HeatPipe: High Throughput, Low Latency Big Data Heatmap with Spark Streaming - Archive ouverte HAL
Communication Dans Un Congrès Année : 2017

HeatPipe: High Throughput, Low Latency Big Data Heatmap with Spark Streaming

Résumé

Heatmap visualization is a well-known type of visual-ization to alleviate the overplot problem of point visualiza-tion. As such, it is well suited to visualize Big Data. In order to tackle the velocity problem of Big Data, one has to leverage streaming computations. Recently, canopy clustering was shown to be well suited for Big Data heatmap visualization. In this article, we present how to design a streaming algorithm to compute canopy clustering using Apache Spark. This result is directly applicable to be included into a lambda architecture.
Fichier principal
Vignette du fichier
iv2017_heatmapStreaming(4).pdf (729.99 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01516888 , version 1 (18-07-2017)

Identifiants

  • HAL Id : hal-01516888 , version 1

Citer

Alexandre Perrot, Romain Bourqui, Nicolas Hanusse, David Auber. HeatPipe: High Throughput, Low Latency Big Data Heatmap with Spark Streaming. IV2017 - 21st International Conference on Information Visualisation, Jul 2017, Londres, United Kingdom. ⟨hal-01516888⟩
231 Consultations
663 Téléchargements

Partager

More