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 

Abstract— Wetlands are among the most productive natural 

environments on Earth, as they harbor exceptional biological 

diversity. For this paper, our study site was the Danube Delta. The 

biodiversity of the Danube Delta is extraordinary and it possesses 

one of the largest reed beds in the world.  The main goal of our 

paper was to recognize, characterize and map the main vegetation 

units of the Danube Delta. The paper emphasizes the importance 

of the joint use of LiDAR measurements (acquired in May 2011), 

RADARSAT-2 radar data (acquired on 4 June 2011) and SPOT-5 

optical data (acquired on 25 May 2011). LiDAR data allow for the 

characterization of vegetation height within centimeter accuracy 

(10 cm). The radar measurements are based on C-band, providing 

additional information about the structure of the vegetation cover. 

The simultaneous acquisition of HH, HV, VV and VH 

polarizations enabled us to discriminate between the targets, 

depending on their responses to the various polarizations, by 

calculating their polarimetric signatures. By linking multispectral 

LiDAR and radar data, information can be obtained about 

vegetation reflectance and height as well as the backscattering 

mechanism, allowing for improved mapping and characterization 

accuracy (90.60% mean accuracy). An accuracy assessment of the 

classification results was evaluated against the vegetation data 

recorded in the field. 

 
Index Terms— Wetlands, Danube Delta, detection and mapping 

vegetation, multisensor data integration-LiDAR, RADARSAT-2 

and SPOT-5. 

 

INTRODUCTION 

A. Wetlands and remote sensing. Objectives 

ETLANDS are transitional environments between earth and 

water; they represent a valuable asset because of their 

richness and the ecosystem services they render. This ecotone 

position gives them a particular functioning creating particular 

conditions, highly favorable to biodiversity. Presenting a wide 

diversity of vegetation and animal species, these areas are 

characterized by their high evolution potential (vegetation 

successions are relatively rapid). Wetland hydric conditions, 

which vary in time and space, have generated specific plant 
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adaptations (resistance to hydric stress, resistance to halin 

stress) and important diversification in these environments. 

Threatened by human activities and global changes, this natural 

heritage is of particular interest. Wetland management and 

conservation present important environmental, economic and 

social challenges. In this context, this article proposes a remote 

sensing methodology developed for the mapping of habitats in 

the Danube delta. 

Today, satellites are an essential component of vegetation 

management in humid areas and, more generally, of 

environmental management. Because satellite remote sensing 

provides a large spatial view combined with a relatively high 

return frequency, it is a very cost-effective tool for wetland 

monitoring [1]. Satellite remote sensing increasingly presents 

advantages for inventorying and monitoring all types of 

wetlands [2]. Optical data provide useful information for 

inventorying wetland vegetation. The very high spatial 

resolution of optical satellite imagery, such as SPOT-6, SPOT-

7 (1,5 m) and high resolution optical sensors, such as IKONOS 

and Quickbird (between 2.5–4.0 m), makes them ideal for 

capturing small features of wetlands. Another advantage is the 

existence of a NIR band (strong reflectance for vegetation and 

strong absorption for water of wetlands). The limitation of 

optical imagery is that its wavelengths are short enough (0.4–

3.0 µm) to be scattered by clouds. Because atmospheric 

scattering decreases with increasing wavelength, longer 

Synthetic aperture radar (SAR) wavelengths are able to 

penetrate clouds and are not limited to acquiring under cloud-

free conditions. This is the case for C-band SAR (5.3 cm 

microwaves), such as the Canadian Radio Detection And 

Ranging Satellite (RADARSAT-2) used in this study. SAR 

sensors also have the potential to penetrate vegetation cover and 

detect sub-canopy conditions, which can be very beneficial for 

wetland monitoring [1]. Light Detection and Ranging (LiDAR) 

is an emerging and excellent tool for probing the geometry of 

vegetation and terrain. In the case of the analysis in the field of 

optical and radar data, the vertical component is not directly 

measured and, as a result, must be modeled [3]. LiDAR remote 
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sensing provides a simple direct measurement of vegetation 

vertical structure permitting the recovery of height and vertical 

diversity [3].  

In this article, we focus on LiDAR data, different satellite 

data (optical and radar) and terrain data that can be used to 

improve wetland detection and vegetation classification. We 

propose a method based on multisensor imagery analysis to 

characterize vegetation patterns in the Danube delta. 

The objective of this research was to illustrate how multi-

sensor and multi-platform remote sensing techniques can be 

used in the detection and mapping of vegetation in the Danube 

Delta. The primary objective was to compare the capability of 

individual remote sensing (LiDAR, RADARSAT-2, Satellite 

Pour l’Observation de la Terre - SPOT-5) data sets to recognize 

the vegetation classes in the delta. We evaluated the accuracy 

of the wetland maps derived from RADARSAT-2 and SPOT-5 

data, combined with high-resolution LiDAR elevation data. We 

statistically combined structural information from LiDAR, 

radar and passive optical sensors in an attempt to improve the 

accuracy of our estimated classes of vegetation in a complex, 

wetland-rich vegetation mosaic. 

Such a multi-source (optical, radar and LiDAR data) 

approach focusing on vegetation has not been carried out in the 

Danube Delta to date. 

B. Vegetation mapping and wetland detection 

The large number of plant species and the way they are 

interwoven into the delta landscape creates strong spatial 

variability, complicating wetland mapping using images. 

Wetland species appear to vary greatly in their chlorophyll and 

biomass reflectance as a function of plant species and 

hydrologic regime [4]. 

Wetlands have proven difficult to map using satellite remote 

sensing [5], [6] because their spectral and spatial characteristics 

are highly context-dependent [7]. Accurate wetland mapping is 

an important tool for understanding wetland functions and 

monitoring their response to natural and anthropogenic actions 

[8].  

Many researchers have used multispectral data, such as 

Landsat Thematic Mapper (TM) and SPOT imagery, to identify 

general vegetation classes or to attempt to discriminate broad 

vegetation communities [9], [10], [11]; researchers have also 

used hyperspectral data to discriminate and map wetland 

vegetation at the species level [12], [13], [14], [15], [16] and 

very high resolution sensors [17], [18], [19], [20]. Multispectral 

and hyperspectral remote sensing have been used to map 

structural metrics at a moderate resolution and on broad scales. 

Davranche et al., (2010) [21] demonstrated how classification 

trees applied to time series of SPOT-5 images are a powerful 

and reliable tool for monitoring wetland vegetation under 

different hydrological regimes.  

The presence of water, lakes, rivers, deltas or vegetation is 

very well depicted by means of active microwaves using the 

backscattering mechanism, with very low responses for single 

backscatter and strong responses for double-bounce (for 

instance, for flooded vegetation) [22], [23], [24], [25]. Multi-

polarization and multi-frequency radars are also used for the 

classification of wetland vegetation depending on their 

wavelengths, polarizations and backscattering mechanism, 

which are associated with the density and size of the vegetation 

[26], [23], [27]. Based on RADARSAT-2 data (polarimetric 

sensors with a spatial resolution of less than 10 m), 

characterizations of herbaceous and tree vegetation (peat lands, 

broad-leaved trees, conifers) were carried out [28], [29], [30], 

[31]. Research has also shown that C-band RADARSAT SAR 

is able to detect stading water beneath fully foliated shrubs [32] 

and forest cover [33]. Grings et al., 2006 [34] analyzed 

multitemporal/multi-polarized radar backscatter from the same 

two types of marshes (junco and cortadera) during tidal events 

using only ENVISAT Advanced Synthetic Aperture Radar 

(ASAR) (C-band, HH and VV polarization).  

Most research suggests that L-band data are necessary for 

forest and C-band for herbaceous wetland detection [35], [36]. 

The preference for L-HH imagery for investigations of forested 

wetlands was reiterated [37]. The sensitivity of microwave 

energy to water and its ability to penetrate vegetative canopies 

make SAR ideal for the detection of the hydrologic features 

under vegetation [38], [39], [40], [41], [42], [43].  

X-band SAR satellite, such as TerraSAR-X, launched in 

2007, are equipped with sensors with a resolution close to one 

meter, offering interesting opportunities for observation of 

wetland [44], [45], [46] [47]. Schuster et al., 2015 [48] showed 

that TerraSAR-X time-series are relevant for mapping 

herbaceous wetland vegetation. Betbeder et al., 2014 [49] 

evaluated several parameters (backscattering coefficients and  

polarimetric  parameters) derived from six dual-pol TerraSAR-

X images to precisely map the distribution of vegetation 

formations in wetland areas. They showed the potential of 

TerraSAR-X (X-band) and, more specifically, of a polarimetric 

parameter for grassland vegetation mapping in wetlands. 

Airborne laser instruments, such as LiDAR, represent 

innovative tools for the detection and the mapping of wetlands 

[50], [51], [52], [53]. After the successful application of LiDAR 

to forestry and the availability of LiDAR technology, new 

research has been carried out in other ecosystems.  

Several studies have used topographic LiDAR data to map 

coastal habitats and, as part of the investigation, evaluated their 

vertical accuracy to determine the appropriateness of the data 

for use in the intended application. Populus et al. (2001) [54] 

asked the fundamental question of where the LiDAR pulse is 

reflected on the vegetation. They determined that, in dense 

vegetation stands, the approximate height of the LiDAR return 

correlates to one-half of the vegetation height. Gopfert and 

Heipke (2006) [55] documented a positive bias that varied as a 

function of vegetation parameters such as height, density and 

species type [51]. 

LiDAR techniques are used to measure vegetation height in 

relation to the soil surface in wetlands [56], [57], [58], [59]. 

Hopkinson et al. (2004, 2005) [60], [57] provide an assessment 

of lidar-based errors in ground elevation and vegetation height 

and a sensitivity analysis of hydrological friction parameter 

estimates for six dominant vegetation classes within a boreal 

wetland environment. LiDAR ground height estimation was 

most problematic for aquatic vegetation owing to weak laser 
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backscatter from the saturated ground conditions typically 

associated with this vegetation class. Large errors in the height 

measurement can be registered of vegetation emerging above a 

water body because the water level is not detected properly and 

the water depth is unknown. The openness and orientation of 

vegetation foliage (i.e., minimal projection of horizontal area) 

would appear to facilitate the penetration of the laser pulse in 

the surface of vegetation classes. The inability to penetrate 

dense vegetation is one example of a systematic error. 

LiDAR data also allow for the study of volume structure in 

habitats necessary for ecosystem functioning [61], [62]. They 

also allow for characterization and analysis of the ecosystem 

structure in coastal humid areas [63], [64], [51], [43]. In 

vegetation studies, it is useful to select a near-infrared 

wavelength to maximize the return signal and minimize 

background noise [3]. 

However, an analysis of the LiDAR data alone does not allow 

for discrimination of the height different vegetal communities 

within a same stratum, hence the interest in combining LiDAR 

data with other satellite data types, such as radar data [1] and/or 

data with high spatial resolution optics [1], [65], [66], [67], [68]. 

Slatton et al. (2001) [69] combined LiDAR data with 

interferometric radar data to improve estimates of vegetation 

heights. Hyde et al. (2006) [70] show how LiDAR is the best 

single sensor for estimating canopy height and biomass. The 

addition of ETM+ metrics significantly improved LiDAR 

estimates of large tree structures, whereas Quickbird and 

InSAR/SAR improved estimates marginally or not at all. A 

combination of all sensors was more accurate than LiDAR 

alone, but only marginally better than a combination of LiDAR 

and ETM+. 

C. Study area. Habitat description of the Danube Delta and 

the Caraorman region  

The test site is located in the Caraorman region of the Danube 

Delta Biosphere Reserve. The total area of the “Danube Delta” 

Biosphere Reserve is approximately 5 800 km2 in Romania and 

more than 50 km2 in Ukraine [71]. The Danube Delta itself 

refers to the area between the three main branches of the 

Danube River (from North to South: the Chilia, Sulina, and 

Sfântu Gheorghe (St. George) branches), which are located in 

Romania with a total area of 3 510 km2; this is the third largest 

delta in Europe after the Volga Delta (13 000 km2) and the 

Kuban Delta (4 300 km2) (Fig. 1). 

 

 
Fig. 1.  The Danube Delta and geographical location of the study sample. 

 

The Danube Delta, Romania’s youngest landmass, is a 

fluvial-maritime floodplain covering two floristic provinces, 

the lower Danube (ponto-sarmatic) and the Black Sea (euxinic) 

[72]. The diversified geomorphology, soils and hydrological 

conditions favor the proliferation of a large number of aquatic, 

semi-desert and saline habitats.  

A vegetation map of the delta produced by Hanganu et al., 

2002 [71] shows 44 types of vegetation grouped into eight 

categories in the Romanian delta and a significant part of the 

Ukraine delta. These units consist of the following: flood plain 

forests; beach/sea vegetation and dune vegetation; salt-tolerant 

vegetation; sandy steppe meadows; river elevation meadows; 

dune forests; marsh vegetation and aquatic vegetation. The 

dominant species is Phragmites australis, which is usually 

accompanied by hydrophilous species such as Typha 

angustifolia, Schoenoplectus lacustris, Sparganium erectum, 

and Thelypteris palustris.   

In this paper, using different satellite images, we study the 

different units for dune vegetation, salt-tolerant vegetation, 

marsh vegetation, dune forests and floodplain forest areas.   

The study area was the Caraorman region, located, from a 

vegetation perspective, between the river area and the transitory 

area of the delta, in the ancient barrier beaches region. The 

dunes reach a maximum elevation of 7 m above sea level. The 

dunes are covered with open steppe vegetation such as Carex 

colchica, sea grape (Ephedra distachya), wild rye (Secale 

silvestre), Volga wild rye (Elymus giganteus) and Festuca 

beckeri. The depressions are forested by oak (Quercus 

pedunculiflora) and pubescent ash (Fraxinus pallisae). The 

Caraorman complex includes less elevated areas along its 

borders, with saline groundwater close to the soil surface. This 

is evident from its salt-tolerant vegetation (Puccinellia 

convoluta, sea lavender (Limonium gmelinii), sea rush (Juncus 

maritimus) and Aeluropus littoralis). These plants grow in 

mosaics mixed with less salt-tolerant flora and Tamarix 

ramosissima, Elaeagnus angustifolia and Hippophae 

rhamnoides bushes. 

Further along the marginal areas of the delta, flooding 

becomes increasingly important. This is reflected by a gradual 

change from salt-tolerant vegetation to brackish pasture with 

annual cyperaceous and further to reed mace marsh, which is 

finally replaced by reed marsh with sedges on peat soils. 

Soft wood forests are found along the river levees. 

Floodplain forests are dominated by white willow (Salix alba) 

and crack willow (S. fragilis), with indigo bush (Amorpha 

fruticosa) along the fringes. Alder trees (Alnus glutinosa) mixed 

with Salix alba are found along the narrow clayey river levees.  

II. DATASET 

The data used for this research include RADARSAT-2, 

LiDAR and SPOT-5 satellite data as well as ground-based 

spectral measurements (table 1). 

 
TABLE 1 



IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING 

4 

 

SUMMARY TABLE: DATA IMPLEMENTED 

 

RADARSAT-2 is equipped with a SAR sensor presenting the 

technical advantage to be able to acquire with full polarimetry. 

The capacity of transmitting radar waves horizontally (H) and 

vertically (V) allows for the generation of HH co-polarized 

products (such as RADARSAT-1) or VV, in cross-polarization 

(HV or VH), in double polarization or in quadruple 

polarization, which improves the information content of the 

target. The RADARSAT-2 sensor operates in a 5 GHz 

frequency band and in the 5.3 cm wavelength. Moreover, multi-

polarized data can be used to generate polarimetric signatures 

of the targets, which allows the interpretation of different 

backscatter mechanisms in different polarizations. 

In this research, we used quadruple polarization data 

(intensity and phase difference of the HH, HV, VV 

polarizations) acquired on June 4, 2011. This data enabled the 

discrimination of different scattering mechanisms, which 

provided relatively detailed information about the vegetal 

cover.  

The LiDAR data included a Digital Terrain Model (DTM) 

representing the terrain without surface objects (constructions, 

vegetation…) and a Digital Surface Model (DSM) including 

surface objects. The LiDAR data was acquired by the Institute 

of Research and Development of the Danube Delta (INCDDD), 

in Tulcea (Romania). First, a DEM was created from raw point 

data. The LiDAR data were obtained as X, Y, Z and return 

intensity measures were in ASCII format; therefore, the initial 

creation of the DEM required the identification of ground 

points, interpolating a continuous surface and estimating DEM 

cell center elevations. The topography was derived from point 

altimetric mappings subsequently interpolated. The accuracy 

was lower than 1/25 000 (map scale). In addition to the 

topographic measures carried out in the field, the topographic 

map has been used to check the accuracy of the 

orthorectification of LiDAR data. The results have shown that 

the difference between the LiDAR points and the points of the 

map XY was < 25 m and for Z was < 10 cm. 

The LiDAR mission was carried out by SC Primul Meridian 

SRL Slatina, in May 2011, with a RIEGL Q560 i, 240 kHz 

sensor (Airborne Laser Scanning). The flight altitude was 800 

m and the number of points by square meter was 25. The 

acquisition parameters and the flight date were determined by 

the Danube Delta National Institute for Research and 

Development (DDNIRD), with the goal of obtaining good 

topographic accuracy and the observation of vegetation with a 

density fixed at 4–5 cm for X, Y and 5-6 cm for Z. LiDAR data 

acquisition was carried out in the near infrared band (532 nm-

905 nm) with a 60° angle (±30°), a pulse frequency of 110 KHz, 

the equivalent of 110 000 pulses per second and a scanning 

speed of 64.8 lines/sec. The data were acquired in the UTM 

WGS84 geodesic system restored into Stereo70 and projected 

in the Dealul Piscului system using DDNIRD software 

(Romania). The Root Mean Square Error (RMSE) was: RMS 

X: > 5 cm; RMS Y: > 5 cm; and RMS Z: > 10 cm.  

A SPOT-5 multispectral image from May 23, 2011, HRG 

instrument (high resolution) at a spatial resolution of 10 m x 10 

m and an incidence angle of 29.02 was also used.  SPOT-5 has 

a 10-m spatial resolution and four bands: B1 (green: 0.50 to 

0.55 μm), B2 (red: 0.61 to 0.68 μm), B3 (near-infrared NIR: 

0.78 to 0.89 μm). SPOT scenes came with radiometric 

correction for distortions due to differences in sensitivity of the 

elementary detectors of the viewing instrument, which is the 

preprocessing level called 1A [73]. 

 Lastly, ground data were also used, i.e., spectral measures 

of the main vegetation classes of the Danube Delta in the 

Caraorman region. The acquisition of spectroradiometric 

measurements in the field was carried out using a FieldSpec® 

HandHeld spectroradiometer operating over a portion of the 

electromagnetic spectrum between 325 nm-1075 nm. The 

values measured on the target fields were assessed using the 

reference spectrum determined during the calibration 

performed before the measurements and the spectral curves are 

displayed on the computer screen during each acquisition and 

the digital recording is performed directly as reflectance.  

 The dates were selected based on vegetation phenology and 

seasonal water management of the targeted habitats. The time 

lapse between the data acquisition dates (May 25 for SPOT-5, 

June 4 for RADARSAT-2 and May for LiDAR) did not lead to 

considerable differences because the vegetation phenology had 

not changed significantly between the different dates. 

III. METHODOLOGY 

From a methodological point of view, this paper covers 

several aspects: radar image analysis and processing, LiDAR 

data analysis and processing and field data processing analysis 

(spectral measures of the main vegetation classes in the 

Caraorman region, in the Danube Delta) in connection with the 

optical data (SPOT-5 sensor calibration), SPOT data analysis 

and processing; finally, multisensor data integration was 

proposed (Fig. 2). This data integration consists in creating 

layer stacks of the different sensors in order to use all available 

bands of each data for the classification process. Thus, we 

proposed the combination between SPOT-5/RADARSAT-2, 

Dataset Image date Technical characteristics 

RADARSAT-2 4 June 2011 

Mode: Standard Quad-Pol, HH, VV, HV, 

VH 

C-Band: 5.6 cm 

Resolution: radar geometry: 5.12 m (line) 

and 4.7 m (range); thrown to the ground: 

5.12 m (line) and 7.2 (range) 

LiDAR May 2011 

Number of points by square meter: 25 

Observation of the vegetation with a 

density fixed at 4–5 cm for X, Y and 5-6 

cm for Z 

In the near infrared band (532 nm-905 

nm) 

RMS:  RMS X: > 5 cm; RMS Y:> 5 cm; 

RMS  Z:> 10 cm 

SPOT-5 25 May 2011 

Multispectral image 

HRG instrument (high resolution) 

Spatial resolution: 10 m x 10 m 

Spectroradiometric 

measurements 
May 2011 

FieldSpec® HandHeld spectroradiometer 

Electromagnetic spectrum comprised 

between 325 and 1075 nm 
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SPOT-5/LiDAR, RADARSAT-2/LiDAR and 

SPOT5/RADARSAT-2/LiDAR. 

The accuracy assessment of the classification results was 

evaluated against vegetation data recorded in the field. 

 
Fig. 2.  Data processing procedure 

A. Radar methodology 

 

Given a fully polarimetric radar sensor such as RADARSAT-

2, which has the capacity to emit and receive in horizontal (H) 

and vertical (V) polarizations can thus acquire polarimetric 

information as described in the S scattering matrix:  

 

 𝑆 = (
𝑆ℎℎ 𝑆ℎ𝑣

𝑆𝑣ℎ 𝑆𝑣𝑣
) (1) 

Because of the monostatic nature of the RADARSAT-2 data, 

and based on reciprocity theorem we can assume that the terms 

Shv and Svh can be considered equal. Based on the 

backscattering matrix, we deduce the T coherence matrix as: 

 𝑘𝑝 =
1

√2
(

𝑆ℎℎ + 𝑆𝑣𝑣

𝑆ℎℎ − 𝑆𝑣𝑣

2 𝑆ℎ𝑣

) (2) 

 T = 〈𝑘𝑝𝑘𝑝
  ∗𝑇〉 (3) 

Where 𝑘𝑝𝑘𝑝 represents the target representative vector of 

the Pauli basis.  < > refers to the averaging carried out during 

the multi-looking mode (or filtering) necessary for the use of 

the incoherent indices. 

Therefore, this representation is based on a physical 

representation of the backscattering mechanisms of the 

observed target, odd bounce (as on a bare soil). Equation (4) 

represents the single-bounce scattering (e.g. dominant on bare 

soil or water), equation (5) the double-bounce (e.g. soil-tree 

trunk or soil-built-up area), and equation (6) volume scattering 

(e.g. dominant in forests). 

1/√2|𝑆ℎℎ + 𝑆𝑣𝑣|2                (4) 

         

1/√2|𝑆ℎℎ − 𝑆𝑣𝑣|2                     (5) 

 1/√2|𝑆ℎ𝑣|2 (6) 

In addition, we extract a local heterogeneity indicator based 

on coefficients of variation 𝐶𝑣 of the extracted intensities where 

𝜎  and 𝜇 represent the standard deviation and mean estimated 

over 5x5 neighborhood. 

 𝐶𝑣 = (
𝜎

𝜇
)      (7) 

The three parameters H/A/α represent the entropy, 

anisotropy and the alpha angle. The entropy parameter 

characterizes the polarimetric disorder level among the three 

scattering mechanisms in terms of scattering degree of 

randomness, the anisotropy characterizes the relative 

importance of secondary scattering mechanisms, and the α 

parameter provides information about the type of scattering 

mechanism (simple, double bounce or volume scattering). 

The RADARSAT-2 SAR images were pre-processed to 

standardize the satellite recorded image brightness, rectify the 

image geometry and filter image noise. Although cubic 

convolution is considered an adequate resampling method for 

preserving structures and linear features in radar images, we 

applied the nearest neighbor method to maintain, as much as 

possible, the original radiometry before filtering. The speckle 

inherent in radar images necessitates the use of filtering 

processes prior to other processing. The SAR image was 

filtered by means of the adaptive filter (Lee filter). This filter is 

based on the minimization of mean square error between the 

estimation of radiometric value of the pixel and the real value. 

We used PolSARpro software for the extraction of the 

polarimetric indices (intensity and entropy) and Map Ready for 

the orthorectification (figure 3).  

Fig. 3.  Radar data processing procedure 

 

RADARSAT-2 

radar image 

processing and 

analysis 
(fig.3) 

Geometric 

correction (LiDAR) 
DEM Interpolation 
Multi-thresholding 

segmentation 

SPOT-5 image 

calibration with the 

spectral field 

measures 

SVM Classification 
Multi-sensor data 

integration 
Cross-validation 
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B. LiDAR methodology 

The fundamental concept of a LiDAR measurement is to 

send a laser pulse towards a target and to measure the time and 

amount of energy that is scattered back from the target. For each 

laser pulse emitted, the instrument measures the time the wave 

takes to make the two-way displacement up to the target object. 

In the atmosphere (n=1), the laser wave displacement with the 

velocity of light (c=3x108 m/sec), the two-way displacement 

duration (τ) is converted into distance between the instrument 

and the target (ρ) by means of the equation formula: 

 𝜌 =  
𝑐

𝑛
 

𝜏

2
  (8) 

The instrument position, laser pulse emission direction and 

two way displacement distance of the wave allow for accurate 

localization in space of the target surface and therefore, for the 

determination of its altitude. Given that LiDAR emits, in 

general, between 10 000 and 30 000 pulses per second [69], it 

is possible to measure the terrain elevation with a large number 

of points, having a density of 0.1 - 5 points per m2 of soil [74], 

[75] but which can be higher if required. An interpolation, i.e., 

the determination of the unknown values derived from the 

neighboring values, allows for the altitude to be obtained on a 

regular grid based on point seeding. The result is presented in 

the form of a pixel matrix with each pixel having an altitude 

value. This format is simpler and more practical for calculation 

and visualization purposes than point seeding. 

The LiDAR sensor emits a pulse in the near infrared. The 

first return only records the position of the first object (top of 

the canopy, roof, etc.); however, the last return indicates the 

height of the last objet, which corresponds, depending on the 

data acquisition conditions and the density of the canopy, to the 

soil or vegetation [76]. Soil height can be calculated directly 

using the points of the first return, whereas the classification of 

the pulses from the last returns is necessary to discriminate 

between the points characterizing the low- or intermediate-

growing vegetation layers and the points representing soil [77]. 

The surface covered by a pulse, called a footprint, corresponds 

to a circle approximately 20 - 30 cm wide [78]. The pulse can 

be reflected by several surfaces located within this circle, 

generating several echoes. This happens mainly at the 

vegetation level and in the building limits. For instance, during 

the acquisition of LiDAR data over a forest area, a portion of 

the pulse is reflected by the vegetation while the remainder 

passes through it before being reflected by the soil. Each target 

hit by the wave corresponds to an echo, which allows 

distinguishing the structures located below the vegetal cover. 

This phenomenon appears if the targets are distant enough from 

one another; otherwise, there is an overlap of the two echoes 

and they can no longer be distinguished. Vegetation height is a 

function of species composition, climate and site quality and 

can be used for land cover classification [3]. The height classes 

were obtained by a multi-thresholding segmentation using the 

Quantum GIS software (QGIS) for imaging height 

measurements (Fig. 6).  

C. SPOT-5 methodology (Calibration of the SPOT-5 optical 

data using in situ spectral measurements) 

In the first part of this methodology, we preprocessed the 

SPOT image; the image calibration can be compared to a range 

of spectral field measurements of the main land cover classes. 

This calculation is possible in the three bands since the 

radiometer only records measurements in the visible and near 

infrared wavelengths (B1: green, B2: red, B3: NIR). We chose 

seven spectroradiometric measurement points for each of the 

three spectral bands. 

The sensors used in remote sensing are radiometers that 

measure the luminance reflected simultaneously by the Earth 

and the atmosphere. Therefore, the radiometric signal depends 

on the reflectance of the Earth’s surface, the incident 

illumination and atmospheric effects. In this paper, we applied 

a method using field spectroradiometric measurements on 

reference points that can be identified in the image (Fig. 4). 

Fig. 4  (a) Measure of the reflectance of Phragmites australis 

  (b) Spectral curves of Phragmites australis  

  (c) Localization of Phragmites australis on the SPOT-5 image 

 

The reflectance values were obtained through the relationship y 

= a.x + b, where a and b are the two coefficients of regression 

between the image values and the field measurements (Fig. 5). 

The image pixel luminance values can then be converted into 

reflectance by means of linear extrapolation. The figure shows 

the regression lines obtained by connecting the image pixel 

luminance values on the B1, B2 and B3 bands (the three spectral 

bands of SPOT-5) with the seven points measured on site by a 

spectroradiometer. As can be noted (Fig. 5. (a), (b) and (c)) the 

correlation between the two variables was strong. 

Consequently, the values of the coefficients of determination 

(R2) were very good. For the data calibration, we used the ENVI 

5 (Classic) software (Spectral/ Preprocessing/ Calibration 

Utilities). 
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Fig. 5 (a) Correlation between the luminance values of image band 1 and the 

reflectance measured in situ for the seven points 

 

 
 

Fig. 5 (b) Correlation between the luminance values of image band 2 and the 

reflectance measured in situ for the seven points  

 

 
Fig. 5.  (c) Correlation between the luminance values of image band 3 and the 

reflectance measured in situ for the seven points.  

D. Support Vector Machine (SVM) methodology 

To compare the discrimination capabilities of the different 

sensors used in this paper, we chose to use the SVM supervised 

classification algorithm. This algorithm was applied to all of 

the data in the study. 

The algorithm preferred for our research was the SVM 

because it allows for non-linear classification. The algorithm 

can contain several parameters, which is often necessary to 

achieve high classification accuracy with radar data. 

Furthermore, its non-parametric nature is well suited for SAR 

image classification (and derived parameters) of various 

statistical distributions. The support vectors are essential 

components of the learning stage and their selection partly 

depends on a penalty parameter that allows for varying degrees 

of information bias, which is particularly important for the 

class samples that are not entirely separable during the learning 

stage. The learning stage of SVM also relies on the kernel 

concept. This consists in using a linear classifier to solve a non-

linear problem by extending the input data representation 

space and then using a linear classifier. The choice of the kernel 

function to achieve this transformation is important and there 

are several types of kernels, namely linear, radial basis function 

(RBF), polynomial and sigmoid kernels. With respect to radar 

image classification, an RBF kernel was used for the SVM 

classifications described in the results. The SVM principle was 

developed for a two-class problem but can easily be extended 

to a multi-class problem by considering, for example, the “One 

Against All” (OAA) or the “One Against One“ (OAO) 

algorithms. If the K classes are considered, the OAA algorithm 

consists in the construction of K hyperplanes that separate one 

class from the K-1 other classes. The OAO algorithm consists 

in the construction of K(K −1)/2  hyperplanes, which separate 

each pair of classes. The OAO algorithm was retained for this 

application. We chose the RBF kernel due to its ability to solve 

non-linear problems but also because it requires only one 

parameter, the Gamma parameter, in addition to the cost 

parameter common to every kernel. Finally, in order to optimize 

the cost and gamma parameter, we used a cross-validation in 

grid search processing. Therefore, for every classification we 

previously found the best cost and gamma couple. The 

calculations for SVM were carried out on the SVM Library of 

the Orfeo Toolbox. 

For more details on processing procedure of SVM, see 

reference [79]. 

E. Multisensor data integration 

The final stage of the image processing relates to the 

integration of several images from two satellites (RADARSAT-

2, SPOT-5) and LiDAR, which have different spatial 

resolutions. Image integration is a method for combining 

information from various sources. Consequently, using a 

combination of different sensors, we resampled the data to the 

smallest pixel size between optical and radar. All the datasets 

were orthorectified and resampled to a 5 m pixel size and 

separately classified.  

 

D. Mapping validation 

The detailed vegetation map of the Caraorman area 

shown in the next part of the paper was validated using 
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vegetation transects. Classification accuracy was assessed 

using global and Kappa indices. More than 100 transects were 

carried out over the Caraorman region and allowed to derive a 

detailed vegetation map. This map was simplified to be 

compatible with those that we produced from remote sensing 

images. Reference data were collected in June and July 2011. 

Selected areas were visited in situ and the vegetation cover was 

identified. The classification accuracy was estimated using 

cross-validation and by calculating the percentage of correctly 

classified pixels on the resulting maps. The resulting 

distribution maps were validated with expert knowledge and 

with additional field visits for the interpretation of potentially 

misclassified areas. The ground reference data consisted of 160 

samples, covering 12 vegetation types. 

Simultaneously, the heights of most of the vegetation classes 

were measured in the field (Ground Control Point 

measurements (GCP)) and compared to the LiDAR estimates. 

The survey by point has been chosen. The choice of training 

and control point sets is the result of a stratified random 

sampling (with software ENVI 4.8). 500 training points and 800 

control points are set for all classes. The random survey is 

stratified from the thematic areas homogeneous (class of height 

of vegetation). The stratification was conducted, in a first time 

before the phase of measures in the field. In the field we also 

used a system of positioning by satellite of type GPS (Global 

Positioning System) for all points. The points have been 

examined in the field (between 50 and 60 by the class of height 

of vegetation). Strong correlation between measured and 

estimated heights over all vegetation types was found (R2 = 

0.95, RMSE = 0.35). These statistical indicators have been 

calculated with software R. 

Mapping accuracies were summarized using confusion 

matrices and statistics including user, producer and overall 

accuracy and Cohen’s K [80]. Overall accuracy is the 

percentage of correctly classified points from the ground 

dataset. The statistical criteria were based on the confusion 

matrix created from a comparison between the classification 

and the verification data. Generated from this confusion matrix, 

the percentage of Pixels Correctly Classified (PCC) and the 

Kappa coefficient of agreement (k) [81] were analyzed to assess 

class discrimination. The Kappa coefficient takes into account 

the expected agreement and is therefore considered to be a 

better single classification accuracy measure [82]. The maps 

had strong Kappa indices (0.80 for the SPOT classification; 

0.49 for RADARSAT-2; 0.91 for SPOT/LiDAR; 0.69 for 

RADARSAT-2/LiDAR; 0.83 for SPOT/RADARSAT-2; and 

0.89 for SPOT/LiDAR/RADARSAT-2) indicating strong 

agreement between the classifications and observed vegetation 

classes. To obtain more data, the vegetation cover was also 

photographed along airborne transects. 

IV. RESULTS  

Vegetation in the study region and, in Danube Delta in 

general, is highly mixed, both within and between vegetation 

types. Our results relate to combinations of data from different 

satellite sensors (SPOT-5, RADARSAT-2 and LiDAR) in order 

to improve the accuracy of recognition and mapping of major 

vegetation classes in the Danube delta. First, the data from each 

sensor are classified and analyzed. Results show medium 

classification performance (78.07% mean accuracy for the 

SPOT image classification; 51.89% for the radar image 

classification) in this first step. The combination of SPOT-5 

data and radar data improved the performance of the 

classification (83.81%) and the combination of the three types 

of data provides an excellent performance for the multi-sensor 

classification (90.60%). 

A. Detection and mapping of vegetation based on LiDAR 

measurements 

The vegetation was classified into seven classes associated 

with the seven following layers (Fig. 6): “low grass layer” class 

lower than 20 cm; “middle sedge layer” class, ranging between 

20 cm and 1 m; “reed layer” and “shrub layer” class, ranging 

between 1 m and 2.5 m; “tree layer” class at 25 m and “water” 

class at 0 m. The LiDAR-determined vegetation heights were 

correlated to those measured in the field. 

 
 

Fig. 6.  LiDAR classification: vegetation height in the Caraorman region 

 

The height and density of our delta vegetation vary (table 2). 
 

TABLE 2  

CLASS COMPOSITIONS HEIGHT VEGETATION 

 

Height vegetation Composition 
 

 

10m-25m 

 

Populus alba, Fraxinus pallisiae, Malus 

dasyphylla, Quercus pedunculiflora 

2.5m-3.5m shrubs : Rubuscaesius, Cornus sanguinea and 

Amorpha fruticose 

1m-2.5m Typha angustifolia and Latifolia, Carex sp., 

Phragmites australis   

0.2m-1m Sedge subspecies 

0.2m Puccinellie and Limnonium gmelinii, Carex 

colchica, Ephedra distachya, Elymus 

giganteus, Festuca beckeri 

 

Vegetation height mapping relying on LiDAR data can be used 

to identify vegetation layers (grasses, reeds, shrubs and trees). 
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However, these images did not enable us to characterize plant 

formations within each of these layers. We suggest additional 

information sources, namely a SPOT-5 image acquired on May 

2011 and a RADARSAT-2 radar image acquired on June 4, 

2011; we also suggest a data integration series between these 

three types of data, SPOT/Radar, SPOT/LiDAR and 

SPOT/Radar/LiDAR, as shown in Fig. 10. 

B. Detection and mapping of vegetation based on SPOT-5 

image processing 

The SPOT image covers the visible and near infrared spectral 

ranges, which are two strategic ranges used for identifying 

vegetation. The multispectral sensor enabled us to detect the 

spectral responses of each plant formation (Fig. 7). The median 

signature of the vegetation is the mixed contribution of the 

substrate and the vegetation. 

 

Vegetation types were labeled following 12 classes (Table 

3). This classification allowed us to distinguish 5 classes of 

reeds in the large marsh vegetation class (pure reed vegetation, 

reed vegetation on compact reed, reed vegetation on open plaur, 

reed vegetation and bushes on compact plaur, mixed reed 

vegetation). 

 
 

Fig. 7.  SPOT-5 classification: 12 land cover classes 

 

TABLE 3 

CLASS COMPOSITIONS  

 

Class Composition Class Composition 

 

 

 

 

 

Dune forest 

 

 

 

 

Broadleaf trees : Alnus 

glutinosa, Populus alba, 

Fraxinus pallisiae, 

Fraxinus angustifolia, 

Malus dasyphylla, 

Quercus pedunculiflora 

 

 

 

 

Mixed reed 

vegetation 

The dominant species is 

Phragmites australis, 

usually accompanied by 

a hygrophilous species 

such as Typha 

angustifolia, 

Schoenoplectus 

lacustris, and 

Sparganium erectum, 

Thelypteris palustris 

 

 

 

Dune 

vegetation 

Carex colchica, 

Ephedra distachya, 

Elymus giganteus, 

Festuca beckeri, 

Ephedra distachya, 

Secale silvestre, 

Centaurea arenaria, 

Elymus giganteus 

 

 

 

Salt 

tolerant 

vegetation 

Puccinellio-

Salicornietum, 

Puccinellietum limosae, 

Puccinellia convoluta, 

Limonium gmelinii, 

Juncus maritimus, 

Aeluropus littoralis.  

 

 

Pure reed 

vegetation 

 

 

Phragmites australis 

Mixed 

sedges 

vegetation 

A great number of 

Danube delta reed types 

and subtypes fit under 

the classification of 

Scirpo-Phragmitetum 

Reed 

vegetation 

on compact 

reed 

 

 

Phragmites australis 

Vegetation 

in 

depressions 

between 

dunes 

 

Salix rosmarinifolia, 

Quercus pedunculiflora, 

Fraxinus pallisae 

Reed 

vegetation 

on open 

plaur 

 

Phragmites australis 

Mixed 

Typha 

 

Scirpo-Phragmitetum 

Reed 

vegetation 

and bushes 

on compact 

plaur 

 

Salix cinerea, Amorpha 

fruticosa  

  

 

The SPOT-5 image classifications (Fig. 7) (78.07% mean 

accuracy) have satisfactory overall accuracy. The classification 

precision analysis per class proves that the SPOT-5 image 

classifications allow for the identification of all of the classes 

(12 classes). The following classes exhibit satisfactory 

accuracy: pure reed vegetation (75.5%), dune vegetation 

(95.2%), reed vegetation on open plaur (floating vegetation 

called plaur (floating reed bed) is an association of reeds and 

other wetland plants that grow on a one-meter thick cover made 

up of roots, soil and various organic materials) (90%) and salt-

tolerant vegetation (81.8%). Mixed sedge vegetation (57.8%), 

dune forests (47.8%) and reed vegetation and bushes on 

compact plaur classes exhibited lower performance in the 

mapping results. As far as the pure reed class or the vegetation 

in depressions between dunes class is concerned, the reed beds 

were relatively well identified. There was some confusion 

between the mixed sedge vegetation and mixed Typha classes. 

The spatial resolution of the sensor (10 m x 10 m in the 

multispectral mode) did not allow for the discrimination of the 

various plant formations in environments that were too 

heterogeneous, such as mixed reed or mixed Typha. The SPOT-

5 spatial resolution (10 m) did not allow for mapping the 

smallest components of the delta landscape, such as the delta 

lake macrophytes.  

The classification of vegetation types based only on their 

spectral characteristics involves different constraints. Within a 

single pixel, vegetation often consists of a mixture of species. 
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Additionally, the boundaries between the patches of different 

vegetation types often occur as smooth transitions rather than 

sharp edges [83]. The reflectance spectra of wetland vegetation 

canopies are often very similar and are combined with 

reflectance spectra of the underlying soil, hydrologic regime 

and atmospheric vapor [84], [85], [86]. Current efforts, which 

have been successful at mapping terrestrial vegetation using 

optical remote sensing, may not be able, either spatially or 

spectrally, to effectively distinguish the flooded wetland 

vegetation because of the performance of near to mid-infrared 

bands that are attenuated by the occurrences of underlying 

water and wet soil [87], [88]. Landsat TM and SPOT imagery 

have proven insufficient for discriminating vegetation species 

in detailed wetland environments [89], [90]. More complicated 

mapping tasks require other data sources such as LiDAR and 

radar. 

C. Detection and mapping of vegetation based on 

RADARSAT-2 image processing 

Polarimetric radar data are sensitive to substrate roughness 

and moisture. Non-dominant double-bounce backscattering 

characterizes the first plant growth stage (May-June). This 

mechanism continues to dominate until July-August (the 

maturity phase for most of the Danube delta species). 

Therefore, the beginning of summer is the best time for 

vegetation structure classification and the end of summer (end 

of July through the beginning of September) is the best time for 

their characterization, for instance, to undertake aboveground 

biomass estimation.  

The classification accuracy of the radar image (Fig. 8) 

acquired on June 4, 2011 was estimated to be 51.89%, which 

was inferior to that of the SPOT image, with a very low mean 

accuracy. 

 
 

Fig. 8.  RADARSAT-2 classification: 12 land cover classes 

 

The clearly identified classes are dune forests (78%), dune 

vegetation (65.4%), bodies of water (lakes) and vegetation in 

depressions between dunes. There was some confusion between 

similar vegetation classes (pure reed vegetation, reed vegetation 

on compact reed, reed vegetation on open plaur, reed vegetation 

and bushes on compact plaur, mixed reed vegetation and mixed 

sedge vegetation). Classes associated with the tree layers are 

well characterized. The partial distinction between the reed 

beds allows for the identification of homogeneous plant 

formations within the same mixed class.  

Polarimetric signatures were suggested for all of the classes 

(Fig. 9) in order to better identify and characterize the twelve 

classes. 

 
Example: Dune forest class 

 

  
(a) Dune forest class 

 

Fig. 9.  Polarimetric signatures, Dune forest classe  (example) 

 

Polarimetric signatures show the backscattering response of 

a target (Figure 9). The polarimetric signature of a pixel on a 

signature image of the elementary targets already determined 

can be used to consequently deduce the type of scattering 

present. The purpose is to establish a link between the physical 

characteristics of the various targets analyzed and the 

backscattering mechanisms. The polarimetric information of a 

target reflects the biophysical features and the geometric 

structure of the latter. Results of this analysis show that reed 

classes have similar polarimetric signatures. Similar 

polarimetric signatures are reported between Typha and sedges. 

In the spring, Typha sites are characterized by surface 

backscattering. Typha species have medium and strong foliar 

biomass and are characterized by long, rather large and ordered 

leaves (often upright and rigid). Stem diameter is close to the 

C-band wavelength. Phragmites australis has medium and 

strong foliar biomass and is characterized by long, rather 

narrow and disordered leaves. Stem diameter is smaller than the 

C-band wavelength. Carex species have low foliar biomass and 

the diameter of their upright stems is smaller than the C-band 

wavelength. 
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Higher species (>1 m) with greater biomass do not have a 

specific structure. In principle, the long, narrow and disordered 

leaves of these species should enhance volume backscattering 

(Fig. 9 (a)). The most specific element of these backscattering 

operations is the presence of a double-bounce component in the 

spring when the water level is high (for swamp shrubs). In the 

spring (May and beginning of June), swamp detection is often 

based on their strong signal, especially in HH polarization, due 

to the occurrence of double bounce backscattering due to water 

[91], [35]. The radar backscattering coefficient normally 

diminishes with plant water content reduction [91]. Moreover, 

soil moisture is better and more accurately detected by radar 

images than by visible and near infrared images because radar 

data provide information about the water content of the first 10 

cm of bare or minimally covered soil [92]. 

D. Detection and mapping of vegetation based on the synergy 

between LiDAR, RADARSAT-2 and SPOT-5 images 

To better understand and characterize the spatial 

organization of Danube delta vegetation (in the Caraorman 

area) and to provide a synthetic view of the dynamics of this 

environment, optical remote sensing (SPOT), altimeter 

(LiDAR), radar (RADARSAT-2) and field observation data 

were acquired and processed together.  

By integrating the SAR data with optical images such as 

SPOT, the quality of the habitat maps (Fig. 10 (a)) can be 

considerably improved. Data integration between the SPOT and 

RADARSAT-2 images provides classification with an overall 

accuracy of 83.81% and satisfactory class accuracies ranging 

between 68.2% and 92.9%, except for the lake class (100%). 

The dune vegetation (92.9%), mixed Typha (91.8%), reed 

vegetation on open plaur (91.5%), salt-tolerant vegetation 

(85.6%), mixed reed vegetation (85.6%) and dune forest 

(82.8%) classes were well mapped and show good accuracy.  

Individually, SAR and SPOT imagery had poor accuracy 

when mapping three land cover categories (open water, flooded 

vegetation and non-flooded land), but the RADARSAT-2 and 

SPOT combination contributed complementary data that 

produced significantly better classification results [34]. 

Moghaddam et al. (2002) [93] found that combining Landsat 

TM and different radar data was more accurate for predicting 

ground-based measurements of forest structure than any sensor 

alone. Slatton et al. (2001) [64] combined LiDAR data with 

interferometric radar data to improve estimates of vegetation 

heights. 

Results were considerably improved by integrating SPOT, 

radar and LiDAR data (Fig. 11), with overall accuracy reaching 

90.60% (table 4). The dune forest (97.6%), salt-tolerant 

vegetation (96.2%), reed vegetation on open plaur (94.1%), 

mixed reed vegetation (92.1%), vegetation in depressions 

between dunes (93.6%) and mixed Typha (95.2%) classes were 

well identified. 

 
 

 

Fig. 10.  a) Data integration: optical image/radar image 

 b) Data integration: optical image/LiDAR 

 c) Data integration: radar image/LiDAR 

 d) Data integration: optical image/radar image/LiDAR. 

 

 
Fig. 11.  Multi-sensor data integration: SPOT-5, LiDAR and RADARSAT-2: 

12 land cover classes 

 

TABLE 4 

MEAN ACCURACY OF SPOT-5/RADARSAT-2/ 

LIDAR MULTI-SENSOR DATA INTEGRATION 

 

a 

 

b 

 

 
c 

 
d 
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Class 
Prod. Acc. 

(Percent) 
Class 

Prod. Acc. 

(Percent) 

 Dune forest 97.6 
Reed vegetation and 
bushes on compact 

plaur 
89 

 Dune vegetation 94.5 
Mixed reed 
vegetation 

92.1 

Pure reed 
vegetation 

78.8 
Salt tolerant 
vegetation  

96.2 

Reed vegetation 
on compact plaur 

81.5 
Mixed sedge 
vegetation 

74.6 

Reed vegetation 
on open plaur 

94.1 
Vegetation in 
depressions 

between dunes  
93.6 

Lakes 100 Mixed Typha 95.2 

Mean Accuracy 90,60 % 

V. DISCUSSION 

Combinations of spaceborne SAR imagery and SPOT image 

and LiDAR were evaluated.  

We analyzed the potential and limitations of LiDAR, 

RADARSAT-2 and SPOT-5 data and their integration for the 

recognition and characterization of the main vegetation classes 

in the Caraorman region of the Danube delta. The vegetation 

map provides an understanding of the distribution of vegetation 

patterns.  

LiDAR is an active remote sensing technology that can 

provide accurate vertical vegetation structural parameters. 

Results revealed that the altimetric accuracy of the LiDAR data 

allowed for the characterization of vegetation height with an 

accuracy of 10 cm. The heights were measured in the field and 

compared to the LiDAR estimates. However, the LiDAR data 

containing spectral information only in the near infrared band 

did not allow for distinguishing between the various plant 

formations within the same layer. When acquired in a coastal 

marsh environment, the research demonstrated a decreased 

ability for the laser pulse to penetrate through the vegetative 

layer onto the ground surface [14]. Because of the poor 

penetration of the laser pulse through the marsh vegetation (few 

ground points are available because of water absorption), bare-

earth LiDAR elevations can be markedly less accurate (pure 

reed vegetation 31.20%, reed vegetation on compact plaur 

19.42%, mixed reed vegetation 30.10%, mixed sedge 

vegetation 33.13%) when compared with adjacent upland 

habitats (dune forest 84.31%, dune vegetation 95.17%).  

Therefore, by linking multispectral, LiDAR and radar data, it 

is possible to obtain information about vegetation reflectance 

and height as well as the backscattering mechanism, which 

allows mapping and characterization accuracy refinement.  

Certain types of wetlands were more easily distinguished on 

the satellite images than others for a number of reasons. First, 

classes such as partially forested lowlands exhibited varying 

degrees of heterogeneity. It is difficult to accurately estimate 

the mix of trees, shrubs and herbaceous plants, and so the 

dominant type was easily misassigned. 

The SPOT-5 scene resolution provided an adequate scale for 

acquiring detailed field data within homogeneous stands, 

allowing for optimization of the time spent for data collection 

and the proper localization of the sampled plots on the ground 

and on the scenes. Passive data do not allow for automatic 

characterization of all plant formations. We were able to 

identify certain plant formations automatically due to their 

strong spectral singularity. This is the case with pure reed or 

dune vegetation areas. Therefore, “homogeneous” habitats, 

such as reed beds, may be identified based on SPOT-5 images. 

Heterogeneous plant formations, rather common in these 

wetlands, are not always identifiable and rarely extractible from 

this type of image. Our results also highlight the advantage of 

associating simultaneously acquired multispectral SPOT-5 

images and LiDAR data to improve heterogeneous and 

complex habitat maps (mean accuracy of 92.4%, table 5). When 

integrated with optical data, the LiDAR data collected over the 

Danube delta constitute an extraordinary database for use as a 

starting point to understanding vegetation organization in the 

delta.  

Radar data have the capability of penetrating the plant cover 

canopy and detecting submerged sectors and soil surface 

moisture. Although the spatial resolution of these images does 

not allow thorough and detailed habitat mapping, our results 

revealed the usefulness of these images for mapping wetland 

vegetation. Our results prove that radar polarimetry (and 

polarimetric parameters) contributes significantly to the 

improvement of vegetation identification based on polarization 

channels. 

The integration of radar and optical data (83.81%) 

considerably improves the performance of wetland 

identification and characterization. There are good 

complementarities between SPOT-5 surface discrimination and 

SAR vegetation density information (table 3). 

 
TABLE 5 

COMPARISON OF THE MEAN ACCURACY OF THE DIFFERENT SENSORS 

 

Sensors Mean accuracy (%) 

SPOT 78.07 

RADARSAT-2 51.89 

LiDAR 58.26 

SPOT/RADARSAT-2 83.81 

SPOT/LiDAR 92.64 

RADARSAT-2/LiDAR 73.28 

SPOT/RADARSAT-2/LiDAR 90.60 

 

Following are a few examples indicating how these results 

are consistent with the results from other research in the field. 

Trios of data sets (RADARSAT-1, Landsat-7 ETM+ and 

DEM data) were used to help map wetlands in eastern Canada 



IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING 

13 

 

into five classes [11]. The wetland classes, along with their 

corresponding accuracies were as follows: open bog 92%; 

marsh 84–89%; swamp 79%; and open fen 83%. 

The synergy of combining SAR data with optical images for 

coastal land cover mapping was investigated by Henderson et 

al. (2002) [94]. In this study, wetland categories consisted of 

estuarine emergent, palustrine emergent, palustrine shrub and 

palustrine forested areas. The incident angle was less important 

here than the spatial resolution; the fine mode image merge 

produced the best results. No merge combination produced 

acceptable operational (ca. 85%) wetland mapping accuracies, 

although merging the SAR with TM data did improve the 

results. 

 Allen et al. (2013) [65] obtained the following results: the 

highest overall accuracy used SAR, LiDAR canopy and digital 

elevation model (DEM) data (81% κ = 0.744), but was not 

significantly different from the SAR-only classification (81% κ 

= 0.742). Both classifications exceeded the data combination of 

SAR data with DEM (66% κ = 0.521) and SAR data with 

vegetation canopy data (80% κ = 0.725). 

 Maxa M. and Bolstad P. (2009) [66] compared the 

accuracy of the Wisconsin Wetland Inventory maps to maps 

derived from IKONOS high resolution satellite data and 

LiDAR data: IKONOS/LiDAR data were significantly more 

accurate (74.5% classification accuracy).   

Another example of improving classification accuracy by 

incorporating vegetation-related environmental variables using 

GIS with remotely sensed data is the work of Yang (2007) [95] 

in the Hunter region of Australia. He used digital aerial 

photographs, SPOT-4 and Landsat-7 ETM+ images for riparian 

vegetation delineation and mapping. The overall vegetation 

classification accuracy was 81% for digital aerial photography, 

63% for SPOT-4 and 53% for Landsat-7 ETM+. 

Results of the research presented in this article show 

accuracy of mapping of vegetation habitats greater than the 

previous research. Thus, the method of multi-sensor data 

integration is a method that improves the accuracy of mapping 

the vegetation habitats in the Danube delta.  

The temporal aspect, in addition to the spectral and 

spatial characteristics, is a valuable source of information in 

relation to the monitoring and management of plant resources 

and to the monitoring of the land cover dynamics. Hydrology, 

in terms of speed of flood, has an important role in the 

vegetation distribution in the Danube delta. The temporal aspect 

could be very interesting for a future study. The synergy of 

multitemporal satellite data could constitute a useful 

methodology for wetland mapping and characterization using 

the relationship between the distribution of vegetation 

formations and flood duration. The objective would be to 

achieve, on the one hand, the observation of plant dynamics in 

relation to the main flooding periods in the delta and, on the 

other hand, the monitoring of wetlands during the growing 

seasons to assess the phenological variability of the major plant 

species. 

VI. CONCLUSION  

Wetland extent and type may change due to variations in land 

use, hydrological conditions or vegetative successions, 

requiring update information on the main classes of land cover. 

Incomplete or inaccurate maps limit our ability to recognize and 

map wetland conditions and losses and to develop effective 

policies for wetland management. Because of the synthetic 

view that it provides, remote sensing is an important and 

effective tool for conducting large inventories/recognition of 

wetlands at a regional scale and at regular intervals. Remote 

sensing contributes to the state of knowledge through the 

understanding of the interactions between the optical signal, the 

polarimetric radar signal, LiDAR measurements and wetland 

environment in the Danube delta.  

Wetland vegetation plays a key role in the ecological 

functions of wetland environments. Vegetation characterization 

was applied in the wetlands of the Caraorman region of the 

Danube delta based on several types of remote sensing data, 

enabling us to perform a comparative assessment of these data. 

Results support the importance of the joint use of several data 

types (Fig. 12).  

 

    
SPOT-5 RADARSAT2 LiDAR SPOT/RADAR 

47.85% 78% 83.31% 82.77% 

    

   

 

SPOT/LiDAR RADAR/LiDAR SPOT/RADAR/

LiDAR 

 

95.90% 82.77% 97.63%  

 
Fig. 12.  Classification examples of the dune forest class by sensor and 

corresponding accuracy 

 

LiDAR provides reliable results (mean accuracy higher than 

80%) for dune forests, dune vegetation and mixed 

Typha detection; radar data are well suited for dune forest 

detection; optical data are perfect for dune vegetation, reed 

vegetation on open plaur, mixed reed vegetation, vegetation in 

depressions between dunes and mixed Typha detection; 

radar/optical data integration provides reliable results for dune 

forests, dune vegetation, reed vegetation on open plaur, mixed 

reed vegetation, salt-tolerant vegetation and mixed 

Typha detection; optical/LiDAR data integration exhibits 

reliable results for all twelve classes; radar/LiDAR data 

integration also exhibits reliable results for dune forests, dune 

vegetation and salt-tolerant vegetation detection; finally, 

optical/radar/LiDAR data integration exhibits reliable results 

for all classes, except for the pure reed vegetation (78.8%) and 

mixed sedge vegetation (74.6%) classes (table 5).  

 
TABLE 6 

CAPABILITY OF SENSORS TO DISCRIMINATE 

THE DIFFERENT VEGETATION CLASSES 
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Sensor 
Good 

discrimination (>80% 
accuracy) 

Confusion 

SPOT 

Dune vegetation, 

reed vegetation on open 

plaur, mixed reed 

vegetation, vegetation in 

depressions between 

dunes, mixed Typha 

Dune forest 

RADARSAT-2 Dune forest 

Reed vegetation on 

compact plaur, reed 

vegetation and bushes on 

compact plaur 

LiDAR 

Dune forest, dune 

vegetation, mixed 

Typha 

Reed vegetation on 

compact plaur, mixed reed 

vegetation 

SPOT/RADARSAT-

2 

Dune forest, dune 

vegetation, reed 

vegetation on open 

plaur, mixed reed 

vegetation, salt-tolerant 

vegetation, mixed 

Typha 

Mixed sedge vegetation 

SPOT/LiDAR All classes Very little 

RADARSAT-

2/LiDAR 

Dune forest, dune 

vegetation, salt-tolerant 

vegetation 

Reed vegetation on 

compact plaur, mixed 

sedges vegetation 

SPOT/RADARSAT-

2/LiDAR 

All classes except 

pure reed vegetation and 

mixed sedge vegetation 

Pure reed vegetation, 

mixed sedge vegetation 

 

This paper deals with the contribution of multi-source remote 

sensing data for vegetation recognition in the Danube Delta 

wetlands. The proposed method should be transferable to other 

large wetlands that are characterized by similar physiological 

settings and vegetation types. 
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