium point
(
k2
k1

) 1
γ1−γ3

is exponentially

stable. For x(t), one has ẋ(t) ≤ −(k1 − k2)x(t)γ2 and
by using the comparison lemma 2.5 p. 85 in [22], one

obtains that x(t) < 1 for t > T
4
= 1

(γ2−1)(k1−k2) .

For
(
k2
k1

) 1
γ1−γ3 ≤ x(t) < 1, one has ẋ(t) = −k1x(t)γ1 +

k2x(t)γ3 ≤ −k3
(
x(t)−

(
k2
k1

) 1
γ1−γ3

)
, with k3 =

k1
1−
(
k2
k1

) γ1
γ1−γ3

1−
(
k2
k1

) 1
γ1−γ3

+ γ3k2

(
k2
k1

) γ3−1

γ1−γ3
. One concludes that

for t ≥ T

x(t) ≤

(
1−

(
k2
k1

) 1
γ1−γ3

)
e−k3(t−T ) +

(
k2
k1

) 1
γ1−γ3

.

2

B Proof of Theorem 1

The proof is split into two parts. We �rst show that there
exists ε1 > 0 such that for all α ∈]1 − ε1, 1 + ε1[, the
functionWα is well de�ned and is a candidate Lyapunov
function. Then we show that there exists 0 < ε2 ≤ ε1
such that for all α ∈]1 − ε2, 1 + ε2[, inequality (18) is
satis�ed. The asymptotic stability of the system (15)
follows from these properties.
Part 1
In order for (17) to be consistent, we need to check that

for each z̃ ∈ H, the homogeneous ray
{
δ
r(α)
λ z̃ |λ > 0

}
cross the manifold H only once for λ = 1.
Let z̃ ∈ H, applying Lemma 2 to the function (λ, α) →
V (δ

r(α)
λ z̃) gives the existence of εz̃ > 0 such that for all

α ∈]1− εz̃, 1 + εz̃[, {λ ∈ R+ |V (δ
r(α)
λ z̃) = 1} = {1}.

Since H is a compact set, there exists ε1 > 0 such that
for all z̃ ∈ H and α ∈]1 − ε1, 1 + ε1[, one has {λ ∈
R+ |V (δ

r(α)
λ z̃) = 1} = {1}.

Now that the function Wα is well de�ned by (17), it
remains to prove that it is actually a Lyapunov function
for the system (15). It is clear from its de�nition (17)
thatWα is smooth and radially unbounded, since V is a
Lyapunov function for the system (15) with α = 1, and
that Wα(0) = 0.
Part 2
We have

〈∇Wα(δ
r(α)
λ z̃), fα(δ

r(α)
λ z̃)〉= λ1+α〈∇Wα(z̃), fα(z̃)〉

= λ1+α〈∇V (z̃), fα(z̃)〉

for every z̃ ∈ H.
The function fα(z̃) is continuous relatively to α and z̃,
so the function

h : ]1− ε1, 1 + ε1[×H → R+

(α, z̃) 7→ −〈∇V (z̃), fα(z̃)〉

is also continuous, and h(1, z̃) ≥ 1 for all z̃ ∈ H. Hence
{1}×H ⊂ h−1(]3/4,+∞[) which is an open subset since
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h is continuous. Since H is a compact set, we can apply
Lemma 1 and there exists 0 < ε2 ≤ ε1 such that

〈∇V (z̃), fα(z̃)〉 ≤ −3

4
, ∀z̃ ∈ H, ∀α ∈]1− ε2, 1 + ε2[.

Finally, we obtain

〈∇Wα(δ
r(α)
λ z̃), fα(δ

r(α)
λ z̃)〉 ≤−3

4
λ1+α,

≤−3

4

(
λ2W (z̃)

) 1+α
2 ,

≤−3

4

(
W (δ

r(α)
λ z̃)

) 1+α
2

.

C Proof of Theorem 2

One considers the candidate Lyapunov function Wα,β

given by (20) for α ∈]1−ε1, 1[, β ∈]1, 1+ε1[ where ε1 > 0
is given by Theorem 1. We �rst state useful Lemmas for
the proof of Theorem 2.

Lemma 4 There exists ε2 ∈]0, ε1[ such that the following
inequality is veri�ed

〈∇Wα,β(e), Ae−Nα,β(K, 1, e1)〉

≤ −1

2
ν

(
Wα,β(e),

1 + α

2
,

1 + β

2

)
(C.1)

for all e ∈ Rn, α ∈]1− ε2[, β ∈]1, 1 + ε2[ and ν is de�ned
by (1).

Proof Inequality (C.1) is equivalent to the two following
inequalities:

〈∇Wα(e), Ae−Nα,β(K, 1, e1)〉

≤ −1

2
(Wα(e))

1+α
2 , ∀e ∈ H0 (C.2)

〈∇Wβ(e), Ae−Nα,β(K, 1, e1)〉

≤ −1

2
(Wβ(e))

1+β
2 , ∀e ∈ H∞ (C.3)

The cases e ∈ H0 and e ∈ H∞ are very similar to demon-
strate, then one shall exhibit only the case e ∈ H0. One

has

〈∇Wα(e), Ae−Nα,β(K, 1, e1)〉

=
4

5
〈∇Wα(e), Ae− F (K, e1, α)〉

+

〈
∇Wα(e),

1

5
Ae−

(
γ − 4

5

)
F (K, e1, α)

〉
+〈∇Wα(e), γF (K, e1, α)−Nα,β(K, 1, e1)〉

≤ −3

5
(Wα(e))

1+α
2

+

〈
∇Wα(e),

1

5
Ae−

(
γ − 4

5

)
F (K, e1, α)

〉
+〈∇Wα(e), γF (K, e1, α)−Nα,β(K, 1, e1)〉

for all e ∈ H0, because of Theorem 1, with γ given by
Assumption 5.

Let us denote e = δ
r(α)
λ z̃, with z̃ ∈ H and λ ∈ [0, 1], then

〈∇Wα(e), γF (K, e1, α)−Nα,β(K, 1, e1)〉 =

λ1+α
n∑
i=1

(∇Wα(z̃))i ki

(
γdλz̃1cαi − µβiαi(λz̃1)

λαi

)
.

According to Assumption 5-(i) the function µβα(x) con-
verges toward γdxcα when α, β → 1, uniformly on any
compact set. Thus there exists 0 < ε21 < ε1 such that

n∑
i=1

(∇Wα(z̃))i ki

(
γdλz̃1cαi − µβiαi(λz̃1)

λαi

)
≤ 1

20γ

for every α ∈]1 − ε21, 1[, β ∈]1, 1 + ε21[, z̃ ∈ H and
λ ∈ [0, 1].
Since γ ≥ 1, one has〈

∇W1(e),
1

5
Ae−

(
γ − 4

5

)
F (K, e1, 1)

〉
< 0

for all e ∈ H. Applying the Lemma 1 gives the existence
of ε22 > 0 such that〈

∇Wα(e),
1

5
Ae−

(
γ − 4

5

)
F (K, e1, α)

〉
≤ 0

for all e ∈ H and α ∈]1 − ε22, 1[. This inequality can
be extended, by homogeneity, for all e ∈ H0 and α ∈
]1− ε22, 1[.
Finally, one obtains

〈∇Wα(e), Ae−Nα,β(K, 1, e1)〉

≤ −3

5
(Wα(e))

1+α
2 +

1

10
λ1+α

≤ −3

5
(Wα(e))

1+α
2 +

1

10

(
λ2Wα(z̃)

) 1+α
2

≤ −1

2
(Wα(e))

1+α
2
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for all e ∈ H0 and α ∈]1−ε2, 1[, with ε2 = min{ε21, ε22}.
2

Lemma 5 There exists M > 0 such that for all θ ≥ 1

〈∇Wα,β(ē),∆θ∆ϕ(·, x, x̂)〉 ≤MWα,β(ē)

for all α ∈]1 − ε1, 1[, β ∈]1,+ε1[ and x, x̂ ∈ Rn, where
e = x− x̂, ē = ∆θe.

Proof Two cases have to be considered: ē ∈ H0 and
ē ∈ H∞, where H0 and H∞ are de�ned by (19). Since
the two cases are very similar, one only proves the case
ē ∈ H0. Since ē ∈ H0, there exists λ ∈ [0, 1] and z̄ ∈ H
such that ē = δ

r(α)
λ z̄. Let z, ẑ, z̃ ∈ Rn be such that x =

δ
r(α)
λ z, x̂ = δ

r(α)
λ ẑ and e = δ

r(α)
λ z̃ respectively, then

〈∇Wα,β(ē),∆θ∆ϕ(·, x, x̂)〉
= λ2〈∇Wα(z̄), δ

−r(α)
λ ∆θ∆ϕ(·, x, x̂)〉,

= λ2z̄TSδ
−r(α)
λ ∆θ∆ϕ(·, x, x̂).

Applying the mean value Theorem [5, Th. 12.9], there

exists xξ ∈ [x, x̂] such that λ2z̄TSδ
−r(α)
λ ∆θ∆ϕ(·, x, x̂) =

λ2z̄TSδ
−r(α)
λ

∂ϕ(·,xξ)
∂x (x− x̂). Then, we obtain

〈∇Wα,β(ē),∆θ∆ϕ(·, x, x̂)〉 = (λz̄T )S

×
(
δ
1−r(α)
λ ∆θ

∂ϕ(·, xξ)
∂x

∆−1θ δ
r(α)−1
λ δ

1−r(α)
λ ∆θ(x− x̂)

)
.

Given the triangular structure of ϕ, and the fact that
1 ≥ λ1−r1(α) > · · · > λ1−rn(α), one can proceed as in
[16], which gives the existence of a constantM > 0 such
that

〈∇Wα,β(ē),∆θ∆ϕ(·, x, x̂)〉 ≤Mλ2z̄TSz̄,

≤MWα,β(ē).

Note that the constantM depends on the bound on the
input and its derivatives u0, the Lipschitz constant l of
ϕ, the dimension of the system n, the number of input
m and the matrix S. 2

Lemma 6 The following two inequalities hold

〈∇Wα,β(ē),∆θBd(t)〉 ≤
√
λM (S)δd
θn−1

√
Wα,β(ē) (C.4)〈

∇Wα,β(ē), Nα,β(K, 1, ē1)−Nα,β(K, 1, ē1 + n(t))
〉

≤ τ3(δn)ν

(
Wα,β(ē),

1

2
,
β

2

)
(C.5)

for all ē ∈ Rn, α ∈]1− ε1, 1[, β ∈]1, 1+ ε1[ and for almost
all t ≥ 0, where τ3 is a class K∞ function.

Proof Let us �rst prove inequality (C.4) for ē ∈ H0, the
case ē ∈ H∞ is very similar and then left to the reader.
Since ē ∈ H0, there exists λ ∈ [0, 1] and z̄ ∈ H such that

ē = δ
r(α)
λ z̄. One has

〈∇Wα(ē),∆θBd〉= 1

θn−1
〈∇Wα(δ

r(α)
λ z̄), Bd〉,

=
λ2−r1(α)

θn−1
〈 ∇V (z̄), Bd〉,

≤ λ

θn−1

√
z̄TSz̄|d|

√
BTSB,

≤
√
λM (S)δd
θn−1

√
Wα(ē).

Let us now prove inequality (C.5). Similarly to what has
been done previously, we only consider the case ē ∈ H∞.
There exists z̄ ∈ H such that ē = δ

r(β)
λ z̄, with λ ∈

[1,+∞[. It follows that

〈
∇Wα,β(ē), Nα,β(K, 1, ē1)−Nα,β(K, 1, ē1 + n(t))

〉
= λ2〈∇Wβ(z̄), δ

−r(β)
λ

(Nα,β(K, 1, ē1)−Nα,β(K, 1, ē1 + n(t))〉,
≤ λ2

√
λM (S)

√
V (z̄)√√√√ n∑

i=1

λ−2ri(β)k2i |µ
βi
αi(ē1)− µβiαi(ē1 + n(t))|2,

≤ λ2
√
λM (S)

√
Wβ(z̄)

n∑
i=1

λ−ri(β)|ki| |µβiαi(ē1)− µβiαi(ē1 + n(t))|,

≤
√
λM (S)

√
Wβ(ē)

n∑
i=1

λ1−ri(β)|ki|
(
τ1(δn)|ē1|βi−1 + τ2(δn)

)
,

≤
√
λM (S)

√
Wβ(ē)

max
i=1,...,n

|ki|
n∑
i=1

λ1−ri(β)+βi−1

(
τ1(δn)√
λm(S)

+ τ2(δn)

)
,

≤
√
λM (S)

√
Wβ(ē)

max
i=1,...,n

|ki|
n∑
i=1

λβ−1

(
τ1(δn)√
λm(S)

+ τ2(δn)

)
,

≤
√
λM (S) (Wβ(ē))

β
2

max
i=1,...,n

|ki|n

(
τ1(δn)√
λm(S)

+ τ2(δn)

)
,

4
= τ3(δn) (Wβ(ē))

β
2 ,

where τ1, τ2 are given by Assumption 5-(iii). 2
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Proof of Theorem 2
The error dynamics given by (7) is recalled here

ė=Ae−Nα,β(K, θ, e1 + n) + ∆ϕ(·, x, x̂) +Bd. (C.6)

Let us denote ē = ∆θe. Since ∆θA∆−1θ = θA, C∆−1θ =

C and ∆θN
α,β(K, θ, e1) = θNα,β(K, 1, e1), one obtains

˙̄e= θAē− θNα,β(K, 1, ē1 + n) + ∆θ∆ϕ(·, x, x̂) + ∆θBd,

= θ
(
Aē−Nα,β(K, 1, ē1)

)
+ ∆θ∆ϕ(·, x, x̂) + ∆θBd

+θ
(
Nα,β(K, 1, ē1)−Nα,β(K, 1, ē1 + n)

)
. (C.7)

By using Lemmas 4, 5 and 6, one gets the existence of
ε > 0 such that

Ẇα,β(ē)|(C.7) ≤ −
(

1

2
θ −M

)
ν

(
Wα,β(ē),

1 + α

2
,

1 + β

2

)
+

(√
λM (S)δd
θn−1

+ θτ3(δn)

)
ν

(
(Wα,β(ē),

1

2
,
β

2

)
.

for all ē ∈ Rn, α ∈]1− ε, 1[, β ∈]1, 1 + ε[ and θ ≥ 1.
Then there exists θ∗ > 1 such that for all θ > θ∗

Ẇα,β(ē)|(C.7) ≤ −
1

4
θν

(
Wα,β(ē),

1 + α

2
,

1 + β

2

)
+

(√
λM (S)δd
θn−1

+ θτ3(δn)

)
ν

(
(Wα,β(ē),

1

2
,
β

2

)
(C.8)

If δn, δd = 0, then inequality (C.8) reads as

Ẇα,β(ē)|(C.7) ≤ −
1

4
θ (Wα(ē))

1+α
2 , ∀ē ∈ H0, (C.9)

Ẇα,β(ē)|(C.7) ≤ −
1

4
θ (Wβ(ē))

1+β
2 , ∀ē ∈ H∞. (C.10)

Inequality (C.10) ensures that for any initial condition
ē ∈ Rn, the error trajectory ē(t) enters H0 after a �nite-
time 4

θ(β−1) , while inequality (C.9) ensures that any

trajectory ē(t) belonging to H0, at time t, will reach the
origin after time t+ 4

θ(1−α) .

If δn, δd 6= 0, applying Lemma 3, gives the existence of
k,Γ1, T

∗ independent of ē(0) such that

Wα,β(ē) ≤ ν

(
4

√
λM (S)

θn
δd + τ3(δn),

2

α
, 2

)
+Γ1e

−k(t−T∗)

It is direct to show that for all e ∈ Rn

λm(S)

λM (S)θ2(n−1)
Wα,β(e) ≤Wα,β(ē) ≤ λm(S)

λM (S)
Wα,β(e).

It follows that

Wα,β(e(t)) ≤ λM (S)

λm(S)
θ2(n−1)

×

(
ν

(
4

√
λM (S)

θn
δd + τ3(δn),

2

α
, 2

)
+ Γ1e

−k(t−T∗)

)
,

≤ λM (S)

λm(S)

(
4

√
λM (S)

θ
δd + θn−1τ3(δn)

)2

+
λM (S)

λm(S)
θ2(n−1)Γ1e

−k(t−T∗),

4
=
( c
θ
δd + θn−1τ(δn)

)2
+ Γe−k(t−T

∗),

where c,Γ, k > 0 and τ is a class K∞ function. 2
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