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Abstract
Heatmap visualization is a well-known type of visual-
ization to alleviate the overplot problem of point visualiza-
tion. As such, it is well suited to visualize Big Data. In or-
der to tackle the velocity problem of Big Data, one has to
leverage streaming computations. Recently, canopy clus-
tering was shown to be well suited for Big Data heatmap
visualization. In this article, we present how to design a
streaming algorithm to compute canopy clustering using
Apache Spark. This result is directly applicable to be in-

cluded into a lambda architecture.

Keywords— Big Data, Information Visualization,
Heatmap, Lambda Architecture.

1 Introduction

At the beginning of the 21st century, the generaliza-
tion of broadband Internet access led to an increase in the
amount of data generated and collected. This is the phe-
nomenon we now know as "Big Data”. The characteris-
tics of Big Data are most often described as the 73 V” :
Volume, Variety and Velocity. Volume refers to the sheer
amount of data that needs to be stored to be later ana-
lyzed. Variety emphasizes the fact that the collected data
is unstructured, from many different sources and of differ-
ent types: social media posts containing images, links and
text, geolocalized usage data or products reviews and sales,
for example. Finally, Velocity refers both to the speed at
which data is generated (expressed in events per second)
and the fact that data is most of the time ephemeral, as it
can quickly be obsolete or replaced by an updated version.

In the domain of visualization, the phenomenon of Big
Data induces an increase of data to be visualized. How-
ever, the amount of data that can be displayed on a screen
is inherently limited by its number of pixels. Trying to rep-
resent more data points on the screen than available pixels
leads to a problem called overplotting, that is several data
points will be represented in a single pixel without visual
cues regarding the number of points it represents.

One of the solutions to alleviate the overplotting prob-
lem is to use a different kind of visualization that does not

directly represent the points, but rather their density, called
density visualization or heatmap. Heatmap visualizations
are known to scale well in terms of perception, but their
computing time on large datasets can be prohibitive.

In order to be able to process Big Data, new dis-
tributed systems have emerged. The Hadoop ecosystem
has become the de facto standard for Big Data process-
ing. Hadoop includes the HDFS distributed file system,
enabling to store huge datafiles redundantly to avoid data
loss. It also includes computing capabilities with the
MapReduce framework. Such Big Data frameworks enable
to process Tera and even Peta bytes of data with a power-
ful enough cluster. However, they rely on batch processing,
i.e. processing all the data at once. The downside of this
approach is that incoming data may wait a long time before
being processed, so the last processed data is always out-
dated as soon as it is computed. Depending on the delay
(hours, days or weeks), this can be problematic in situa-
tions where a decision has to be made rapidly to adapt to
the current events.

This problem can be solved by using streaming compu-
tation frameworks. They enable to treat incoming data as
it enters the system, always keeping the processed data up
to date. However, some data processing algorithms require
to iterate over the entire dataset. Such iteration is too time
consuming when one wants to update the data as it arrives
in the stream. Thus, batch and streaming computations are
used simultaneously to build systems that can keep up to
date information on incoming data. This is in essence the
principle of the so-called lambda architecture described by
Marz & Warren [10].

In this article, we expand on the LIViD batch solu-
tion [15] to create an algorithm for streaming multilevel
heatmap computation. First, we present the state of the
art in density visualization and big data processing frame-
works. Then, we present the overview of our method be-
fore showing the algorithm. Finally, we give some insights
relative to the implementation and performance of our so-
lution.



2 Previous work

Heatmap visualizations are a good way to visualize
point data to alleviate the overplot problem. They gener-
ally use Kernel Density Estimation (KDE) [14,16] to com-
pute a density function for the point set. Informally, KDE
allows to spread the weight of each point across the screen
using a kernel (generally Gaussian). In the general case
(any kernel), computational complexity is O(np), with n
the number of points and p the number of pixels. Then,
the density information of each pixel is mapped to a color
using a color scale. Such visualizations are popular for ge-
ographical data [3,4,5] and graphs [17,20]. However, the
computational complexity of KDE makes it difficult to use
on Big Data, even though it would solve overplot, which is
a recurrent problem with large amounts of data.

Recent research have proposed parallel implementa-
tions to address that scalability issue. Michailidis com-
pared several multi-core implementations of KDE with dif-
ferent frameworks [13] and presented results of acceler-
ating th KDE computation using a GPU and the CUDA
framework [12]. As shown by Lukasik [9], the MPI frame-
work can also be used to speed up the KDE process, ei-
ther as a single-machine multi-core computation or a dis-
tributed process spanning multiple computers.

All those techniques still require to consider all the
points when rendering the heatmap. This is not possi-
ble with Big Data, since the whole dataset might not fit
on the client computer or may require too much time to
be transferred through the network on a massively parallel
architecture. A solution was recently proposed by Perrot
et al. [15]. They designed a system which enables inter-
active heatmap visualization of billions of points on big
data infrastructure. For that purpose, they leverage theo-
retical results on KDE [19], the canopy clustering algo-
rithm [11] and the Hadoop platform to achieve horizontal
scalabilty and thus push out the limit of heatmap visual-
ization. However their technique only works with batch
processing and therefore is not suitable for heatmap visu-
alization of streamed data.

To our knowledge, only few results address the problem
of heatmap visualization of streamed data [6,7,8]. Further-
more, they only consider complete datasets and generate
dynamic visualization as a movie of past events.

2.1 Big Data and Lambda Architecture

Map Reduce [2] is the foundation of many Big Data
computing frameworks. It allows to easily distribute com-
plex computations by expressing them as a succession of
map and reduce operations. These computations run on the
entire dataset at once and can last hours to days, depending
on its size. This is called batch computation, and the result
is only accessible once the computation is finished.

Streaming computation enable to process incoming data
as soon as it is ingested into the system. This enables to

have a result accessible in almost real-time (i.e. with a very
small delay). However, only simple computations can be
efficiently executed in such a short amount of time. Two
models for streaming computations emerged : one-at-a-
time and micro-batch. The one-at-a-time model processes
each record as soon as it arrives. This model gives the best
latency between arrival and end of computation, but is un-
able to cope with large amounts of incoming data. On the
other hand, the micro-batch computation model allows a
high data throughput by processing data in small batches.
Micro-batches are started at regular intervals called micro-
batch interval. Each batch thus processes data received
since the start of the previous micro-batch. The micro-
batch interval typically varies from a few milliseconds to
several seconds.

The general concept of Lambda Architecture has been
introduced by Marz & Warren [10]. The Lambda Archi-
tecture balances the long running time and latency of batch
computation with streaming computations. In this archi-
tecture, data is being ingested by two parallel layers : the
batch layer and the speed layer. The lambda architecture
rationale is that queries on big datasets cannot be effi-
ciently computed in real-time over the entire dataset. Thus,
to be able to answer specific queries, some intermediate
data must be computed. This intermediate data is called a
“view” and will enable to answer the desired query in a rea-
sonable time. Different queries may need different views
to be computed. The system maintains two types of views :
the batch views and the realtime view. The batch views are
computed over the entire dataset collected up to the start of
the last batch computation. The real-time views are com-
puted only using data that has been collected since the last
batch. This way it is possible to keep the system updated
using the streaming computations. Answering a query over
the whole dataset requires to get the appropriate data from
both types of views and merge the result depending on the
query. The part of the system responsible for querying the
correct views and merging the results to create the response
sent to the user is called th serving layer. In a streaming en-
vironment, input data is constantly being ingested into the
system. The rate of data arrival is the primary metric for
performance, rather than the total data size to process, as
used in the batch environment.

In the Lambda Architecture, any incoming data will first
be treated by the speed layer, before being processed by
the batch layer. The purpose of the speed layer is to give
views upon the newest data as fast as possible. To be able
to process incoming data, it is often needed to resort to
approximations or to relax some constraints. The views
generated by the speed layer are only temporary. Data will
eventually be processed using a more accurate algorithm
in the batch layer. In the speed layer, there is a tradeoff
between speed and accuracy of the views.



3 Heatmap Speed Layer

As described above, Perrot et al. [15] have proposed an
efficient solution to implement a batch layer for heatmap
visualization. Their solution uses a multilevel aggregation
of the data to store weighted abstract point set with increas-
ing levels-of-detail into the serving layer (i.e. the views).
These abstract weighted point sets enable to provide in
constant time a heatmap visualization to the end user. To
organize the levels of details, the so-called tile pyramid,
as used by online mapping systems, is used. Computa-
tion time as well as the insertion of the pyramid into the
serving layer require several minutes with dataset having
1 billion of points. However, after that preprocessing, this
organization leads to only transfer the necessary parts of
the abstract point set through the network and thus provide
realtime exploration experience to the end user.

In the following, we propose a speed layer that can be
used together with the Perrot et al [15] batch layer to build
a lambda architecture which enables realtime exploration
experience on streamed data. More precisely, the speed
layer will maintain a partial abstract pyramid which will
be merged on the fly with the batch layer pyramid by the
serving layer. It enables to provide an up to date tile (ab-

stract point-set subset) to any query of an end user.
3.1 Pyramid building

The process of canopy clustering [11], described in
Algo.1, reduces the number of points by selecting repre-
sentatives. Given an aggregation distance d, it guarantees
that no point is further than d from a representative and
no two representative are closer than d. Furthermore, it
guarantees a bounded maximal number of representative
in relation with the chosen d, as shown in [15].

Algorithm 1: The canopy clustering algorithm.

Data: A set of points S, a threshold distance d

Result: The set of canopies

canopies = empty set for every point p in S do
for every canopy c in canopies do

if distance(p,c) < d then
| go to next point
add p to canopies
return canopies

The canopy clustering algorithm can be adapted for
streaming computations. The general idea of a streaming
version is as follows : whenever a new point enters the sys-
tem, check if a representative exists and merge the point
or create a new representative accordingly. In the present
context of multiscale visualization, this operation must be
done for every level of detail intended to be used in the
visualization. In the tiles where no representative for this
point exist, the point itself must be inserted. When a repre-
sentative does exist, its weight must be updated.

To be able to process a high number of points in a
streaming fashion, two obstacles must be lifted to increase
the parallelism of the computation. The first obstacle is that
the LIViD batch algorithm processes the levels of detail in
a bottom-up fashion. This is because the amount of data to
process is huge, and each subsequent aggregation reduces
it, making the next level less expensive to compute. In a
streaming environment, the number of points per iteration
is much smaller and we want to minimize the computation
time. Processing levels one after the other would mean a
higher latency. Thus, it is necessary to treat each level in-
dependently, so as to increase the level of parallelism.

The second obstacle is that choosing representatives is
dependant on the order of arrival of the points. This is not a
problem when the points are processed sequentially. How-
ever, this is not a viable option if one wants to process Big
Data in a streaming fashion. The batch algorithm alleviates
this in a classical way, by partitioning space in independent
regions, before solving conflicts between the regions. In
order to increase the parallelism for the streaming version,
we will need to further partition space using the tile pyra-
mid to group points. In the following, we explain how we
designed the streaming algorithm for higher parallelism.

4 Algorithm

Our streaming canopy clustering algorithm is composed
of two steps, both designed to be scalable for high through-
put. First, incoming points are duplicated for each level
and grouped according to the tiles they belong to. This
enables to process each tile of each level independently.
Then, representatives are elected inside each tile using the
sequential canopy clustering algorithm.

This gives a pyramid of tiles similar to the output of the
LIViD batch process. The first difference is that conflicts
have not been resolved across tiles, to allow faster parallel
processing. Thus, the total number of points generated at
this step should be slightly higher than what would have
been generated by the batch algorithm. However, it can-
not exceed the allowed number of representatives per tile.
The second difference is that there is no hierarchical re-
lationship between the representatives anymore, since the
different levels are processed independently. The set of
tiles computed this way is an approximation of the result
of the batch algorithm, it produces more points and thus
more data transfer on the network. It is thus a more faith-
ful representation of the original point set at the expanse
of bigger data transfer, which can degrade the user expe-
rience. Fig. 1 illustrates the process over the course of 3
micro-batches.

The second step of the streaming canopy clustering is to
merge the tiles obtained for the current micro-batch with
the current state obtained by previous micro-batches. The
merge operation is a new canopy clustering pass, where
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Figure 1: Illustration of the streaming canopy clustering. Incoming data is divided into micro-batches. Each micro-batch
builds a tile pyramid with its representatives and merges it into the current state. This state is kept in the Spark streaming
cache for quicker access for the streaming process and is stored in HBase for querying from the visualization.

the previous state is considered as existing representatives
and the representatives of the current micro-batch as new
points. This state is also a tile pyramid and represents an
approximation of the density function of all the points in-
gested by previous micro-batches. Only tiles which have
changed need to be updated. This gives a tile pyramid for
the incoming points in an incremental fashion.

Finally, the serving layer of the lambda architecture can
merge the batch view and the real-time view simply by
concatenating the tiles. This gives a number of points for
the final visualization that is twice the amount fixed in the
batch layer.

S Implementation

For our implementation, we used the Spark Stream-
ing library [18]. This library implements the micro-batch
streaming model that we used to design the streaming
canopy clustering. Furthermore, it is readily included in
Spark and uses the same mechanisms for data caching,
data parallelism and fault tolerance. The 1.6 version in-
cludes the method mapWithState, which enables to main-
tain state across micro-batches and update it using data
from each micro-batch. The state information is stored
as a RDD, thus benefiting from the standard replication,
distribution and caching capabilities of Spark. When up-
dating the state with new records, computations are started
only for records that need to be updated. Finally, the tiles
are stored in HBase for easy access from the serving layer.
Only the updated tiles need to be reinserted into HBase in

each micro-batch.
The main drawback of this approach is its stateful na-

ture. The whole current state for the pyramid must be

events/s | interval | events/int. | mean total delay
6000 Ss 30000 2.552s
5000 2s 10000 1.526s
10000 2s 20000 1.511s

Table 1: Several stability test of our system using different
parameters. The mean total delay is the time between the
start of a micro-batch and its completion. The system is
considered stable if it is less than the micro-batch interval.

stored. The size of this state can become significant if every
tile has received data. However, as in the batch implemen-
tation, it is inherently bounded due to the use of canopy.
Furthermore, in the Lambda Architecture paradigm, the
state of the speed layer is not designed to be kept forever.
When the new data has been ingested by the batch layer,
the state of the speed layer can be flushed. Thus, the growth
of the state is limited by the speed of the batch layer.

In our implementation, we used the internal capabilities
of Spark to store the current state. The storage used by
the mapWithState function is in memory, so the resources
of the cluster should be scaled to be able to hold it. This
solution gives a lower latency, since Spark is responsible
for colocating the current state and the update data. If in-
memory storage for the whole state is not possible, storage
in HBase could be used as an alternative. This solution is
less memory intensive, but will induce higher latencies for
data ingestion, due to database query latencies.
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Figure 2: Report generated by Spark for a run with 8 4-core Spark executors. The input data comes from the brightkite
dataset. At this point, the system has ingested an average of 9832 points per second for a little more than 4 minutes, for
a total of around 2 million points. This running time allows to see significant statistics without overloading the report.
Most notably the input rate, which describes the number of points received per second, and the processing time per batch.
This shows that the system remains stable with an average processing time of 1.5s, as highlighted by the dashed line in the
processing time curve. The regular spikes visible in the processing time are due to Spark regularly creating a backup save
of the current state, to be able to handle node failures.

5.1 Performance

As stated before, the main parameter to measure the per-
formance of a streaming data system is the amount of data
it is able to ingest per second while staying “’stable”. In the
case of a micro-batch model, the system is said to be stable
when the average processing time per micro-batch is less
than the micro-batch interval.

To test our implementation, we used the brightkite
dataset [1], containing 4.5M geolocalized user check-ins,
collected between april 2008 and october 2010. We simu-
lated data ingestion at a several rates randomly oscillating
around a fixed number of checkins per second. For ex-
ample, at a rate of 10K checkins/s, the whole dataset is
ingested in 7.5 minutes, so this is much more than the rate
at which the dataset was generated, as it was collected over

the course of two years.

As seen on Fig. 2, with our implementation, an 8 4-core

workers cluster was able to sustain 10K incoming points
per second with batch interval of 2 seconds. The average
processing time was 1.5s, leaving some margin in case of
any failure or sudden burst in the data arrival rate. Other
benchmarks can be seen on Table 1.

Conclusion

In this article, we described a new technique for stream-
ing multilevel aggregation using canopy clustering. This
allows to visualize in real-time incoming Big Data as a
heatmap. We provided details of implementation and per-
formance results on Spark Streaming.
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