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ABSTRACT

This paper presents a multiparadigm force-directed graph drawing algorithm with horizontal scalability on distributed
storage  clusters.  Adaptations  of  the  classical  force-directed  scheme  that  function  on  a  distributed  environment  are
presented. This distributed force-directed scheme is associated with a distributed-compatible multilevel approach for a
more  efficient  graph  drawing  algorithm.  MuGDAD  is  compared  in  terms  of  layout  quality  and  speed  with  other
algorithms.
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1. INTRODUCTION

The Internet provides massive datasets. In the case of social  networks or maps, these data are stored on
clusters in a distributed manner. Visualization is necessary to help analyze this newly available large amount
of data and graphs are the tool of choice to represent networks.  Very large graph drawing is needed in
community management, for example, to help build a community or fight against harassment. It can also be
used  in  cybersecurity  to  secure  a  network.  In  Big  Data  visualization,   data  stored  on  clusters  must  be
processed there to avoid data transfer from the cluster to a dedicated computer or cluster. Such a transfer is
impossible because of the data volume. Thus distributed graph drawing algorithm are needed.

This is the basis of recent graph drawing papers like Arleo (2015) or Hinge (2015). Both papers present
an adaptation of force-directed algorithms on a distributed cluster, using Giraph (Avery 2011) and Apache
Spark (Zaharia 2010) respectively. These approaches have refined with a multilevel scheme by Arleo et al.
(2016). By using Giraph, a multilevel scheme is computed and the force-directed algorithm developed in
2015 is used at each level. This algorithm demonstrate the limitations of a purely force-directed approach, as
a multilevel approach performs better with a reduced computation time. Following this approach, MuGDAD
propose a distributed multilevel algorithm using Spark and the centroid-directed graph drawing algorithm
developed by Hinge and Auber.

Force-directed graph drawing algorithms are a class of graph drawing algorithms based on a physical
analogy to describe the interactions between nodes. The idea behind the physical model is to find its energy
minimum which gives the position of each node in the graph layout (Eades 1984, Fruchterman 1991, Quinn
1979). Two forces are usually used to model the physical system: attractive forces between connected nodes
and repulsive forces between all nodes. Force-directed graph drawing algorithms give aesthetically pleasing
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layouts but at the cost of high computational complexity. In Fruchterman and Reingold, for graph G=(V,E),
the all-pair repulsive forces has O(|V|2) complexity. Force-directed algorithms usually run O(|V|)
iterations to converge to an acceptable layout.  Stress minimization algorithms (Kamada 1989) define an
energy function to  minimize and use general  optimization methods to  find the energy minimum, which
corresponds to the final layout.

Due to complexity, force-directed graph drawing algorithms do not scale well when used with a global
repulsive force. Quigley and Eades (2001) and Hu (2005) chose to limit the repulsive force computation
complexity  by  using  quadtrees.  Neighbouring  vertices  in  the  layout  are  stored  recursively  in  a  tree  by
dividing the layout space into equal parts and assigning nodes to the corresponding branches. The tree is then
used to compute subtree-node repulsive forces, reducing complexity from O(|V|2) to O(|V| log |V|), the time
needed to build the quadtree. Hachul and Jünger (2005) and Godiyal  et al. (2009) limit the repulsive force
computation complexity by using the Fast Multipole method. This method also divides the space into equal
parts but the contribution of far-away nodes is computed with a multipole expansion. Using the potential
field generated by nodes in their quadrants, an approximation of their effect can be computed for the other
quadrants with an arbitrary precision. This also reduces complexity to O(|V| log |V|). 

Many papers proposed techniques to reduce repulsive forces complexity but the O(|V|) iterations needed
to converge still remain too high for large graphs. To reduce algorithmic complexity, force-directed graph
drawing algorithms can be associated with a multilevel scheme (Gajer 2001, Hachul 2005, Hu 2005). This
technique creates a vertex filtration, selecting decreasing subsets of nodes. From this filtration, increasingly
simple graphs are built and laid out successively using the layout obtained at the previous level as initial
positions. This process reduces iterations needed to converge: the initial layout is already close to the energy
minimum.  It  can  be  associated  with  an  intelligent  node  placement  (Gajer  2001)  to  further  improve
performances,  placing missing nodes at  a position close to their  final  position in  the layout.  Using this
method, FM3 (Hachul 2005) only computes a fixed number of iterations at each level instead of the O(|V|)
iterations usually needed. Thus the global complexity is O(|V| log |V| + |E|). 

Parallel  force-directed  algorithms  have  also  been  developed  to  harness  the  power  of  the  Graphical
Processing Unit (GPU), which gives access to many parallel cores. Force-directed algorithms (Auber 2007,
Sharma 2011, Yunis 2012) and multilevel force-directed algorithms (Frishman 2007, Godiyal 2009) have
been  developed,  transforming  how  force-directed  algorithms  are  usually  processed.  With  the  access  to
parallel  cores, the computation times can be improved up to a thousand times on the GPU compared to
performances on the CPU only (for example see results of Auber 2007). GPU force-directed algorithms, with
their  fast  running  time,  contribute  to  the  scalability  of  graph  drawing.  More  recently,  Mi  et  al.  (2016)
proposed a multilevel algorithm on the GPU using a clustering approach to draw graphs.

MuGDAD is a new multilevel distributed algorithm with an emphasis on distributed compatibility. It has
horizontal  scalability  for  distributed  architectures.  While  scalable,  the  number  of  iterations  needed  to
converge with  algorithms like Arleo  et al.  or Hinge and Auber was too high. Multilevel algorithms were
developed to limit the number of iterations, using an optimized initial layout for each level. With MuGDAD,
we present a way to compute and use a multilevel decomposition in a distributed environment. This scheme
is also compatible with the approximate repulsive forces described in Hinge (2015). Results from both our
distributed and non-distributed versions are presented.

2. MUGDAD: DISTRIBUTED MULTILEVEL DRAWING

G0 = (V0,E0)  Initial graph; i  0;← ← Initialization
While(|Vi| > 3) Filtration phase
  Vi+1  Filtration(V← i) Maximal independent set 2.1.1
  i  i+1←
  Create graph Gi = (Vi,Ei) Edge & node collapse 2.1.2
EndWhile
For(j from i to 0) Layout phase
  Compute layout of graph Gj (with few iterations) Centroid graph drawing 2.2
  Place nodes in Gj-1 according to the layout of Gj Layout propagation 2.1.3
EndFor

Algorithm 1. General structure of the MuGDAD algorithm



Multilevel  force-directed algorithms use recursive simplifications of the input graph and a force-directed
approach to draw each graph. This is done in two steps: a filtration step to recursively simplify the input
graph and a layout step where graphs are drawn iteratively with a force-directed algorithm. Starting with the
smallest graph, layouts are computed until convergence. The final layout is used as the initial layout for the
next step,  adding missing nodes.  Thus, initial  layouts are close to the energy minimum and only a few
iterations of the force-directed algorithm are needed to converge. This is summarized in Algorithm 1. In this
section, the distributed multilevel  filtration of MuGDAD is presented. Then, the force-directed model is
described.

2.1 Distributed multilevel decomposition

In MuGDAD, the multilevel decomposition is done by computing a Maximal Independent Set (MIS). The
neighbourhood of  nodes  selected  this  way is  clustered  and  positions  of  nodes  are  propagated  using  an
intelligent placement after the graph drawing algorithm has been applied. Thus, the decomposition is similar
to FM3 (Hachul 2005) but clusters are only formed at distance one around sun nodes.

2.1.1 Distributed maximal independent set

In  FM3  (Hachul  2005),  computing  the  multilevel  decomposition  is  done  using  a  sequential  algorithm
returning a MIS with a distance of at least three between sun nodes. Nodes are then clustered into solar
systems with no overlap. Parallel  algorithms of  MIS filtration exist  and can be directly transposed in  a
distributed paradigm.

Luby (1985) describes several parallel algorithms to find a MIS. Instead of choosing one vertex at a time
from the set of remaining vertices, it uses a global ranking scheme (a permutation of the nodes) and select
locally minimal vertices in regards to this ranking. This process is repeated until each node is either selected
or is a neighbour to a selected node. Of the several variants presented in the paper (Luby 1985), MuGDAD
implements the version with the lowest  expected complexity of O(log |V|).  This version generates more
random numbers on average which is not a problem in our situation.

Figure 1. Pregel implementation of MIS and clustering algorithm. (Left) Messages are exchanged between unselected
nodes. (Right) Messages received are merged. (Bottom) Nodes states are modified according to messages received

In MuGDAD, a Bulk Synchronous Parallel (BSP) model is used. This model defines supersteps during
which tasks are executed for each node in the graph in parallel. Tasks include sending messages that will be
read at the next superstep to another node, reading messages received from the previous superstep, as well as
changing current node state.

To create clusters similar to the solar systems of FM3, nodes track their state (unassigned, selected or
clustered with a selected node) and the id of their cluster’s sun node. In the message passing step, messages
are exchanged between unselected nodes, containing the rank in the permutation of their neighbours. Selected
nodes also send messages to their unselected neighbours. In the merging state, two cases are considered.
Either the node has a selected neighbour and only this message is kept or it does not and the minimal rank of
the unselected neighbours is computed. When modifying the node states, three cases can be considered. If a
message has been received from a selected node and the node becomes clustered with a selected node. If not,
if the reduced message rank is greater than its own rank it becomes selected. In the last case (message rank is
lesser), the node does not change state. Then, new ranks are drawn and a new superstep begins.



2.1.2 Edge  and node collapse step

Clusters found in the previous step are collapsed into meta-nodes.  New meta-edges are created between
adjacent clusters. Weights of the meta-edges are computed. MuGDAD uses these weights in the layout phase
as optimal edge length even though they do not reflect accurately the graph distance between nodes. These
weights are also used to place yet unplaced nodes in the propagation phase, as described in next section.

In FM3 (Hachul 2005), the weight of meta-edges is computed in two steps. First, the sum of weights of
the shortest paths connecting solar systems is computed. Then, results are aggregated using a mean function.
This proved to be inefficient in MuGDAD: the edge weight growth between levels is multiplied at each level
by the mean graph distance between neighbour solar systems, due to the first step of the aggregation. In
MuGDAD, this exponential  growth is problematic because more levels are computed when computing a
layout. Indeed, the MIS is done at distance two in MuGDAD instead of three in FM3 which results in more
levels being computed.

To avoid this exponential growth, the maximal edge weight of edges in the shortest path is taken. For the
contribution of the other edges,  a random value is  drawn following a uniform law between one and the
current  level  number.  This  heuristic  ensures  both  a  continuity  of  edge  weight  between  levels  (strictly
increasing) and avoids the  effect of an exponential growth.

Figure 2. Edge collapse for two MuGDAD clusters. (Left) Pregel iteration: transmitting edge weights to set up map
operation. (Middle) Map operation: creating meta-edges between clusters with total weight computation. (Right) Reduce

operation: computing the mean weight of meta-edges between clusters

For our distributed implementation, we proceeded in three steps, see Figure 2. Let G i = (Vi,Ei) be the graph
generated by our filtration at level i.

In the preprocessing step, the edge weight computation is set up. Information required to compute the
edge  weight  is  transmitted  to  planet  nodes  of  clusters  by  sun  nodes.  Messages  are  sent  along  edges
connecting sun and planet nodes of the clusters and contain the edge weight. These data are necessary to
compute the weight of paths connecting clusters in the next step. This step is done using the Pregel functions
implemented in GraphX. Up to |Ei| messages are transmitted at level i of the filtration and that equality holds
when there are no edges between clusters of the filtration.

The second step of this process is a map operation. This operation outputs meta-edges with endpoints set
to the sun nodes of their respective cluster. Meta-edges are created by mapping edges connecting different
clusters. There is up to 0.5 |Ei| edges between clusters at level i and that equality holds when edges between
clusters only connect planet and sun nodes in different clusters and no edges connect planet nodes inside the
clusters. This can be proved by noticing that meta-edges connecting planet nodes represent three edges and
that meta-edges connecting sun and planet nodes only represent two. This map operation is divided over
several mappers, each processing part of the edges. Thus, total complexity of this step is divided by the
number of mappers.

The last step is a reduce operation. Meta-edges duplicated between clusters are reduced into one with a
mean function. The reduce operation is applied on the O(|Ei|) meta-edges obtained at level i in the previous
map operations. The mean total weight is computed in a distributed manner using the mean design pattern, as
seen in Miner and Shook (2012) for example. This step is also distributed over several reducers.

2.1.3 Propagating the layout

Once the layout of Gi is computed, positions of its nodes can be propagated to G i-1. First, the position of sun
nodes is propagated. Then, nodes not positioned (i.e. nodes in V i-1\Vi) are placed at the barycenter of placed
nodes with desired edge length used as weight. If unplaced nodes are on several of these paths, their final



position is at the barycenter of all computed positions. This  process is explained with more details in FM 3

(Hachul 2005).
Nodes unplaced after this step are placed in a circle around their respective sun nodes. Indeed, these

leftover nodes are not in the paths between solar systems and are not sun nodes.

Figure 3. Propagating the layout for three MuGDAD clusters. (Left) Pregel iteration: transmitting sun node positions to
set up map operation. (Middle) Map operation: positioning nodes on the segment connecting clusters. (Right) Reduce

operation: computing the mean position of nodes

In distributed, propagating positions of sun nodes from graph Gi to graph Gi-1 is done using a distributed join
operation to match node positions between levels. Then, planet nodes are placed in three steps, see Figure 3.
The three steps (preprocessing, map and reduce step) necessary to compute the initial placement of planet
nodes are very similar to the ones necessary to compute meta-edges and their weight in the edge collapse step
described in section 2.1.2. In the preprocessing step, messages are sent along edges connecting sun and
planet nodes of the clusters to set up node positioning. They contain the edge weight connecting the two
nodes as well as the position of the sun node. The map operation outputs nodes' positions for planet nodes.
Nodes placed this way are created by mapping edges connecting two different clusters. Nodes' positions are
computed using sun nodes' positions and the weight of the edges. With the reduce step, duplicated positions
for planet nodes are reduced into one with a mean function, using a mean design pattern, see Miner and
Shook (2012).

For nodes still unplaced, a single Pregel iteration is applied to send unplaced nodes the position of their
respective sun node. Then, an angle is drawn at random for each of these nodes and they are placed at a
constant radius around their sun node using this angle.

2.2 Distributed force-directed graph drawing

The initial layout is obtained by combining the layout of previous levels and the intelligent placement. Then,
at  each  level  of  our  graph  filtration,  a  force-directed  algorithm  is  applied  to  optimize  the  layout.  In
Fruchterman and Reingold (1991), two kind of forces are applied iteratively on each node to compute their
displacement: attractive forces and repulsive forces.

Attractive forces, between adjacent nodes, can be computed directly in a distributed paradigm using edges
of the graph, as shown in Hinge and Auber (2015) and Arleo et al. (2015). Regarding repulsive forces, Arleo
et al. (2015) chose to limit their computation to nodes  at graph distance k or less. This approach stems from
the observation that in the final layout, nodes close to each other in the graph should also be close in the
drawing. Hinge and Auber strike a compromise between locally optimal and globally optimal graph layout
using centroids. Using node positions in the layout, clusters are formed and used to compute approximate
repulsive  forces.  Far  away  nodes  contribute  as  a  cluster  of  nodes  instead  of  contributing  individually,
generating O(|V|) repulsive forces, instead of O(|V|2) for the all-pair repulsive forces computations.

For MuGDAD, we chose to implement centroid graph drawing. Our choice is motivated by the fact that
this approach is compatible with the multilevel scheme, as explained in this section.

2.2.1 Centroid graph drawing and multilevel scheme

In  Hinge  and  Auber,  node  clusters  are  computed  using  a  process  similar  to  k-means.  K  clusters  are
represented by centroids, whose positions are at the weighted position of all nodes in the cluster. Clusters are
assigned every node closest to their centroid than any other centroid. Once nodes are assigned to a given



cluster,  the position of centroids are updated. Centroids are then used to compute approximate repulsive
forces and the position of nodes is  updated.  This process  is  repeated each time the repulsive forces are
computed. The advantage of using centroid graph drawing with a multilevel scheme is twofold. 

First, centroid graph drawing is more efficient when the clusters are well defined. In their paper, Hinge
and Auber start from a random layout to converge to the final layout. Clusters in the first steps of the force-
directed method are not well defined which means that approximate repulsive forces are less accurate. In
MuGDAD, the multilevel approach is combined with an intelligent placement and layouts at every level are
already close to the final layout which improves the accuracy of centroid-repulsive forces greatly.

Secondly, centroids can be kept between levels to optimize repulsive forces. The clustering process of
centroid graph drawing, which is similar to k-means, converges to a better solution with a good set of initial
centroids. Algorithms like scalable k-means++ (Bahmani 2012) have shown that with a proper initialization
the k-means algorithm converges to a  better  solution. Keeping centroids  between levels  ensures  a  good
initialization to the k-means problem. Thus, resulting centroid-repulsive forces are more accurate.

2.2.2 Multi-paradigm graph drawing

Computation in a distributed environment gives worst performances than a sequential algorithm when data is
too small: the communication and synchronization overhead is way costlier than the gain obtained from the
computation distribution and parallelism. Using a multilevel algorithm, the massive graph drawing problem
is simplified until it can be processed on a single machine. At this point, computation is switched to this
machine using the sequential algorithm.

MuGDAD is a good candidate as it functions similarly in a distributed and in a sequential environment.
Using centroid graph drawing as our force-directed scheme in the two paradigms allows us to keep centroids
between  levels:  when  the  computation  is  done  in  the  sequential  approach,  the  layout  and  clusters  are
transmitted to the distributed cluster that resumes computation where the sequential paradigm left it.

2.2.3 Adaptations to centroid graph drawing

Minor changes are done to centroid graph drawing (Hinge 2015) to reflect edge weights. Edge weights
represent theoretic distances between nodes in a multilevel scheme. Attractive forces are proportional to d att -
d0 with datt the distance between nodes and d0 a nominal distance parameter set to the edge weight. Repulsive
forces are multiplied by the average edge length in the level. This way, repulsive forces have as much impact
as attractive forces.

Figure 4. Layouts of crack (Left), fe_pwt (Middle) and finan512 (Right). (Top) Layouts obtained with FM3. 
(Bottom) Layouts obtained with MuGDAD



3. EXPERIMENTAL RESULTS

Table 1. Computation times (expressed in seconds)

Dataset V E FM3 MuGDAD MuGDAD (Dist.) MultiGila
crack 10,240 30,380 4.54 1.19 23.3 -
fe_pwt 36,463 144,794 15.69 2.77 54.2 -
finan512 74,752 261,120 36.97 12.93 133 -
Amazon0302 262,111 899,792 - - 538 1577
ASIC_320 321,523 515,300 - - 1124 1102
Com-DBLP 317,080 1,049,666 - - - 2366
Com-Amazon 334,863 925,872 - - 4332 2242
Roadnet-PA 1,087,562 1,541,514 - - 1129 2241

3.1 Implementation

MuGDAD has been implemented in two different versions: one developed to run sequentially in C++ and the
other developed using Spark (Zaharia 2010). In Spark (Zaharia 2010), and more precisely in the graph library
called GraphX (Xin 2013), an implementation of Pregel (Malewicz 2010) is available.

Furthermore, as described in section 2.2.2, the Spark implementation of MuGDAD relies on the C++
implementation to draw graphs too small to benefit from distribution. To do this, the Spark implementation
relies on the Java Native Interface (JNI), allowing to run a native program through a Java interface.

3.2 Results

In Figure 4, layouts for FM3 and MuGDAD are compared for three datasets (crack, fe_pwt and finan512).
For crack and fe_pwt, MuGDAD layouts are comparable to the ones obtained with FM 3. Both the global
structure and the lattice pattern are present. For finan512, the general structure is present in MuGDAD but
the finer details of the structures are not clearly visible. More generally, the centroid repulsive force does not
seem to be able to manage details at very fine scales.

Table 1 contains computation times for layouts shown in Figure 3.  For the smaller graphs (upper part of
Table 1),  the CPU implementation of MuGDAD runs more quickly than FM3,  as can be expected since
centroid graph drawing has a complexity of O(|V|). The distributed version of MuGDAD performs relatively
quickly considering that  this  data is  too small  to  benefit  from data distribution.  This  is  due to  the JNI
implementation that computes the layout on a single machine.

For the larger graphs (lower part of Table 1), our implementation performs better than MultiGila for a
series of graphs and significantly worse for some others. In the case of Com-DBLP, MuGDAD was stopped
after  12h of  computation. MultiGila  uses  a  distributed clustering similar  to the one in  FM 3,  a  Maximal
Independent Set  at distance three. As a result, in some cases, our multilevel implementation takes many more
levels than the one implemented in MultiGila. This is reflected on the computation times.

Algorithm  comparison  was  conducted  with  a  Core  i7-4710HQ  for  the  CPU  algorithms.  The
implementation used for FM3 is the OGDF implementation. Times from the MultiGila algorithm are taken
from Arleo (2016). They are obtained on a cluster comparable to the one used for our results. Our distributed
infrastructure is composed of 16 computers (non virtualized) with 64GB of RAM, 2x6 hyperthreaded cores at
2.1GHz and 2 hard drives of 1 TB each. Computers are linked by a 1Gb/sec network infrastructure.

4. CONCLUSION

MuGDAD is a distributed graph drawing algorithm that combines centroid repulsive forces with a multilevel
scheme  to  draw  distributed  graphs  efficiently.  The  scalability  is  proved  in  a  distributed  environment.
Experimental  results show that  layouts are obtained quickly compared with methods like FM3 but  fewer
details can be seen, due to the use of a distributed-compatible approximate repulsive force.
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