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Introduction

Observability of nonlinear systems has been characterized within either a dierential geometric framework [START_REF] Hermann | Nonlinear controllability and observability[END_REF] or a dierential algebraic framework [START_REF] Diop | Nonlinear observability, identiability, and persistent trajectories[END_REF][START_REF] Diop | On nonlinear observability[END_REF]. Once this question is answered for a given system then a practical solution to reconstruct the non measured state has to be worked out. This motivated an increasing number of works on nonlinear observers design during the last decades leading to a great variety of solutions. A rst one, which consists in nding a change of coordinates such that the resulting system is linear, has been considered in [START_REF] Conte | Algrebraic Methods for Nonlinear Control Systems[END_REF] using algebraic tools. A second one, based on the Lyapunov auxiliary theorem and a direct change of coordinates, can be found in [START_REF] Andrieu | On the existence of a kazantzis kravaris/luenberger observer[END_REF]. A third strategy for the class of uniformly observable systems use high-gain observers [START_REF] Gauthier | A simple observer for nonlinear systems. applications to bioreactors[END_REF][START_REF] Esfandiari | Output feedback stabilization of fully linearizable systems[END_REF][START_REF] Ahmed-Ali | Cascade high-gain predictors for a class of nonlinear systems[END_REF]. Other methods usually rely on a specic structure such as backstepping, adaptive observers, H ∞ observer, etc.

All the above mentioned approaches deal with asymptotic convergence, while nite-time stability has recently become an active area of research [START_REF] Bhat | Finite-time stability of continuous autonomous systems[END_REF][START_REF] Bhat | Geometric homogeneity with applications to nite-time stability[END_REF] for the following reasons: better disturbance rejection and robustness This paper was not presented at any IFAC meeting. Corresponding author T. Ménard. Email addresses: tomas.menard@unicaen.fr (Tomas Ménard), emmanuel.moulay@univ-poitiers.fr (Emmanuel Moulay), wilfrid.perruquetti@ec-lille.fr (Wilfrid Perruquetti).

properties [START_REF] Venkataraman | Terminal sliding modes: a new approach to nonlinear control synthesis[END_REF] are obtained (because, for system with nite settling-time, the static equivalent gain is "innite"), this nite-time reponse property is a possible tool for separation principle of nonlinear systems and are well adapt to very severe time response constraint. For example, such property is useful for the synchronization of chaotic signals (with application in secure communication) [START_REF] Perruquetti | Finite-time observers: application to secure communication[END_REF] or for walking robots [START_REF] Plestan | Stable walking of a 7-dof biped robot[END_REF]. Sliding mode observers, which are widely used, allow nite-time convergence, see [START_REF] Floquet | Super twisting algorithm based step-by-step sliding mode observers for nonlinear systems with unknown inputs[END_REF][START_REF] Orlov | Finite time stability and robust control synthesis of uncertain switched systems[END_REF], but they are not smooth. Other approaches have been considered in order to obtain nitetime convergence such as moving horizon observers in [START_REF] Michalska | Moving horizon observers and observer-based control[END_REF] or delay systems in [START_REF] Menold | nite-time convergent observers for linear time varying systems[END_REF] but they can hardly be generalized to wider classes of nonlinear systems. Quite recently, homogeneity [START_REF] Bhat | Geometric homogeneity with applications to nite-time stability[END_REF][START_REF] Battilotti | Incremental generalized homogeneity, observer design and semiglobal stabilization[END_REF] was used to obtain nite-time convergence property [START_REF] Bhat | Geometric homogeneity with applications to nite-time stability[END_REF]. Finite-time observers based on recursive construction can be found in [START_REF] Andrieu | Homogeneous approximation, recursive observer design, and output feedback[END_REF][START_REF] Andrieu | High gain observers with updated gain and homogeneous correction terms[END_REF] but the complexity increases with the system's dimension since the corrective term is composed of nested polynomial terms. Another alternative is to design nite-time observers using as simple gains as the one obtained in the linear case. This track has accomplished considerable progress [START_REF] Perruquetti | Finite-time observers: application to secure communication[END_REF][START_REF] Shen | Semi-global nite-time observers for nonlinear systems[END_REF][START_REF] Ménard | A global highgain nite-time observer[END_REF]. Other observers with time varying gains or additional assumptions have been developed in [START_REF] Shen | Uniformly observable and globally lipschitzian nonlinear systems admit global nitetime observers[END_REF][START_REF] Shen | Semi-global nite-time observers for a class of non-lipschitz systems[END_REF][START_REF] Li | Global nite-time observers for a class of nonlinear systems[END_REF][START_REF] Li | A high-gain-based global nitetime nonlinear observer[END_REF]. In this article, we are interested in a particular kind of stability, namely xed-time stability. A system is xed-time stable if it is nite-time stable and if its settling time can be bounded independently of the initial condition. This terminology has been adopted recently in [START_REF] Polyakov | Nonlinear feedback design for xed-time stabilization of linear control systems[END_REF][START_REF] Polyakov | Finite-time and xed-time stabilization: Implicit lyapunov function approach[END_REF]. in [START_REF] Shen | Semi-global nite-time observers for nonlinear systems[END_REF][START_REF] Ménard | A global highgain nite-time observer[END_REF], the rst one is only semi-global and the second one does not provide a bound independent of the initial conditions for the settling time. Furthermore the eect of uncertainty and noise has never been studied for this approach.

Here

The article is organized as follows. Section 2, provides some notations and denitions. In section 3 a xed-time observer is proposed for a large class of nonlinear systems. Then, section 4 gives convergence results in both cases with or without noise/uncertainity. Convincing simulations are given in section 5. Finally, section 6 concludes the article.

Notations and denitions

In the paper the following notations are used:

• R + = {x ∈ R : x ≥ 0} and R * + = {x ∈ R : x > 0}; • R n + = (R + ) n , with n ∈ N; • x α = sign(x).|x| α , with α > 0 and x ∈ R;
• . denotes the euclidean norm;

• λ m (M ) and λ M (M ) are respectively the lowest and the greatest eigenvalue of the square matrix M ;

• δ r λ = diag(λ r1 , . . . , λ rn ) for all r = (r 1 , . . . , r n ) ∈ R n + and λ ∈ R + ; • the function ν is dened as ν(x, α, β) = x α if |x| < 1 x β if |x| ≥ 1 , (1) 
with x ∈ R, α ∈ R + and β ∈ R + ; • the matrix A ∈ R n×n and the vectors B ∈ R n×1 , C ∈ R 1×n are dened by A =           0 1 0 0 0 0 0 1 0 0 . . . . . . . . . . . . . . . 0 0 0 0 1 0 0 0 0 0           , B =        0 . . . 0 1        , C =        1 0 . . . 0        T ; (2) 
• ∆ θ = diag 1, 1 θ , • • • , 1 θ n-1 with θ ≥ 1; • F (K, x, α) = (k 1 x α1 , . . . , k n x αn ) T with x ∈ R, α > 0 and K = (k 1 , . . . , k n ); • a continuous function φ : R + → R + is said to be of class K ∞ if φ is strictly increasing, φ(0) = 0 and lim r→+∞ φ(r) = +∞.
One of the key-property used in this article is homogeneity which is dened hereafter.

Denition 1 A function V : R n → R is homogeneous of degree d with respect to the weights (r 1 , . . . , r

n ) ∈ R n + if V (δ r λ x) = λ d V (x)
, for all λ > 0 and x ∈ R n . A vector eld f : R n → R n is homogeneous of degree d with respect to the weights (r 1 , . . . , r n ) ∈ R n + if for all 1 ≤ i ≤ n, the i-th component f i is an homogeneous function of degree r i +d. A dynamical system ẋ = f (x) is homogeneous of degree d if the vector eld f is homogeneous of degree d.

Let f : R + × R n → R n be a continuous vector eld, such that f (0, 0) = 0. Consider the system ẋ(t) = f (t, x(t)) x(0) = x 0 .

(

) 3 
Denition 2 [START_REF] Polyakov | Finite-time and xed-time stabilization: Implicit lyapunov function approach[END_REF] • The equilibrium point x = 0 of the system (3) is said to be globally nite-time stable if it is globally asymptotically stable and any solution x(t) starting from x 0 reaches the equilibrium at some nite moment, i.e.

x(t) = 0, for all t ≥ T (x 0 ), where T : R n → R + is the so-called settling time function. • If in addition the settling-time function T (x 0 ) is bounded by some positive number T max > 0, i.e. T (x 0 ) ≤ T max , for all x 0 ∈ R n , the system (3) is said to be globally xed-time stable.

Remark 1 This last denition can be easily adapted for a compact set instead of an equilibium point.

tems up to input-output injections and uniformly observable systems. In the rst case, methods for turning systems into a linear system up to input-output injection through dieomorphism can be found in [START_REF] Krener | Linearization by output injection and nonlinear observers[END_REF][START_REF] Krener | nonlinear observers with linearizable error dynamics[END_REF][START_REF] Califano | The observer error linearization problem via dynamic compensation[END_REF], and through immersion in [START_REF] Back | Dynamic observer error linearization[END_REF][START_REF] Jouan | Immersion of nonlinear systems into linear systems modulo output injection[END_REF]. In the second case of uniformly observable systems, due to the nonlinearity structure of the obtained system, authors use mainly highgain linear corrective term leading to at least a semiglobal exponential convergence of the error (global convergence can be performed when the nonlinearity has a Lipschitz property). Due to the obtained structure different corrective terms can be selected:

• proportional to the output error, which gives exponential convergence,

• proportional to the power of the output error (with power less than one) as in [START_REF] Perruquetti | Finite-time observers: application to secure communication[END_REF][START_REF] Shen | Semi-global nite-time observers for nonlinear systems[END_REF], which gives semiglobal nite-time convergence,

• a linear combination of the two previous ones, which

gives global nite-time convergence.

Here, we will design an observer whose observation error converges to zero in xed time: for this, a new nonlinear corrective term will be introduced.

The class of system under consideration

We consider the class of uncertain systems which are diffeomorphic to the following triangular form up to inputoutput injection:

   ẋ(t) = Ax(t) + ϕ(y(t), u(t), u(t), . . . , u (r) (t), x(t)) +Bd(t) y(t) = Cx(t) + n(t) , (4) 
where x ∈ R n is the state, u = (u 1 , . . . , u m ) ∈ R m is the known input (derivatives are known up to order r), y ∈ R is the measured output, d ∈ R is an unknown exogenous signal (disturbance, modeling error, . . . ), n is the noise on the output and A, B, C are dened by [START_REF] Andrieu | On the existence of a kazantzis kravaris/luenberger observer[END_REF]. In the rest of the paper the time dependence of the variables will be omitted when it is clear from the context: x(t) will be denoted x and so on. In addition, ϕ(y, u, u, . . . , u (r) , x) will be denoted as ϕ(•, x): the dot means that the function depends on the known variables y, u, u, . . . , u (r) . The function ϕ is analytic, with ϕ(•, 0) = 0 and has a triangular structure, that is ϕ i (•, x) only depends on •, x 1 , . . . , x i . When the function ϕ does not depend on y and the input derivatives (i.e. ϕ(•, x) reduces to ϕ(u, x)), we recover the triangular form introduced in [START_REF] Gauthier | A simple observer for nonlinear systems. applications to bioreactors[END_REF][START_REF] Hammouri | High gain observer based on a triangular structure[END_REF] for uniformly observable nonlinear systems. On the contrary, when the function ϕ does not depend on x, the model reduces to:

ẋ = Ax + ϕ(y, u, u, . . . , u (r) ) + Bd y = Cx + n, (5) 
and thus, (4) also covers the class of nonlinear system linearizable up to input-output injection.

The design of an observer for the system (4) will be carried out under the following assumptions: Assumption 1 (nonlinearity) the function ϕ is globally Lipschitz with respect to x with constant l; Assumption 2 (input) all input derivatives are bounded by

u 0 ∈ R + , that is |u (j) i (t)| ≤ u 0 , for all t ≥ 0 and 1 ≤ i ≤ m, 0 ≤ j ≤ r;
Assumption 3 (perturbation) the unknown function d is essentially bounded, i.e. ∃δ d > 0; ess sup t≥0 d(t) ≤ δ d ; Assumption 4 (noise) the noise signal n is essentially bounded, i.e. ∃δ n > 0; ess sup t≥0 n(t) ≤ δ n .

Remark 2 Assumption 1 includes a large class of functions such as C 1 functions with uniformly bounded derivative. Assumptions 2 to 4 correspond to physical limitations of the dierent signals, indeed, the noise, uncertainty and the input have nite energy. These assumptions have already been discussed in the literature, since they are the same as the ones used for the classical high-gain observer (see [START_REF] Gauthier | A simple observer for nonlinear systems. applications to bioreactors[END_REF][START_REF] Bouraoui | Observer design for a class of uncertain nonlinear systems with sampled outputsapplication to the estimation of kinetic rates in bioreactors[END_REF] for example).

Observer and its corrective term

An observer for the system (4) is given by: ẋ = Ax + ϕ(•, x) + N α,β (K, θ, e 1 + n), [START_REF] Back | Dynamic observer error linearization[END_REF] and its associated error equation is:

ė = Ae + ∆ϕ(•, x, x) + Bd -N α,β (K, θ, e 1 + n), (7) where θ ≥ 1, ∆ϕ(•, x, x) = ϕ(•, x) -ϕ(•, x) and e i = x i - xi , i = 1, . . . , n, note that e 1 + n = x 1 + n -x1 = y -C x.
When ϕ(•, x) reduces to ϕ(u, x)), by proper selection of N α,β we recover the high-gain observer introduced in [START_REF] Gauthier | A simple observer for nonlinear systems. applications to bioreactors[END_REF][START_REF] Hammouri | High gain observer based on a triangular structure[END_REF] for uniformly observable nonlinear systems. For such high-gain observer the gain K is selected as:

K = (k 1 , . . . , k n ) = S -1 C T , (8) 
with S the symmetric positive denite matrix solution of the Riccati equation:

S + A T S + SA -C T C = 0. (9)
The proof of the error convergence is based on the Lyapunov function:

V (e) = e T Se, e ∈ R n . [START_REF] Bouraoui | Observer design for a class of uncertain nonlinear systems with sampled outputsapplication to the estimation of kinetic rates in bioreactors[END_REF] The corrective term in ( 6) is chosen in the following form (in order to obtain xed-time convergence):

N α,β (K, θ, e 1 ) = θk 1 µ α1,β1 (e 1 ), . . . , θ n k n µ αn,βn (e 1 )

T , [START_REF] Califano | The observer error linearization problem via dynamic compensation[END_REF] where the powers α i , β i will be specied later on and µ α,β : R → R is such that the following assumption holds:

Assumption 5 (corrective term) (i) for every compact set C ⊂ R n \{0} and for all > 0, there exists

λ 0 > 0, λ ∞ > 0 such that for all λ ∈ (0, λ 0 ] we have max x∈C µ α,β (λx) λ α -µ α,β (x) ≤ and for all λ ∈ [λ ∞ , +∞) we have max x∈C µ α,β (λx) λ β -µ α,β (x) ≤ ; (ii) for every compact set C ⊂ R n \{0}
and for all > 0, there exists

β M > 1 > α m > 0 and γ ≥ 1 such that for all α ∈]α m , 1[, β ∈]1, β M [ we have max x∈C µ α,β (λx) -γx ≤ ; (iii) for all > 0, δ > 0, there exist class K ∞ functions τ 1 , τ 2 such that for all x ∈ R, z ∈ [-δ, δ], α ∈]1-[, β ∈]1, 1 + [, the following inequality holds µ α,β (x) -µ α,β (x + z) ≤ τ 1 (δ)|x| β-1 + τ 2 (δ).
Remark 3 Condition (i) corresponds to the homogeneity in the bi-limit of the function µ α,β (see [START_REF] Andrieu | Homogeneous approximation, recursive observer design, and output feedback[END_REF]), it should be noted that the bounds λ 0 and λ ∞ depend on the compact set C and . Condition (ii) means that the behavior of the corrective term is close to a linear behavior when α, β are close to 1. Condition (iii) is a kind of weak Lipschitz property which will be useful for the convergence analysis in presence of noise/perturbation.

Example 1 There are several possible corrective terms which verify assumption 5 such as:

µ α,β (x) = -x α -x β , (12) 
µ α,β (x) = -sign(x) |x| α k + |x| β k k , k > 0, (13) 
µ α,β (x) = -x α if x ≤ 1 -x β if x > 1 . ( 14 
)
4 Observer xed-time convergence

In the design of observer [START_REF] Back | Dynamic observer error linearization[END_REF] we have introduced a bi-limit homogeneous corrective term [START_REF] Califano | The observer error linearization problem via dynamic compensation[END_REF] in order to obtain xed-time convergence of the observation error.

When ∆ϕ(•, x, x) = 0, approximation at 0 or at ∞ of [START_REF] Battilotti | Incremental generalized homogeneity, observer design and semiglobal stabilization[END_REF] is closely related to the behavior of the following system:

         ė1 = e 2 -k 1 e 1 α1 . . . ėn-1 = e n -k n-1 e 1 αn-1 ėn = -k n e 1 αn , (15) 
where K is selected according to [START_REF] Bhat | Finite-time stability of continuous autonomous systems[END_REF] and the powers α i are given by

α i = iα -(i -1), α ∈]1 -1/n, +∞[, i = 1, . . . , n. ( 16 
)
With such powers, system ( 15) is homogeneous of degree (α -1) with respect to the weights r(α) = (r 1 (α), . . . , r n (α)) dened by r i (α) = (i -1)α -(i -2), i = 1, . . . , n. There exist several methods for constructing an homogeneous Lyapunov function for the system (15) such as in [START_REF] Rosier | Homogeneous lyapunov function for homogeneous continuous vector eld[END_REF]. But here we use the key fact that the 1-level set of the homogeneous Lyapunov function is exactly the 1-level set of the quadratic Lyapunov function used in the linear case. Using this, one can shows (all proofs are postponed to appendices):

Theorem 1 There exists > 0 such that for all α ∈ ]1 -, 1 + [, the system ( 15) is asymptotically stable. Furthermore, an homogeneous Lyapunov function, of degree 2 with respect to the weights (r 1 (α), . . . , r n (α)), for the system ( 15), whose 1 level set is exactly

H = {e ∈ R n | e T Se = 1}
, is given by

W α δ r(α) λ z = λ 2 W α (z) = λ 2 V (z), (17) 
for all λ > 0, z ∈ H. The derivative of the Lyapunov function along the solutions of the system (15) veries the following inequality

Ẇα (e) |(15) = ∇W α (e), f α (e) ≤ - 3 4 (W α (e)) 1+α 2 . ( 18 
)
Where f α (e) denotes the right-hand side of [START_REF] Esfandiari | Output feedback stabilization of fully linearizable systems[END_REF]. Using such a construction for the Lyapunov function we can build two Lyapunov functions (one for each approximation): at 0 (resp. ∞) denoted by W α , α < 1 (resp. W β , β > 1). Due to approximations of N α,β (K, θ, e 1 ) at 0 and at ∞, and the fact that we aim at getting xedtime error convergence, the powers α i , β i in [START_REF] Califano | The observer error linearization problem via dynamic compensation[END_REF] have to be selected according to [START_REF] Farza | Observer design for a class of mimo nonlinear systems[END_REF] with α ∈ (1 -1/n, 1) and β > 1. Let us denote

H 0 = {δ r(α) λ z | λ ∈]0, 1], z ∈ H}, (19) 
H ∞ = {δ r(β) λ z | λ ∈ [1, +∞[, z ∈ H}.
Note that the sets H 0 and H ∞ are equal to {e ∈ R n | e T Se ≤ 1} and {e ∈ R n | e T Se ≥ 1}, respectively.

Then, the candidate Lyapunov function is dened as:

W α,β (e) = W α (e) if e ∈ H 0 W β (e) if e ∈ H ∞ . (20) 
Using this constructed Lyapunov function, we obtain:

Theorem 2 Assume that Assumptions 1 to 5 hold. Let K be given by ( 8), then there exist > 0 and θ * ≥ 1 such that for all θ > θ * , α ∈]1 -, 1[ and β ∈]1, 1 + [, the following holds:

• when d = n = 0, the origin of the error system ( 7) is globally xed-time stable, its settling time T (e 0 ), where e 0 = x(0) -x(0), is bounded by

T (e 0 ) ≤ 4 θ 1 1 -α + 1 β -1 , (21) 
• otherwise there exists a neighborhood of the origin of the error system (7) wich is globally xed-time stable.

More precisely, we have

W α,β (e(t)) ≤ c θ δ d + θ n-1 τ (δ n ) 2 + Γe -k(t-T * ) , (22) 
for all t ≥ T * , e ∈ R n , where W α,β is dened by [START_REF] Hermann | Nonlinear controllability and observability[END_REF], k, Γ, T * , c > 0 are constants and τ is a class K ∞ function all independent on the initial error e(0), furthermore c and τ are both independent on θ.

Remark 4 Inequality [START_REF] Khalil | Nonlinear Systems[END_REF] shows that the error due to the uncertainty will decrease as θ increases, but in the mean time, the error due to the noise will increase. Hence, there exists an optimal value for θ such that the overall error is minimum.

This result can be adapted for the linearizable system case and assumptions 1-2 are no more needed: Corollary 1 Assume that Assumptions 3 to 5 hold. An observer for the system (5) (when ϕ(•, x) is independent of x) is given by ( 6) with θ = 1, which reads as:

ẋ = Ax + ϕ(y, u, u, . . . , u (r) ) + N α,β (K, 1, e 1 + n).
Let K be given by ( 8), then there exists > 0 such that for all α ∈]1 -, 1[, β ∈]1, 1 + [, the following holds:

• when d = n = 0, the origin of the error system is globally xed-time stable, its settling time T (e 0 ), where e 0 = x(0) -x(0), is bounded by

T (e 0 ) ≤ 2 1 1 -α + 1 β -1 . (23) 
• otherwise there exists a neighborhood of the origin of the error system wich is globally xed-time stable. More precisely, we have

W α,β (e(t)) ≤ (cδ d + τ (δ n )) 2 + Γe -k(t-T * ) (24) 
for all t ≥ T * , where c, k, T * > 0 are constants and τ a class K ∞ function, all independent on the initial error e(0).

Remark 5 Note that the bound (23) on the settling time is not obtained directly from the bound (21) of Theorem 2 by setting θ = 1. Indeed, a dierent over-valuation of the derivative of the Lyapunov function can be obtained since the nonlinear function ϕ in system ( 5) does not depend on the state x.

Simulations

Let us consider the following system:

       ẋ1 = x 2 -sin(x 1 ) ẋ2 = x 3 -x 1 + sin(x 1 + x 2 ) ẋ3 = -sin(x 1 + x 2 + x 3 ) + d y = x 1 + n
where d = 10 and n is a white noise of variance σ 2 = 2 with zero mean. The observer given by ( 6) with µ α,β (x) = ν(x, α, β) can be written as:

   ẋ1 = x2 -sin(x 1 ) + θk 1 ν (x 1 -x1 , α 1 , β 1 ) ẋ2 = x3 -x1 + sin(x 1 + x2 ) + θ 2 k 2 ν (x 1 -x1 , α 2 , β 2 ) ẋ3 = -sin(x 1 + x2 + x3 ) + θ 3 k 3 ν (x 1 -x1 , α 3 , β 3 )
The gain is given by K = (3, 3, 1) and the powers are chosen as α = 0.99 and β = 1.2.

Two sets of simulations are given. The rst one illustrates the eect of the noise and uncertainty on the domain of convergence and is reported on Figure 1. For these simulations, the initial conditions are chosen as

x(0) = [10; -100; 100] T and x(0) = [0; 0; 0] T . More precisely, only the observation error for x 3 is reported, since this component is the most aected by the noise and uncertainty. As stated in Theorem 2, we can see that the error due to the uncertainty decreases as θ increases, but the error due to the noise increases while θ increases. The optimal value of θ is comprised between 4 and 5.

The second one illustrates the xed-time property of the proposed observer and is reported on Figure 2. In this case, the proposed observer is compared with the classical high-gain observer from [START_REF] Gauthier | A simple observer for nonlinear systems. applications to bioreactors[END_REF] and the nite-time observer from [START_REF] Shen | Semi-global nite-time observers for nonlinear systems[END_REF], the tunning parameter is set as θ = 3

for every observer. ii) lim x→+∞ g(x, y) = +∞, uniformly with respect to

y; iii) {x ∈ R + | g(x, 1) = 1} = {1}; iv) g(1, y) = 1 for all y ∈ [1 -, 1 + ]; v) ∂g ∂x (1, 1) = 0.
Then, there exists * > 0 such that for every y ∈]1 - * , 1 + * [ we have

{x ∈ R + | g(x, y) = 1} = {1} (A.2)
Proof (by contradiction) Assume that for all ˜ > 0 there exists ỹ ∈]1 -˜ , 1 + ˜ [ and x = 1 such that g(x, ỹ) = 1.

On one hand, one can construct a sequence (x k , y k ) such that y k converges toward 1 and such that g(x k , y k ) = 1 and x k = 1 for all k ∈ N. Because of assumptions i) and ii), there exists ς > 0 such that one can extract a subsequence of x k contained in ς, 1 ς . Since this subsequence is contained in the compact set ς, 1 ς , one can further extract a convergent subsequence xk converging toward 1 because of assumption iii) and the continuity of g.

On the other hand, applying the implicit function theorem given for instance in [START_REF] Apostol | Mathematical analysis[END_REF]Th. 13.7] to g by using assumption v) shows that there is a neighborhood of 1 such that for every y in this neighborhood, the equation g(x, y) = 1 possesses only one solution. By assumption iv), this solution is given by (1, y), which contradicts the existence of the previously constructed subsequence.

2 Lemma 3 Consider the following ordinary dierential equation

ẋ(t) = -k 1 ν(x(t), γ 1 , γ 2 ) + k 2 ν(x(t), γ 3 , γ 4 ) x(0) > 0 (A.3) with k 1 , k 2 > 0, γ 1 < 1, γ 2 > 1, γ 1 > γ 3 > 0 and γ 2 > γ 4 > 0.
Then, there exist constants T, k 3 , Γ > 0 independent of x(0) such that

x(t) ≤ ν k 2 k 1 , 1 γ 1 -γ 3 , 1 γ 2 -γ 4 + Γe -k3(t-T ) (A.4)
for all t ≥ T .

Proof One shall prove (A.4) when k2 k1 < 1 (the case k2 k1 ≥ 1 being similar is omited). Let us show rstly that after a time T > 0, the solution x(t) of (A.3) veries x(t) < 1 for any x(0) > 0, then, for x(0) < 1 one shows that the equilibrium point k2 k1

1 γ 1 -γ 3 is exponentially stable. For x(t), one has ẋ(t) ≤ -(k 1 -k 2 )
x(t) γ2 and by using the comparison lemma 2.5 p. 85 in [START_REF] Khalil | Nonlinear Systems[END_REF], one obtains that x(t) < 1 for t > T = 1 (γ2-1)(k1-k2) .

For k2 k1

1 γ 1 -γ 3 ≤ x(t) < 1, one has ẋ(t) = -k 1 x(t) γ1 + k 2 x(t) γ3 ≤ -k 3 x(t) -k2 k1 1 γ 1 -γ 3 , with k 3 = k 1 1- k 2 k 1 γ 1 γ 1 -γ 3 1- k 2 k 1 1 γ 1 -γ 3 + γ 3 k 2 k2 k1 γ 3 -1 γ 1 -γ 3 . One concludes that for t ≥ T x(t) ≤ 1 - k 2 k 1 1 γ 1 -γ 3 e -k3(t-T ) + k 2 k 1 1 γ 1 -γ 3 . 2 B Proof of Theorem 1
The proof is split into two parts. We rst show that there exists 1 > 0 such that for all α ∈]1 -1 , 1 + 1 [, the function W α is well dened and is a candidate Lyapunov function. Then we show that there exists 0 < 2 ≤ 1 such that for all α ∈]1 -2 , 1 + 2 [, inequality [START_REF] Gauthier | A simple observer for nonlinear systems. applications to bioreactors[END_REF] is satised. The asymptotic stability of the system [START_REF] Esfandiari | Output feedback stabilization of fully linearizable systems[END_REF] follows from these properties.

Part 1

In order for [START_REF] Floquet | Super twisting algorithm based step-by-step sliding mode observers for nonlinear systems with unknown inputs[END_REF] to be consistent, we need to check that for each z ∈ H, the homogeneous ray δ

r(α) λ z | λ > 0 cross the manifold H only once for λ = 1. Let z ∈ H, applying Lemma 2 to the function (λ, α) → V (δ r(α) λ z) gives the existence of z > 0 such that for all α ∈]1 -z , 1 + z [, {λ ∈ R + | V (δ r(α) λ z) = 1} = {1}.
Since H is a compact set, there exists 1 > 0 such that for all z ∈ H and α ∈]1 -1 , 1 + 1 [, one has {λ ∈ R + | V (δ r(α) λ z) = 1} = {1}. Now that the function W α is well dened by [START_REF] Floquet | Super twisting algorithm based step-by-step sliding mode observers for nonlinear systems with unknown inputs[END_REF], it remains to prove that it is actually a Lyapunov function for the system [START_REF] Esfandiari | Output feedback stabilization of fully linearizable systems[END_REF]. It is clear from its denition [START_REF] Floquet | Super twisting algorithm based step-by-step sliding mode observers for nonlinear systems with unknown inputs[END_REF] that W α is smooth and radially unbounded, since V is a Lyapunov function for the system (15) with α = 1, and that W α (0) = 0.

Part 2

We have

∇W α (δ r(α) λ z), f α (δ r(α) λ z) = λ 1+α ∇W α (z), f α (z) = λ 1+α ∇V (z), f α (z)
for every z ∈ H.

The function f α (z) is continuous relatively to α and z, so the function 

h : ]1 -1 , 1 + 1 [×H → R + (α, z) → -∇V (z), f α (z)
∇W α (δ r(α) λ z), f α (δ r(α) λ z) ≤ - 3 4 λ 1+α , ≤ - 3 4 λ 2 W (z) 1+α 2 , ≤ - 3 4 W (δ r(α) λ z) 1+α 2 
.

C Proof of Theorem 2

One considers the candidate Lyapunov function W α,β given by (20 

) for α ∈]1-1 , 1[, β ∈]1, 1+
∇W α (e), Ae -N α,β (K, 1, e 1 ) ≤ - 1 2 (W α (e)) 1+α 2 
, ∀e ∈ H 0 (C.2)

∇W β (e), Ae -N α,β (K, 1, e 1 ) ≤ - 1 2 (W β (e)) 1+β 2 
, ∀e ∈ H ∞ (C.3)

The cases e ∈ H 0 and e ∈ H ∞ are very similar to demonstrate, then one shall exhibit only the case e ∈ H 0 . One has ∇W α (e), Ae -N α,β (K, 1, e 1 ) = 4 5 ∇W α (e), Ae -F (K, e 1 , α)

+ ∇W α (e), 1 5 
Ae -γ -4 5 F (K, e 1 , α)

+ ∇W α (e), γF (K, e 1 , α) -N α,β (K, 1, e 1 ) ≤ - 3 5 (W α (e)) 1+α 2 
+ ∇W α (e), 1 5 
Ae -γ -4 5 F (K, e 1 , α)

+ ∇W α (e), γF (K, e 1 , α) -N α,β (K, 1, e 1 )
for all e ∈ H 0 , because of Theorem 1, with γ given by Assumption 5.

Let us denote e = δ

r(α) λ z, with z ∈ H and λ ∈ [0, 1], then ∇W α (e), γF (K, e 1 , α) -N α,β (K, 1, e 1 ) = λ 1+α n i=1 (∇W α (z)) i k i γ λz 1 αi -µ βi αi (λz 1 ) λ αi .
According to Assumption 5-(i) the function µ β α (x) converges toward γ x α when α, β → 1, uniformly on any compact set. Thus there exists 0

< 21 < 1 such that n i=1 (∇W α (z)) i k i γ λz 1 αi -µ βi αi (λz 1 ) λ αi ≤ 1 20γ for every α ∈]1 -21 , 1[, β ∈]1, 1 + 21 [, z ∈ H and λ ∈ [0, 1]. Since γ ≥ 1, one has ∇W 1 (e), 1 5 
Ae -γ -4 5 F (K, e 1 , 1) < 0

for all e ∈ H. 

∇W α (e), Ae -N α,β (K, 1, e 1 ) ≤ - 3 5 (W α (e)) 1+α 2 + 1 10 λ 1+α ≤ - 3 5 (W α (e)) 1+α 2 + 1 10 λ 2 W α (z) 1+α 2 ≤ - 1 2 (W α (e)) 1+α 2 
for all e ∈ H 0 and α ∈]1 -2 , 1[, with 2 = min{ 21 , 22 }. 2

Lemma 5 There exists M > 0 such that for all θ ≥ 1

∇W α,β (ē), ∆ θ ∆ϕ(•, x, x) ≤ M W α,β (ē) for all α ∈]1 -1 , 1[, β ∈]1, + 1 [ and x, x ∈ R n , where e = x -x, ē = ∆ θ e.
Proof Two cases have to be considered: ē ∈ H 0 and ē ∈ H ∞ , where H 0 and H ∞ are dened by [START_REF] Hammouri | High gain observer based on a triangular structure[END_REF]. Since the two cases are very similar, one only proves the case ē ∈ H 0 . Since ē ∈ H 0 , there exists λ ∈ [0, 1] and z ∈ H Applying the mean value Theorem [5, Th. 12.9], there exists x ξ ∈ [x, x] such that λ 2 zT Sδ Given the triangular structure of ϕ, and the fact that 1 ≥ λ 1-r1(α) > • • • > λ 1-rn(α) , one can proceed as in [START_REF] Farza | Observer design for a class of mimo nonlinear systems[END_REF], which gives the existence of a constant M > 0 such that ∇W α,β (ē), ∆ θ ∆ϕ(•, x, x) ≤ M λ 2 zT S z, ≤ M W α,β (ē).

such that ē = δ r(α) λ z. Let z, ẑ, z ∈ R n be such that x = δ r(α) λ z, x = δ
Note that the constant M depends on the bound on the input and its derivatives u 0 , the Lipschitz constant l of ϕ, the dimension of the system n, the number of input m and the matrix S. 2

Lemma 6 The following two inequalities hold where τ 1 , τ 2 are given by Assumption 5-(iii). 2

  we provide xed-time convergent observers for a Preprint submitted to Automatica 13 March 2017 class of nonlinear systems which includes: the class of linearizable systems up to input-output injection and the class of uniformly observable systems, subject to uncertainty and noise. One of the main advantage of the proposed observer is the simplicity of the gains selection, since they are set o-line by solving the same Riccati equation as in the linear case. Furthermore, a general class of corrective terms for the xed-time convergence is here proposed, generalizing the existing ones (for nite-time convergence). If there is no uncertainty and no noise, the error is proved to converge in nite-time to the origin. Whereas in the presence of uncertainty and/or noise, the error converges toward a ball whose radius depends on the bound of the noise and/or uncertainty. In both cases, the settling time can be bounded independently of the initial conditions. The two last features are new, indeed, to the authors best knowledge the simplest gains proposed in the literature are those given

10 Fig. 1 .Fig. 2 .

 1012 Fig. 1. Comparison of the error e3 = |x3 -x3| for dierent values of θ.6 Conclusion

  ∇W α,β (ē), ∆ θ ∆ϕ(•, x, x) = λ 2 ∇W α (z), δ -r(α) λ ∆ θ ∆ϕ(•, x, x) , = λ 2 zT Sδ -r(α) λ ∆ θ ∆ϕ(•, x, x).

∆

  -r(α) λ ∆ θ ∆ϕ(•, x, x) = λ 2 zT Sδ -r(α) λ ∂ϕ(•,x ξ ) ∂x (x -x). Then, we obtain ∇W α,β (ē), ∆ θ ∆ϕ(•, x, x) = (λz T )S θ (x -x) .

2 , β 2 (C. 5 )τ 1 |k i |n τ 1

 22511 ∇W α,β (ē), ∆ θ Bd(t) ≤ λ M (S)δ d θ n-1 W α,β (ē) (C.4)∇W α,β (ē), N α,β (K, 1, ē1 ) -N α,β (K, 1, ē1 + n(t))≤ τ 3 (δ n )ν W α,β (ē), 1 for all ē ∈ R n , α ∈]1 -1 , 1[, β ∈]1, 1 + 1 [ and for almost all t ≥ 0, where τ 3 is a class K ∞ function. Proof Let us rst prove inequality (C.4) for ē ∈ H 0 , the case ē ∈ H ∞ is very similar and then left to the reader. Since ē ∈ H 0 , there exists λ ∈ [0, 1] and z ∈ H such that ē = δ r(α) λ z. One has ∇W α (ē), ∆ θ Bd = 1 θ n-1 ∇W α (δ Let us now prove inequality (C.5). Similarly to what has been done previously, we only consider the case ē ∈ H ∞ . There exists z ∈ H such thatē = δ r(β) λ z, with λ ∈ [1, +∞[. It follows that ∇W α,β (ē), N α,β (K, 1, ē1 ) -N α,β (K, 1, ē1 + n(t)) = λ 2 ∇W β (z), δ -r(β) λ (N α,β (K, 1, ē1 ) -N α,β (K, 1, ē1 + n(t)) , ≤ λ 2 λ M (S) V (z) n i=1 λ -2ri(β) k 2 i |µ βi αi (ē 1 ) -µ βi αi (ē 1 + n(t))| 2 , ≤ λ 2 λ M (S) W β (z) n i=1 λ -ri(β) |k i | |µ βi αi (ē 1 ) -µ βi αi (ē 1 + n(t))|, ≤ λ M (S) W β (ē) n i=1 λ 1-ri(β) |k i | τ 1 (δ n )|ē 1 | βi-1 + τ 2 (δ n ) , ≤ λ M (S) W β (ē) max i=1,...,n |k i | n i=1 λ 1-ri(β)+βi-1 τ 1 (δ n ) λ m (S) + τ 2 (δ n ) , ≤ λ M (S) W β (ē(δ n ) λ m (S) + τ 2 (δ n ) , ≤ λ M (S) (W β (ē)) (δ n ) λ m (S) + τ 2 (δ n ) , = τ 3 (δ n ) (W β (ē)) β 2 ,

  is also continuous, and h(1, z) ≥ 1 for all z ∈ H. Hence {1} × H ⊂ h -1 (]3/4, +∞[) which is an open subset since h is continuous. Since H is a compact set, we can apply Lemma 1 and there exists 0< 2 ≤ 1 such that ∇V (z), f α (z) ≤ -3 4 , ∀z ∈ H, ∀α ∈]1 -2 , 1 + 2 [.

	Finally, we obtain

  [START_REF] Ahmed-Ali | Cascade high-gain predictors for a class of nonlinear systems[END_REF] [ where 1 > 0 is given by Theorem 1. We rst state useful Lemmas for the proof of Theorem 2.

	≤ -	1 2	ν W α,β (e),	1 + α 2	,	1 + β 2	(C.1)
	Proof Inequality (C.1) is equivalent to the two following
	inequalities:						

Lemma 4 There exists 2 ∈]0, 1 [ such that the following inequality is veried

∇W α,β (e), Ae -N α,β (K, 1, e 1 )

for all e ∈ R n , α ∈]1 -2 [, β ∈]1, 1 + 2 [ and ν is dened by

[START_REF] Ahmed-Ali | Cascade high-gain predictors for a class of nonlinear systems[END_REF]

.

  Applying the Lemma 1 gives the existence of 22 > 0 such that This inequality can be extended, by homogeneity, for all e ∈ H 0 and α ∈ ]1 -22 , 1[.

	∇W α (e),	1 5	Ae -γ -	4 5	F (K, e 1 , α) ≤ 0
	Finally, one obtains		

for all e ∈ H and α ∈]1 -22 , 1[.

Fixed-time observer designWhen designing observers for nonlinear systems, two main classes of systems are considered: linearizable sys-
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A Technical Lemmas

The following technical lemmas will be used throughout the appendices.

Lemma 1 [START_REF] Munkres | Topology[END_REF]Lemma 26.8] Consider the product space

Lemma 2 Let > 0 and

be a C 1 function on R * + ×]1 -, 1 + [ verifying the following assumptions: i) lim x→0 g(x, y) = 0, uniformly with respect to y;

Proof of Theorem 2

The error dynamics given by ( 7) is recalled here

By using Lemmas 4, 5 and 6, one gets the existence of

.

Then there exists θ * > 1 such that for all θ > θ * , ∀ē ∈ H 0 , (C.9)

, ∀ē ∈ H ∞ .

(C.10) Inequality (C.10) ensures that for any initial condition ē ∈ R n , the error trajectory ē(t) enters H 0 after a nitetime 4 θ(β-1) , while inequality (C.9) ensures that any trajectory ē(t) belonging to H 0 , at time t, will reach the origin after time t + 4