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BOUNDARY SINGULARITIES OF SOLUTIONS TO SEMILINEAR
FRACTIONAL EQUATIONS

PHUOC-TAI NGUYEN AND LAURENT VERON

ABSTRACT. We prove the existence of a solution of (—A)°u + f(u) = 0 in a smooth bounded
domain 2 with a prescribed boundary value p in the class of Radon measures for a large class
of continuous functions f satisfying a weak singularity condition expressed under an integral
form. We study the existence of a boundary trace for positive moderate solutions. In the
particular case where f(u) = u? and p is a Dirac mass, we prove the existence of several critical
exponents p. We also prove the existence of several types of separable solutions of the problem
(=A)*u+uP =0 in RY.
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1. INTRODUCTION

Let © ¢ RY be a bounded domain with C? boundary and s € (0,1). Define the s-fractional
Laplacian as

(—A)%u(z) = lim(—A)iu(x)

£

e—0
where
u(z) — u(y) [(N/2+ s)
CAVu(r) = ay. TPy, ans = o os(1 — s).
(—A)Zu(z) == an, /RN\BE(r) |z — y|N+2s ¥ an, 7TN/2I‘(2—5)S( )

We denote by G and M£? the Green kernel and the Martin kernel of (—A)® in Q respectively.
Denote by G and M the Green operator and the Martin operator (see section 2 for more
details). Further, for ¢ > 0, denote by (2, ¢) the space of Radon measures 7 on ) satisfying
Jq @d|T| < 0o and by M(IQ) the space of bounded Radon measures on 9. Let p(x) be the
distance from x to 092. For 5 > 0, set

Qg :={rcQ:p(x) < B}, Dg:={xecQ:px)>p}, Lg:={xcQ:p(x) =70}
1



2 PHUOC-TAI NGUYEN AND LAURENT VERON

Definition 1.1. We say that a function u € L}OC(Q) possesses a s-boundary trace on O if
there exists a measure p € M(ON) such that

lim ﬁl—S/ lu — M [u]]|dS = 0. (1.1)
B—0 s

The s-boundary trace of u is denoted by tr s(u).

Let 7 € M(, p*), u € M(ON) and f € C(R) be a nondecreasing function with f(0) = 0.
In this paper, we study boundary singularity problem for semilinear fractional equation of the
form

(=AYu+ f(u) =1 in Q
trg(u) =p (1.2)
u=20 in Q°.

We denote by X(€2) the space of test functions ¢ satisfying

(i) supp (§) C €,

(i) (—A)%¢(x) exists for all z € Q and |(—A)*¢(x)| < C for some C' > 0,

(iii) there exists ¢ € L'(£,p°dx) and ey > 0 such that |(—A)3¢| < ¢ ae. in Q, for all
e € (0, ¢).

Definition 1.2. Let 7 € M(Q, p°) and p € M(ON). A function u is called a weak solution of
(1.2) if u € LY(Q), f(u) € LY (Q, p*) and

/WPM%+ﬂwam=/&h+/M%MﬁW&m VEeX Q). (13)
Q Q Q

The boundary value problem with measure data for semilinear elliptic equations

—Au+ f(u)=0 in

F(w) -,

U= on 0,

was first studied by A. Gmira and L. Véron in [18] and then the typical model, i.e. problem

(1.4) with f(u) = wP (p > 1), has been intensively by numerous authours (see [20-24] and
references therein). They proved that if f is a continuous, nondecreasing function satisfying

[e.e]
[ = sl e <, (1.5
1
where p. := %, then problem (1.4) admits a unique weak solution. In particular, when
flu) =uP with 1 < p < p. and p = kdg with 0 € 9Q and k > 0, there exists a unique solution
u of (1.4). It was showed [20,24] that the sequence {uy} is increasing and converges to a
function u, which is a solution of the equation in (1.4).

To our knowledge, few papers concerning boundary singularity problem for nonlinear frac-
tional elliptic equation have been published in the literature. The earlies works in this direction
are the papers [10,17] by P. Felmer et al. which deal with the existence, nonexistence and
asymptotic behavior of large solutions for equations involving fractional Laplacian. Afterwards,
N. Abatangelo [1] presented a suitable setting for the study of fractional Laplacian equations in
a measure framework and provided a fairly comprehensive description of large solutions which
improve the results in [10,17]. Recently, H. Chen et al. [9] investigated semilinear elliptic equa-
tions involving measures concentrated on the boundary by employing approximate method.

In the present paper, we aim to establish the existence and uniqueness of weak solutions of
(1.2). To this end, we develop a theory for linear equations associated to (1.2)

(—A)Yu=r in Q
trs(u) =p (1.6)
u=20 in Q°.

Existence and uniqueness result for (1.6) is stated in the following proposition.
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Proposition A. Assume s € (3,1). Let T € M(, p°) and p € M(OQ). Then problem (1.6)
admits a unique weak solution. The solution is given by

u = Gr] + M [p]. (1.7)
Moreover, there ezists a positive constant ¢ = ¢(N,s,Q) such that

ull 1) < clllTllan,psy + Ellonon))- (1.8)

This proposition allows to study semilinear equation (1.2). We first deal with the case of L'
data.

Theorem B. Assume s € (%, 1). Let f € C(R) be a nondecreasing function satisfying tf(t) > 0
for every t € R.

I. EXISTENCE AND UNIQUENESS. For every 7 € LY(Q,p%) and p € L*(9S), problem (1.2)
admits a unique weak solution u. Moreover,

w=G¥r — f(u)] + My inQ, (1.9)

—GYr] - MY 7] <u < G+ M) in Q. (1.10)
II. MONOTONICITY. The mapping (T, ) — u is nondecreasing.

Remark. The restriction s € (3,1) is due to the fact that in this range of s, tr ((G[r]) = 0 for
every T € M(Q, p°) (see Proposition 2.11). We conjecture that this still holds if s € (0, 3].
We reveal that, in measures framework, because of the the interplay between the nonlocal

operator (—A)® and the nonlinearity term f(u), the analysis is much more intricate and there
are 3 critical exponents
.  N+2s « N+s « N
=N RTN_y BTN o
This yields substantial new difficulties and leads to disclose new types of results. The new
aspects are both on the technical side and on the one of the new phenomena observed.

Theorem C. Assume s € (3,1). Let f € C(R) be a nondecreasing function, tf(t) > 0 for every
teR and

/loo[f(s) — f(=s)]s 1 P2ds < . (1.11)

I. EXISTENCE AND UNIQUENESS. For every 7 € 9M(Q,p®) and p € M(ON) there exists a
unique weak solution of (1.2). This solution satisfies (1.9) and (1.10). Moreover, the mapping
(1, 1) — u is nondecreasing.

I1. STABILITY. Assume {1} C M(L, p®) converges weakly to 7 € M(L, p°) and {un} C M(ON)
converges weakly to p € M(ON). Let u and wuy, be the unique weak solutions of (1.2) with data
(1, 10) and (T, pin) respectively. Then w, — u in LY () and f(u,) — f(u) in LP(S2, p®).

If p is a Dirac mass concentrated at a point on 92, we obtain the behavior of the solution
near that boundary point.

Theorem D. Assume s € (%, 1) and f is a continuous nondecreasing function on R satisfying
f(0) =0 and (1.11). Let z € 0N and k > 0. Let u}, be the unique weak solution of

(—=A)’u+ f(u) =0 in §)

trg(u) = ké, (1.12)
u=0 in Q°.
Then
ull, (x
lim ep(®) =k. (1.13)

Qoz—z Mé)(l‘, Z)
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We next assume that 0 € 9€. Let 0 < p < p5 and denote by u% the unique weak solution of

(—A)u+uP =0 in Q
trs(u) = kdo (1.14)
u =0 in Q€.

By Theorem C, u% < kM§(~,O) and k — ug is increasing. Therefore, it is natural to
investigate limg_ oo u% This is accomplishable thanks to the study of separable solutions of

s _ . N
(—A)Yu+uP =0 in RY (1.15)
u =0 in RY. ’

when p > 1. Denote by
SN=1.— {a = (cos¢po’,sing) : o’ € SN*Q,—g <¢p< %}

the unit sphere in RV and by Siv .= gN-1n RJI the upper hemisphere. Writing separable

_2s
solution under the form u(z) = u(r,o) =r »~Tw(o), with r > 0 and o € Sfrvfl, we obtain that
w satisfies
Agw — L

D _ . N-—1
87%w+w =0 in S+

w=0 in SN (1.16)

where A, is a nonlocal operator naturally associated to the s-fractional Laplace-Beltrami oper-

ator and £, 2. is a linear integral operator with kernel. In analyzing the spectral properties of
'p—1
As we prove

Theorem E. Let N > 2, s € (0,1) and p > p}.

I- If p5 < p < pj there exists no positive solution of (1.16) belonging to WS’Q(SiV_l).

II- If p] < p < p there exists a unique positive solution w* € W§’2(Sf_1) of (1.16).
As a consequence of this result we obtain the behavior of u% when k£ — co.

Theorem F Assume s € (%, 1). Let Q = RY or Q be a bounded domain with C? boundary
containing 0.
I- If p € (p},p5) then ul :=limy_o u% is a positive solution of

(=A)Yu+uP =0 in
{ u =0 in Q°. (1.17)
(i) If @ = RY then
N s
UIEJ (x) = |x\_rl%1w*(a), with o = %’ vz € RY.
(i3) If Q2 is a bounded C? domain with OQ containing 0 then
lim ]a:\%u&(x) = w*(0), (1.18)

Q32 —0
z N—1
=0 €Sy

Ta]

locally uniformly on Sf_l. In particular, there exists a positive constant ¢ depending on N, s,
p and the C? norm of 0Q such that

1 s _ (pH+D)s Q s _ (p+D)s
c p(x)’lz|” T <wi(x) <ep(z)’lz] Pt Vo e Q. (1.19)

II- Assume p € (0,p3]. Then limy_ o ug = oo in .

The main ingredients of the present study: estimates on Green kernel and Martin kernel, the-
ory for linear fractional equations in connection with the notion s—boundary trace as mentioned
above, similarity transformation and the study of equation (1.16).
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The paper is organized as follows. In Section 2, we present important properties of s-boundary
trace and prove Proposition A. Theorems B,C,D and F are obtained in Section 3. Finally, in
Appendix, we discuss separable solutions of (1.15) and demonstrate Theorem E.

2. LINEAR PROBLEMS

Throughout the present paper, we denote by c, ¢, c1,ca,C,... positive constants that may
vary from line to line. If necessary, the dependence of these constants will be made precise.

2.1. s-harmonic functions. We first recall the definition of s-harmonic functions (see [3, page

46], [4, page 230], [6, page 20]). Denote by (X, P*) the standard rotation invariant 2s-stable

Lévy process in RYV (i.e. homogeneous with independent increments) with characteristic function
E0ei&Xt = o~tlE” e e RN ¢ > 0.

Denote by E? the expectation with respect to the distribution P* of the process starting from
z € RN, We assume that sample paths of X; are right-continuous and have left-hand limits a.s.
The process (X;) is Markov with transition probabilities given by

B(ZE,A) = PI(Xt € A) = Mt(A - IL’),

where y; is the one-dimensional distribution of X; with respect to P%. It is well known that
(—A)® is the generator of the process (X, P*).

For each Borel set D C RV, set tp := inf{t > 0: X; & D}, i.e. tp is the first exit time from
D. If D is bounded then tp < oo a.s. Denote

E*u(X:,) = E*{u(X:,) : tp < oo}.
Definition 2.1. Let u be a Borel measurable function in RN . We say that u is s-harmonic in
Q if for every bounded open set D € €2,
u(z) = E*u(X:,), x€D.
We say that u is singular s-harmonic in C if u is s-harmonic and u = 0 in Q°.
Put

Ds:=<u: RY s R : Borel measurable such that/ M .
gy (1 + [z])NF2s

The following result follows from [5, Corollary 3.10 and Theorem 3.12] and [6, page 20].

Proposition 2.2. Let u € D;.
(i) w is s-harmonic in Q if and only if (—A)*u =0 in Q in the sense of distributions.
(ii) w is singular s-harmonic in  if and only if u is s-harmonic in  and u = 0 in Q°.

2.2. Green kernel, Poisson kernel and Martin kernel. In what follows the notation f ~ g
means: there exists a positive constant ¢ such that ¢™'f < ¢ < ¢f in the domain of the two
functions or in a specified subset of this domain.

Denote by G<! the Green kernel of (—A)* in . Namely, for every y € €,

(—A)GL(hy) =6, nQ
G?(v y) =0 in ch
where §, is the Dirac mass at y. By combining [1, Lemma 3.2] and [14, Corollary 1.3]), we get

Proposition 2.3. (i) G is in continuous, symmetric, positive in {(x,y) € X xQ: x # y} and
Gz, y) =0 if x or y belongs to QF.

(ii) (—A)*GH(x,-) € LY Q) for every x € Q and (—A)*G(x,y) < 0 for every x € Q and
y € Q°.

(iii) There holds

G2 a,y) ~min{lo =y N p@)ply) e -y TV} W@y eQxQaty  (20)

The similarity constant in the above estimate depends only on €2 and s.
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Denote by G¢! the associated Green operator

O] = /Q GO y)dr(y) e M, p).

Put
P} if € [0, M5%s)
ks = - , Vs (2.2)
N72si'y 1f7€ [ NSS,S]-
H. Chen and L. Véron obtained the following estimate for Green operator [12, Proposition
2.3 and Proposition 2.6].

Lemma 2.4. Assume v € [0,s] and ks, be as in (2.2).
(i) There exists a constant ¢ = ¢(N, s,7,Q) > 0 such that

HG?[T]HMICS,'Y(Q’pS) < Tl VT € MK, p7). (2.3)

(ii) Assume {1,} C IM(, p?) converges weakly to T € M(Q, p?). Then Gr,] — GL[r] in
LP(Q, p®) for any p € [1,ks).

Let PS! be the Poisson kernel of (—A)® defined by (see [7])

GP(x,2)

_ T8 gy Vo e Qye Q.
= JoTo— g v

PSQ(xvy) ‘= —an

The relation between P! and G is expressed in [1, Proposition 2] (see also [14, Theorem

1.4], [4, Lemma 2], [14, Theorem 1.5)).

Proposition 2.5. (iLPy(x,y) = —(=A)*GS(x,y) for every x € Q and y € Q°. Moreover, P
is continuous in Q x Q.
(ii) There holds

Q N p(z)*® 1
O ™ S e ) el

The similarity constant in the above estimate depends only on Q and s.

Ve eQ,ye Q. (2.4)

Denote by IP’g2 the corresponding operator defined by
PI(@) = [ PRGg)dvly). v e MET),
Fix a reference point zo €  and denote by M$ the Martin kernel of (—A)* in €, i.e.

Q
M?(x,z) = lim Gy (@.y) (z,y) ,
Q3y—z ng (330, y)

By [15, Theorem 3.6], the Martin boundary of 2 can be identified with the Euclidean boundary
0f). Denote by M the associated Martin operator

M2 = [ MPC. ). e MO0,

The next result [4,15] is important in the study of s-harmonic functions, which give a unique
presentation of s—harmonic functions in terms of Martin kernel.

Ve e RN, 2 € 99

Proposition 2.6. (i) The mapping (x,2) — M(x,2) is continuous on Q x 9. For any
z € 09, the function MS(.,z) is singular s-harmonic in Q with M$(xg,z) = 1. Moreover, if
2,2 €0Q, 2 # 2 then lim,_,,» M3 (z,2) = 0.

(ii) There holds

Mz, 2) ~ p(z)slz — 2| Ve zed. (2.5)

The similarity constant in the above estimate depends only on Q and s.

(iii) For every p € MFT(9Q) the function M u] is singular s-harmonic in Q with u(xg) =
w(RN). Conversely, if u is a nonnegative singular s-harmonic function in 0 then there exists a
unique p € MF(OQ) such that u = M u] in RN,
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(iv) If u is a nonnegative s-harmonic function in Q then there exists a unique p € M (9N)
such that
u(@) = M2 () + Pul(z) ¥z € Q.

Lemma 2.7. (i) There exists a constant ¢ = ¢(N, j,7, Q) such that
Q
|| M [/,L]HMN+Z o <clullgany: Y€ MOQ), v > —s. (2.6)

N—

(ii) If {un} C M(OQ) converges weakly to u € M(AN) then ML [p,] — My in LP(Q,p7)
N+
for every 1 <p < L.
Proof. (i) By using (2.5) and a similar argument as in the proof of [2, Theorem 2.5], we obtain
(2.6).
(ii) By combining the fact that M$(z,2) = 0 for every x € Q°, z € 9Q and Proposition 2.6

(i) we deduce that for every z € RV, M%(x,-) € C(99Q). It follows that M$[u,] — M[u]

. . . . N+
everywhere in Q. Due to (i) and the Holder inequality, we deduce that, for any 1 < p < N—Z?

{M<[p1,]} is uniformly integrable with respect to p¥dz. By invoking Vitali’s theorem, we obtain
the convergence in LP(Q, p7). O

2.3. Boundary trace. We recall that, for g > 0,
Qg :={reQ:p(x) <P}, Dg:={xecQ:px)>p}, Lg:={xeQ:p(x) =70}

The following geometric property of C? domains can be found in [24].
Proposition 2.8. There exists By > 0 such that

(i) For every point x € Qg,, there exists a unique point z, € 0 such that |z — z;| = p(z).
This implies © = z, — p(z)n,, . B B

(ii) The mappings x + p(z) and x > z, belong to C*(Qg,) and C*(Qp,) respectively. Fur-
thermore, lim,_,, Vp(r) = —n,,.

Proposition 2.9. Assume s € (0,1). Then there exist positive constants ¢ = c¢(N,$,s) such
that, for every B € (0, fo),
ct<pl—s M (z,y)dS(x) < ¢ Yy e oQ. (2.7)
Sp
Proof. For ry > 0 fixed, by (2.5),

/ MO (2, 9)dS(z) < 16, (2.8)
Eﬂ\Bro (y)

which implies
lim Mz, y)dS(z) =0 Yy e dQ. (2.9)
F=0J85\Byq (v)

Note that for r( fixed, the rate of convergence is independent of y.

In order to prove (2.7) we may assume that the coordinates are placed so that y = 0 and
the tangent hyperplane to 9f) at 0 is zy = 0 with the zy axis pointing into the domain. For
r € RN put o' = (21,--+ ,xn_1). Pick rg € (0, Bp) sufficiently small (depending only on the C?
characteristic of 2) so that

1
S0+ p(@)?) < [af? VY € 20 By (0).

Hence if z € $5 N By, (0) then 1(]2’| + 8) < |z|. Combining this inequality and (2.5) leads to

/ M (z,0)dS(z) < ¢28° / (1) + B)~NdS()
5N By (0)

25,0
< pf° / ('] + B) Nz’
|z’|<r0

=387
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Therefore, for 8 < ro,

gl-s / M2(z,0)dS () < cs. (2.10)

$5NBrg (0)
By combining estimates (2.8) and (2.10), we obtain the second estimate in (2.7). The first
estimate in (2.7) follows from (2.5). O

As a consequence, we get the following estimates.

Corollary 2.10. Assume s € (0,1). For every u € MM (0Q) and B € (0,y), there holds
¢ Hlullangany < 51_5/2 M [u]dS < ¢ [ellancan) » (2.11)
8

with ¢ is as in (2.7).

Proposition 2.11. Assume s € (3,1). Then there exists a constant ¢ = c(s, N, Q) such that
for any T € M(L2, p°) and any 0 < 5 < Py,

gr=s [ GY[r)dS < c/ pd|T|. (2.12)
P Q
Moreover,
lim 317¢ | G¥[r]dS = 0. (2.13)
4)0 Eﬁ

Proof. Without loss of generality, we may assume that 7 > 0. Denote v := G? [T]. We first
prove (2.12). By Fubini’s theorem and (2.5),

/26 Vst = //EmBﬂ o=y dS @) dr(y)

B /Q /ZB\ng) |z — y|7VdS(x) p(y)sdT(y))

= 11”3 + IQﬁ.
Note that, if x € X3 N B (y) then 5/2 < p(y) < 38/2. Therefore
2

ﬁlfhgé%ﬁlﬁ/1 |x—m%f%wu»/p@fdﬂw
ZﬁﬁBg(y) Q
8/2
<o / r2 NN 2y / p(y)” dr(y)
0 Q
< 07/Qp(y)sd7(y),

where the last inequality holds since s > % On the other hands, we have

Lg < 1 /ﬁ , rNpN=2qy /Q p(y)®dr(y) = s /Q p(y)® dr(y).

Combining the above estimates, we obtain (2.12).
Next we demonstrate (2.13). Given € € (0, [|7{|lon(q ps)) and B1 € (0, Bo) put 7 = Xp, and
’ 1

T2 = TXq, - We can choose 51 = (1(€) such that

/ p(y)>dr(y) < e (2.14)
Qﬁl

Thus the choice of 51 depends on the rate at which fQﬁ p° dt tends to zero as § — 0.
Put v; := G[r;]. Then, for 0 < 8 < £1/2,

A;mwwm<@55 / Yodr (4),
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which yields

lim Bl_s/ vi(x)dS(z) = 0. (2.15)
B—0 s
On the other hand, due to (2.12),
51_5/ V9 ds < 010/ deTQ < c11€ Vﬂ < 50. (2.16)
Ss Q
From (2.15) and (2.16), we obtain (2.13). O

Lemma 2.12. Assume s € (%, 1). Let u,w € Dy be two nonnegative functions satisfying

(—A)u< 0 < (—=A)’w in 2, 517
u=0 in Q°. (2.17)
Ifu<w in RY then (—A)Su € M(Q, p°) and there exists a measure p € M (0Q) such that
lim 31~ / lu = M2[y]|dS = 0. (2.18)
£—0 b

Moreover, if p =0 then u = 0.

Proof. By the assumption, there exists a nonnegative Radon measure 7 on €2 such that (—A)%u =
—T.
We first prove that 7 € M* (£, p*). Define

3 Q
Mz, 2) = lim M
y—z p(y)°

By [1, page 5547], there holds is a positive constant ¢ = ¢(£2, s) such that
Mz, 2) ~ p(2)s|e — 2|V, VeeQ, zed, (2.20)

where the similarity constant depends only on € and s. This follows

it <eil [ plae—=Nase)

(2.19)

< p(z)t~* - Mz, 2)dS(z) (2.21)

< 013/ p(x)|r — 2| ™NdS(z) < c12 V€ Q.
o0

We define
E2u)(z) == lim _ul@) z € 0.
(Dr—z fag My(x,y)dS'(y)
For any 8 € (0, fp), denote by 75 the restriction of 7 to Dg and by vs the restriction of u on
¥g. By [1, Theorem 1.4], there exists a unique solution vg of

(—A)°vg = —13 in Dg
ESDB [vg] =0 on Xg
vg = u|D% in Dj.

Moreover, the solution can be written as
D D .
Up + Gs ﬁ[Tg] = Pg 6[u]D%] m Dﬁ. (2.22)

By the maximum principle [1, Lemma 3.9], vg = u and pLe [u|D%] < w a.e. in RY. This,

together with (2.22), implies that Go? [5] < w in Dgs. Letting 8 — 0 yields G[r] < cc. For
fixed 29 € Q, by (2.1), G(x0,y) > cp(y)® for every y € Q. Hence the finiteness of G$}[r] implies
that 7 € MT(Q, p®).
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We next show that there exists a measure u € MM (9NQ) such that (2.18) holds. Put v =
u + G[7] then v is a nonnegative singular s-harmonic in Q due to the fact that G¢[r] = 0 in
Q°. By Proposition 2.2 and Proposition 2.6 (iii), there exists u € MM*(99) such that v = M$[y]
in RY. By Proposition 2.11, we obtain (2.18). If 4 = 0 then v = 0 and thus u = 0. O

Definition 2.13. A function u possesses a s-boundary trace on 0S) if there exists a measure
€ M(0N) such that

lim ﬁl—S/ lu — MY [u]|dS = 0. (2.23)
£B—0 s

The s-boundary trace of u is denoted noted by tr s(u).

Remark (i) The notation of s-boundary trace is well defined. Indeed, suppose that p and
i satisfy (2.23). Put v = (M$[u — /). Clearly v < M@[|u| + |¢/]], v = 0 in Q¢ and
limg_,o 8% fzﬁ |v|dS = 0. By Kato’s inequality [8, Theorem 1.2}, (—A)®*v < 0 in Q. Therefore,
we deduce v = 0 from Lemma 2.12. This implies M [y — /] < 0. By permuting the role of p
and g/, we obtain M[p — 4] > 0. Thus p = p/.

(i) It is clear that for every p € M(ON), tr (M [u]) = p. Moreover, if s > %, by Proposi-
tion 2.11, for every 7 € M(Q, p*), tr s(GL[7]) = 0.

2.4. Weak solutions of linear problems.

Definition 2.14. Let 7 € M(Q) and p € M(ON). A function u is called a weak solution of
(1.6) if u € L'(Q2) and

/u(—A)Sgdx:/ng+/M?[u](—A)Sgdx, VE € X, (Q). (2.24)
Q Q Q

Proof of Proposition A. The uniqueness follows from [12, Proposition 2.4]. Let u be as in
(1.7). By [12],

/ (1 — M) (~A)€ di = / GOr] (—A)€ d = / cdr Ve € X,(Q).
Q Q Q

This implies (2.24) and therefore u is the unique solution of (1.6). Since s € (1,1), by Propo-

sition 2.11, trs(u) = trs(M?[u]) = p. Finally, estimate (1.8) follows from Lemma 2.4 and
Lemma 2.7. u

3. NONLINEAR PROBLEMS

In this section, we study the nonlinear problem (1.2). The definition of weak solutions of
(1.2) is given in Definition 1.2.

3.1. Subcritical absorption. Proof of Theorem B.
MonoTonicITY. Let 7,7 € LY(Q, p%), u, i’ € L*(09) and u and v’ be the weak solutions of
(1.2) with data (7, ) and (77, u') respectively. We will show that if 7 < 7/ and p < g/ then
u < ' in Q. Indeed, put v := (u — u’)™, it is sufficient to prove that v = 0. Since (1.9) holds,
it follows
[ul < GZ[I7] + [ f ()] + M [|ul] in €.
Similarly
o] < GL[I7'| + 1 f ()] + MP[W'[] in €.
Therefore
0 <o < ful + [u'| < GL[Ir| + 7| + [ f (w)] + | f ()] + M [l + 1] = w.

By Kato inequality, the assumption 7 < 7’ and the monotonicity of f, we obtain

(—A)*v <signt(u—u) (7 —7') —sign T (u — ') (f(u) — f(u)) <O0.
Therefore

(AP <0< (=AY w in Q.

Since p < g/, it follows that tr 4(v) = 0. By Lemma 2.12, v = 0 and thus u < u/.
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EXISTENCE.

Step 1: Assume that T € L>®(Q) and p € L*>®(09).

Put f(t) := f(t +M3u]) — fFML[u]) and 7 := 7 — f(M$[u]). Then f is nondecreasing and
tf(t) > 0 for every t € R and 7 € L*(§, p*). Consider the problem

(=A)v+ fv) =17 ?n Q (3.1)
v=20 in Q°.

By [11, Proposition 3.1] there exists a unique weak solution v of (3.1). It means that v € LY(Q),
f(v) € LY@, p*) and

/ (0(=A)€ + F(0)€) dz = / crdn, VE € Xo(Q). (3.2)
Q Q

Put u := v + M?[y] then u € L'(Q) and f(u) € L' (2, p*). By (3.2) u satisfies (1.3).

Step 2: Assume that 0 < 7 € LY(Q, p%) and 0 < p € LY(09).

Let {r,} C C}(Q) be a nondecreasing sequence converging to 7 in L*(Q, p*) and {u,} C
C'(99) be a nondecreasing sequence converging to u in L'(99). Then {M[u,]} is nondecreas-
ing and by Lemma 2.7 (ii) it converges to M$}[u] a.e. in Q and in LP(Q, p*) for every 1 < p < p3.
Let u,, be the unique solution of (1.2) with 7 and p replaced by 7, and u,, respectively. By step
1 and the monotonicity of f, we derive that {u,} and {f(u,)} are nondecreasing. Moreover

/(un(—A)s§+ f(un)§) do = / §dry, +/ M [un)(—A)*€de V€ € X,(9). (3-3)
Q Q Q

Let n € C(Q) be the solution of

—A¥n=1 in
{ A o (3.4)
n=20 in Q°,
then ¢ 1p® < n < ¢p® in Q for some ¢ > 1. By choosing £ = 7 in (3.3), we get
HunHLl(Q) + ||f(Un)”L1(Q,ps) < C(HTnHLl(Q,ps) + HMnHLl(aQ)) (3.5)

< (1Tl i) + 11l 21 o0)-

Hence {u,} and {f(u,)} are uniformly bounded in L'(€2) and L' (€2, p*) respectively. By the
monotone convergence theorem, there exists u € L'(Q) such that u,, — w in L'(Q) and f(u,) —
f(u) in LY(Q, p*). By letting n — oo in (3.3), we deduce that u satisfies (1.3), namely u is a
weak solution of (1.2).

The uniqueness follows from the monotonicity.

Step 3: Assume that 7 € L*(Q, p°) and p € LY(09).

Let {7,} € C*(Q) be a sequence such that {77} and {r,;} are nondecreasing and 7.5 — 7
in L1(Q, p*). Let {u,} C CH(9N) be a sequence such that {y;f} and {u, } are nondecreasing
and pf — p* in L1(09). Let u, be the unique weak solution of (1.2) with data (7,, i), then

Un = G?[Tn = flun)] + M?[Nﬂ]- (3.6)

Let wy, and wg, be the unique weak solutions of (1.2) with data (7,7, x,}) and (—7,,, —p;,)

respectively. Then

+

||wi7n”L1(Q) + Hf(wi,n)HLl(Q,ps) < C/(HTHLl(Q,pS) + HMHLl(ag))v 1=1,2. (3.7)
Moreover, for any n € N, wy ,, <0 < wy, and
~GPIm ] = My (] S wan < < wip < GPITS] A+ ML 1] (3.8)

It follows that
|un| < Wi,n — W2n and|f(un)| < f(wl,n) - f(wQJL)' (39)
This, together with (3.7), implies

el gy + 1 wn)ll i ,p0) < €U llLree) + 1111 00)- (3.10)
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Put v, := G¥[r, — f(u,)]. By (3.10), the sequence {7, — f(u,} is uniformly bounded in
LY(€2, p*). Hence by [12, Proposition 2.6], the sequence {v,} is relatively compact in L4(£2) for
1<g< NL_S Consequently, up to a subsequence, {v,} converges in L?(f2) and a.e. in {2 to a

function v. On the other hand, by Lemma 2.7 ii), up to a subsequence, {M[u,]} converges in
L, p*) for 1 < q < pb and a.e. in  to M[u]. Due to (3.6), we deduce that {u,} converges
a.e. in Q to u = v+ M[u]. Since f is continuous, {f(u,)} converges a.e. in Q to f(u).

By step 2, the sequences {wi,}, {f(win)}, {—w2,} and {—f(w2,)} are increasing and
converge to wy in LY(Q), f(w1) in L}(Q, p*), —ws in L' () and — f(ws) in L1 (£, p°) respectively.
In light of (3.9) and the generalized dominated convergence theorem, we obtain that {u,} and
{f(un)} converge to u and f(u) in L'(Q) and L'(£2, p*) respectively. By passing to the limit in
(3.3), we derive that u satisfies (1.3).

The uniqueness follows from the monotonicity. O
Define
C@.p~) = {C€C@) : p=C € C@}.
This space is endowed with the norm
||C||c(§,p—s) = HP_SCHC@)-
We say that a sequence {7,} C (2, p*) converges weakly to a measure 7 € IM(Q, p°) if

lim [ {dr, = / Cdr V¢ eC(Q,p®).
Q Q

n—o0

Proof of Theorem C.
MONOTONICITY. The monotonicity can be proved by using a similar argument as in the proof
of Theorem B.

EXISTENCE. Let {7,} € CY(Q) and {u,} C C1(09) such that 7.5 — 7% weakly and puf — pu*
weakly. Then there is a positive constant ¢ independent of n such that

[Tl < €lTllonia,ey  and llinllon) < cllillmon) - (3.11)

Let uy, w1, and wa,, as in the proof of Theorem B. Then
|un| < max(wi n, —way) < G?UT%H + M?[’Mnu (3.12)
This, together with (2.3), (2.6) and (3.11), implies that
Hun”Mp;(Q’ps) < c(Imallan(o,pey + lEnllanony)) < < Ul + lEllaman))- (3.13)
We have

/ (Win(=A)E + fwr0)E) do / cdrt + / M2 (] (—A)€ de,

Q Q Q

/ (wan(—A)E + f(wnn)E) do = — / cdry — / M) (—A)Yede Ve € X,(Q).
Q Q Q

From this it follows
/Q (w1 — wan) + (Fwrn) — f(wn )] de = /Q ndlmal + /Q M| 1) de (3.15)

We infer from (3.9) and the estimate ¢~1p® < n < cp® that

(3.14)

HUnHLl(Q) + ||f(un)||L1(Q;pS) < C(HTn”Ll(QpS) + ||#n||zm(asz))
< (ITlana sy + 1Ellancan))-

This implies that {u,} and {f(u,)} are uniformly bounded in L!(Q2) and L'(, p°) respectively.
By a similar argument as in step 3 of the proof of Theorem B, we deduce that, up to a subse-
quence, {u,} converges a.e. in ) to a function u and {f(u,)} converges a.e. in Q to f(u). By
Hélder inequality, we infer that {u,} is uniformly integrable in L().

(3.16)
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Next we prove that {f o u,} is uniformly integrable in L'(, p*). Define f(s) == f(ls|]) -
f(=l|s|), s € R. Then f is nondecreasing in R and |f(s)| < f(s) for every s € R. For £ > 0 and
n € N, set

Ap(0) :=A{x € Q: |up(z)| > ¢}, an(l) :== /A o p’dx.

We take an arbitrary Borel set D C 2 and estimate

/ | ) e = / )P + / | ) P
D DNAR(0) D\ A, (¢) (3.17)

</ | fwmpa s 0 [ pis

D

On one hand, we have

f(un)p®de = an(0)f(£) + /Koo an(s)df(s).

o

From (3.13), we infer a,(s) < ¢ s~ P2 where ¢ is a positive constant independent of n. Hence, for
any [ > £,

~

~ ! . ~ ! . o~
an(D)F() + /g an()df(s) < 0PI F(0) + /g STEdf(s)
< !
/3_1_p3f(s)ds.
l

By assumption (1.11), there exists a sequence {l;} such that I, — oo and l,:pzf(lk) — 0 as
k — oco. Taking | = lj in (3.18) and then letting & — oo, we obtain

(3.18)

IN

GITPRf(D) +

py+1

an(0)f(0) +/ an(s)df(s) < — / sTI7P2 f(s)ds. (3.19)
¢ pa+1J,

From assumption (1.11), we see that the right hand-side of (3.19) tends to 0 as ¢ — oc.

Therefore, for any ¢ > 0, one can choose ¢ > 0 such that the right hand-side of (3.19) is

smaller than €/2. Fix such ¢, one then can choose § > 0 small such that if [, p*dz < ¢ then

f(0) [p p*dx < €/2. Therefore, from (3.17), we derive

/psdx<5:>/ | f(up)|p’dx < e.
D D

This means {f ou,} is uniformly integrable in L!(Q, p*).

By Vitali convergence theorem, we deduce that, up to a subsequence, u, — v in L'(2) and
flug) = f(u) in LY(Q, p*). Since u,, satisfies (3.3), by passing to the limit, we deduce that u is
a weak solution of (1.2).

STABILITY. Assume {7,} C (R, p®) converges weakly to 7 € IMM(Q, p*) and {u,} C M(ON)
converges weakly to u € 9M(9N). Let u and u,, be the unique weak solution of (1.2) with data

(7, 1) and (7, in) respectively. Then by a similar argument as in Existence part, we deduce
that u, — uin L'(Q) and f(u,) — f(u) in LP(€, p®). 0.

Proposition 3.1. Assume f is a continuous nondecreasing function on R satisfying f(0) = 0
and (1.11). Then for every z € 082,

.
SEra M8 (z, 2)

= 0. (3.20)

Proof. By (2.1),
GP(2,y) < cup(e)’le —y|" Y min{p(y)*, |z —yI*} Vo #y.

Hence

GLLf(MP(, 2))](x)
M$(z, 2)

S

< cisle - Z\N/Q o =y min{lz — yP* ly — 2} f(ly — 2" N)dy. (3.21)
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Put

Dy :=QNB(x, |z —2|/2), Dy:=QNB(z|z—=2/2), D3:=Q\(D1UDy), (3.22)

Ii = |z — ZIN/D o —y| "M min{lz —y| |y — 2"} f(|ly — 21" M)dy, i=1,2,3.
For every y € D1, |x — z| < 2|y — z|, therefore
I < esgle — 2N f(lo —2*7) / o —yI" Ny < erzle — 2N f (|l — 2.
D1

Hence

lim I; < ey7 lim |z — 2|V T f(jz — 2)57) = 0. (3.23)
T—z T—z

We next estimate I5. For every y € Dy, |z — z| < 2|z — y|, hence

<o [ ly=sPfly- My <en [
Do |x—z|s—N
Therefore, by (1.11),
lim Iy < ¢19 lim t=17P2 f(s)ds = 0. (3.24)
T—rz Tr—z |I*Z|S_N

Finally, we estimate I3. For every y € D3, |y — z| < 3|z — y|, therefore

|:C—Z|57N N
Is < exola — z\N/ ly — 2N F(ly — 2" N)dy < eorlz — z\N/ RS f(@dt (3.25)
E 0

Ds

Put

gl(r):/or Nt ga(r) =V,

If lim, 0 g1(r) < oo, then lim,_,, Is = 0 by (3.25). Otherwise, lim,_,¢ g1(r) = co = lim, 0 g2(r).
Therefore, by L’ Hopital’s rule,

/
N —
lim &1 (r) = lim g} (r) = lim i
r—=0 ga(r)  r—=0g4(r) r—0 N

VN = 0. (3.26)

By combining (3.25) and (3.26) we obtain

|z—z[*— N
lim I3 < o lim |z — zN/ £ f()dt = 0. (3.27)
T—z Tr—z 0
We deduce (3.21) by gathering (3.23), (3.24) and (3.27). O
Proof of Theorem D. From Theorem C we get
kM (2, 2) = GL[f (M (- 2))(2) < up.(2) < kM (x, 2), (3.28)

which implies

We derive (1.13) due to Proposition 3.1. O
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3.2. Power absorption. In this subsection we assume that 0 € 99Q2. Let 0 < p < p3 and denote
by u$! the unique solution of (1.14). By Theorem C, uf’ < kM$(-,0) and k — uf} is increasing.
Therefore, it is natural to investigate limy_, s ug

For any £ > 0, put

Tylul(y) == £ Tu(ly), ye Q=0
If w is a solution of (1.17) in Q then Ty[u| is a solution of (1.17) in Q.
By Corollary A.9, the function

v Uw) = bypla| 7T, z#0, (3.29)
where £, ), is a positive constant, is a radial singular solution of
(=AY u+uP =0 in R\ {0}. (3.30)

Lemma 3.2. Assume p € (pi,p5). Then there exists a positive constant C' depending on N,
s, p and the C? characteristic of Q such that the following holds. If u is a positive solution of
(1.17) satisfying u < U in Q then there holds

_(pt1)s
u(z) < Cp(x)’|z|” »=1 VreQ. (3.31)
Proof. Let P € (02 \ {0}) N B1(0) and put
1 1
d=d(P):= 5\P| <5

Put
ug(y) = Talul(y), y € Qq:=d Q.
Then w4 is a solution of

(3.32)

Moreover . .
uq(y) < Ta[U](y) = d»=1U(dy) = Lsply| »=1 = Ul(y).
Put P; = d~'P and let 3y be the constant in Proposition 2.8. We may assume 3y < %. Let
(p € C®(RY) such that 0 < ¢ < 1in RY, ¢ = 0in Bg,(P;) and ¢ = 1 in RV \ Byg, (Py). Let
ng € C(£24) be the solution of (3.4) with  replaced by Q4. For [ > 0, denote
Vd,l =(pU +1ny.
We will compare ug with V.

Step 1: We show that Vg, is a super solution of (3.32) forl large enough.
For y € Qg4 \ Bag,(Pa), ¢p(y) =1 and hence

U(y) — ¢p(2)U(2)
’y _ Z|N+25

U(z) — ¢p(2)U(2)
|y _ Z|N+23

(A (CpU)(y) = lim dz

=0 JRN\B.(y)
= (—=A)°U(y) + lim dz
(~arU) €0 JRN\B.(y)

> (80 - [ Uiz)

FE—— e ) 4
B, (P |y — 2|V T2

1
2

> (=A)°U(y) — s,
where cog = ca6(N, s,p, Bo). Since (Qq N Bag,(0)) C (24 \ Buag,(Py)), it follows that, for any
Yy € Q4N Bag, (0) \ {0},
(=A)Vau(y) + (Vau(y)” = (=A)*(CPU)(Y) + 1(=A)*na(y) + (Cp(»)U (y) + Ina(y))”
> (=A)YU(y) —cos + 1+ U(y)r.
Therefore if we choose [ > c96 then
(=AY Vg + (Vag)? >0 in Q4N Bag, (0) \ {0}. (3.33)
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Next we see that there exists co7 > 0 such that

[(=A)*(CPU)| < cor in Qg \ Bag,(0).
Consequently,

(=A)*Vay = (=A)*(CpU) + U(—=A) 14

> —cor + 1.
Therefore if we choose [ > ¢97 then
(—A)SVd,l > 0 in Qd \ BQBO (0) (334)

By combining (3.33) and (3.34), for [ > max{cs, co7}, we deduce that Vy; is a super solution
of (3.32).
Step 2: We show that uqg < Vg, in lq. By contradiction, we assume that there exists o € €y

such that
(ug — V) (xo) = né%x(ud — V) > 0.
2€Qq

Then (—A)*(ug — Vi) (xo) > 0. It follows that
0 < (=A)*(ug — Vai)(xo) < —(ug(zo)? — Va(zo)?) < 0.
This contradiction implies that ug < Vy; in Q.
Step 3: End of proof. From step 2, we deduce that
ug <Ing in Qg N Bgy(Py).

We note that n4(y) < cdist (y,0Q4)° for every y € Q4. Here the constant ¢ depends on N, s
and the C? characteristic of €. Since d < %, a C? characteristic of Q4 can be taken as a C?
characteristic of 2. Therefore the constant ¢ can be taken independently of P. Consequently,

uq(y) < ledist (y,00q)° Yy € Qq N Bg,(Py).
This implies

_(pt1)s

u(z) < dp(x)°d” v Vz € QN Byg, (P). (3.35)

Put
Fi:=Qg, N Bﬁ(O) N{z : p(x) < Bolz|}, Fo:=0Q,N Bﬁ(O) NA{x : p(x) > Bolz|}.

If x € Fi then let P € 00\ {0} such that p(z) = |x — P|. It follows that

S Bollal < d = 5|PI < S0+ Bolal < 5. (3.36)
By combining (3.35) and (3.36), we get
_ (p+D)s _ (p+1)s
ulw) < ¢(1— o)~ 5 pla)lal T
If x € F5 then (3.31) follows from the assumption v < U. Thus (3.31) holds for every x €
Qs, N Bﬁ (0). If z € Q\ Bﬁ(O) then by a similar argument as in Step 1 and Step 2

without similarity transformation, we deduce that there exist constants ¢ and 3 € (0, M)

depending on N, s, p and the C? characteristic of {2 such that (3.31) holds in Bj(P) N for
every P € 000\ B_1_(0). Finally, since u < U, (3.31) holds in D = {xz € Q: p(z) > g} Thus
2

1+Bp

3.31) holds in €. O
(3.31)

Lemma 3.3. Let p € (0,p5). There exists a constant ¢ = ¢(N, s,p,2) > 0 such that for any
x € Q and z € 0N, there holds

cp(a)®|z — [~V if <p <P

s
N —s
cp(x)® if 0<p< NS_

s
N —s
GIME (-, 2)P)(z) < { —cp(a)’Infz — 2| if p=

(3.37)
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Proof. We use a similar argument as in the proof of Proposition 3.1. It is easy to see that for
every x € ) and z € 0f),

GAME(, 2))(z) < casp(a)’ /Q o~y My — 2P min{|z — yf* ly — 2*}dy  (3.38)
Let D;, i = 1,2,3 be as in (3.22) and put
Ji = pla)’ /D & — 4|y — 2|~ NP min{[z — yJ*, |y — 2°}dy.

By proceeding as in the proof of Proposition 3.1 we deduce easily that there is positive constants
coq = c24(N, s, p, Q) such that

Ji < eoap(x)®|z — 2|5~V =12, (3.39)
and
cosp(x)®|x — 2|~ NP if N <P< D5
diam(§2) . S
J3 < 024p($)5/ re NP gy < 8 —cosp(a)® In o — 2] it p=
|z—2[/2 -5 s
cosp(x)® if 0<p< N s
(3.40)
Combining (3.39) and (3.40) implies (3.37). O

Proposition 3.4. Assume p € (p},p3). Then ufl = limy o u% is a positive solution of (1.17).
Moreover, there exists ¢ = ¢(N, s,p,) > 0 such that

(p+1)s (p+1)s

cp(x)flz|” vt <ufl(x) < ep(x)’lz|” P-1 Vre Q. (3.41)

Proof. We first claim that for any k£ > 0,
u! <U  in Q. (3.42)
Indeed, by (2.5),
u(z) < kM (x,0) < cogkp(z)®|z| ™ < exsklz[*™N VzeQ.

Since p < p3, it follows that
up(z)

Q52—0 U(l‘) a

By proceeding as in Step 2 of the proof of Lemma 3.2, we deduce that u% < U in Q.
Consequently, uf} := limy_,, u} is a solution of (1.17) vanishing on 99 \ {0} and satisfying
ugo < U in Q. In light of Lemma 3.2, we obtain the upper bound in (3.41).
Next we prove the lower bound in (3.41). By (2.5) and Lemma 3.3, for any k£ > 0 and = € ,
we have

U%@) > kM?(:U,O) — kpG?[Mg(.70)p]($)
2 02_91kp(37)8|$’7N(1 — 6296301411)71‘33|N+3*(N*3)p)‘

N+s—(N—s)p

For z € Q, one can choose r > 0 such that x € QN (B2, (0) \ B;(0)). Choose k = ar™ 21 |
where a > 0 will be made precise later on, then

0 g — s p—1
uy, () > esrap(x)®|z|” »=1 (1 — cagezoal™ ™).

1
By choosing a = (2ca9c30) 1, we deduce for any x € ) there exists k& > 0 depending on |x|
such that
_ (p+D)s
it (x) > czap(x)®la|” w1

Since uX > uf? in Q we obtain the first inequality in (3.41). O
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Proposition 3.5. Assume 0 < p < pj. There exist ko = ko(N,s,p) and ¢ = ¢(N, s,p,2) such
that the following holds. There exists a decreasing sequence of positive numbers {ry} such that
limg_yoo e = 0 and for any k > ko,
cp(x)®lz| N if 0 <p<pi,

us(z) > , Vo eQ\ B, (0). (3.43)

cp(x)*|z[~N 7 (= Infae))™ if p =i,
Proof. For any ¢ > 0, we have
uf (z) > LMz, 0) — (PG ME(-, 0)P)(z) Yz € Q. (3.44)

Case 1: p € (§=,p1). Put k1 := (2c29c30) N2 %5 and take k > k1. For £ > 0, put rp = K_%,
then ¢ = r,”. Take arbitrarily € Q\ B;, (0) then one can choose ¢ € (max(2~°k, k1), k) such

that z € QN (B,,(0) \ B%(O)) From (3.44), (2.5) and (3.37), we get

u?<$) = 62_916/)(33)5‘5U|_N(1 — 629030€p_1\$|N+5—(N—5)P)

> cgglp(x)s|a:|_Nr[S(1 — 0290307“?4237]\@)

> (2c29) () |2| Ny

> cgap(x)°la| N0,

Here thefirst estimate holds since % < p < p5 and the third estimate holds since p < p] and
¢ > ky. Since k > ¢, we deduce that

ugl (z) > ezp(x)®|x| V7%, Vo € Q\ B, (0). (3.45)

Case 2: p= . Put kg = (M”%M)NESP and take k > ko. For £ > 0, put rp = 67%, then

¢ = r,*. Take arbitrarily x € Q\ B,, (0) then one can choose ¢ € (max(2~°k, k), k) such that
z € QN (By,(0)\ Br(0)). From (3.44), (2.5) and Lemma 3.3, we get
2

ug (x) > cag bp(@)° ||~ (1 + cageo? ol ¥ In |z])
> g p(@)*[o[ V17 (1 + easeaor) TP In(E)
> (2020) " pl@)®|| N
> cgp(x)”|a| =N

Here the third estimate holds since £ > ky and N — sp > 0. Therefore (3.45) holds.

Case 3: p € (0, ). Put k3 = (2029030)]\[*5*5? and take k > k3. For £ > 0, put ry = 6_%, then
¢ = r,*. Take arbitrarily x € Q\ B,, (0) then one can choose ¢ € (max(2~°k, k3), k) such that
z e QN (B,(0)\ B%g (0)). From (3.44), (2.5) and (3.37), we get

ug(x) > ca9 Lp(x)* || "N (1 — cagezol |z |Y)

> nglp(a:)ﬂx\_]vrgs(l — czgcgorévﬂfsp)

> (2c20) ' p()°f2| N
> cgap(w)|a| N0

Here the third estimate holds since ¢ > k3 and N + s — sp > 0. Therefore (3.45) holds.

s

Case 4: p = pj. Put ks = exp((2c29c30) Vs~ @7 ) and take k > ky. For £ > 0, put ry =
G ln(ﬁ))fi, then £In(¢) = r,® and £ < r,® when £ > 3. Take arbitrarily z € Q\ B;, (0) then
one can choose ¢ € (max(27%k, k4), k) such that x € QN (B,,(0) \ B%e (0)). From (3.44), (2.5)
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and (3.37), we get

ug () > Cao tp(x)° |z~ (1 = cagezplP ™t a|N e (N =)y

_ N+4s—(N—-s)p
s

> c9 Lp(2)®|x| "N (1 — a9z (¢1n(0))

)

_ _ _N+s—(N—s)p
= cog-lp(x)*]x| N (1 — eageso In(f) O

> (2c09) " p(w)* ||~V

> eaap(@)°lz| TN (— Infz) 7

)

Here the inequality holds since p = p] and the last estimate follows from the following estimate

" |z[~*

~ In(¢) 7 e In|z|

Since u$}(z) > u$(z), we derive

it (@) > ezap(x)®|x| N0 (= I z]) "

By putting kg := max(kq, k2, k3, k1), we obtain (3.43). O

Proposition 3.6. Assume 0 < p < pj. Then limg_, u%(:c) = oo for every x € ().

Proof. The proposition can be obtained by adapting the argument in the proof of [?, Theorem

1.2]. Let ro > 0 and put
O ::/ u (z)da.
By (0)

%20/ pl)* |2 N = (— In |z)) " Ldz,
(BrgNQ)\Br,, (0)

Then

which implies
lim ) = oco. (3.46)

k—o0

Fix yo € Q\ B, (0) and set § := 3 min{p(yo), |yo| — ro}. By [13, Lemma 2.4] there exists a
unique classical solution wy of the following problem

(=A)*wp +wy =0 in Bs(yo),
wp =0 in RY\ (Bs(yo) U By, (0)), (3.47)
wi = u in By, (0).
By [13, Lemma 2.2],
u! > wy  in Bs(yo). (3.48)
Next put @y := wk — X8, (0)Uk then Wy = wy in Bs(yp). Moreover, for x € Bs(yo)

wi () — wy(2)

’ |V F2s dz + lim L)
zZ—X

(—A)*wg(x) = lim o NiZs
0./ Bs(y0)\Be () =0 J Be(yo)\Be(z) 12 — &[N
Q

Y Sy S E 10
0 Jpn\p.(z) |2 — x|V T2 By, (0) |2 — x|V 2

> (—A)ka(x) + Aé?k
where A = (|yo| + 7o)~V 25. It follows that, for = € Bs(yo),
(=A) g (x) + wh(x) > (—A) w(z) + wh(z) + Af, = Ab. (3.50)

dz

Therefore wy, € C(Bs(yo)) is a supersolution of
{ (—A)Sw + wP = Aek in B(;(y()),

w=0 in RV \ Bs(yo). (3:51)
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Let ny € C(Bs(yo)) be the unique solution of

(=A)*no =1 in Bs(yo), (3.5
no =0 in RV \ Bs(y). '
We can choose k large enough so that the function
1
10 (Aby)?
2 maxgn 1o
is a subsolution of (3.51). By [13, Lemma 2.2] we obtain
1
. no(A0) >
>———" VreB . 3.53
wg(z) > > maxgy o z € Bs(yo) (3.53)
Put
: o
c:= min ————
T z€Bs(yo) 2maxpn 1o
then we derive from (3.53) that
1
wi(x) > c(Abg)?  Vx € Bs(yp)- (3.54)
By combining (3.46), (3.48) and (3.54), we deduce that
lim u(z) =00 Va € Bs(yo).
k—o0 2
This implies
lim u§}(z) =00 V€ Q.
k—o0
O

Theorem 3.7. Assume p € (1,p3) and either Q = RY = {z = (2/,zn) : zy > 0} or 00
is compact with 0 € ). Then, for any k > 0, there exists a unique solution solution u? of
problem (1.14) satisfying ust < kM (-,0) in Q and
0
w, ()
—L = =k, 3.95

Moreover, the map k +— u? 18 increasing.

Proof. Step 1: FEuxistence. For R > 0 we set Qlp = QN B and let u := ugR be the unique

solution of
(—A)Pu+uP =0 inQp

trs(u) = kdo (3.56)
u=0  onQ%.
Then
wP(z) < KMSR(2,0) Vo € Qg. (3.57)

Since R +— M$r(.,0) is increasing, it follows from (1.13) that R ugR is increasing too with
the limit ©* and there holds

u*(x) < kM (z,0) Vo € Q. (3.58)
From (3.57), we deduce that
ugR(:n) < cklz|*N Vo € Qg

where ¢ depends only on N, s and the C? characteristic of 2. Hence by the regularity up to
the boundary [25], {ugR} is uniformly bounded in C§ (Q\ B,) and in CZ5M*(Q\ B,) for any
€ > 0. Therefore, {ugR} converges locally uniformly, as R — oo, to u* € C(Q\ {0})NC*T¥(Q).
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Thus u* is a positive solution of (1.17). Moreover by combining (1.13), (3.57), the fact that
M= 4+ ME and ugR 0 u%, we deduce that tr s(u*) = kdy and

im % (@)

———— =k.
0320 M$(x,0)

Step 2: Uniqueness. Suppose u and u' are two weak solutions of (1.17) satisfying max{u, u'} <
EME(-,0) in Q and
Q5050 M2(2,0)  032—0 M$(x,0)
Take € > 0 and put ue := (14 €)u’ +¢€, v := (u — ue)+. Then by (3.59) there exists a smooth
bounded domain G' C 2 such that v = 0 in G¢ and tr ¥(v) = 0. In light of Kato’s inequality,
we derive (—A)%v < 0 in G. Moreover, v < kM (-,0) in G. By Lemma 2.12 we obtain v = 0
in G and therefore u < (1 + €)u’ + € in Q. Letting € — 0 yields u < ' in Q. By permuting the
role of u and v/, we derive u = ' in Q.
By a similar argument as in step 2, we can show that k — ug is increasing. O

(3.59)

Proof of Theorem F. (i) Case 1: p} < p < p5.
Since 99 € C?, there exist two open balls B and B’ such that B C Q C B’® and 0BN OB’ =
{0}. Since ME(x,0) < M (x,0) < ME"(z,0) it follows from Theorem 3.7 that

ul <u <uf” (3.60)
where the first inequality holds in B and the second inequality holds in §2.

Let O be B, Q or B’“. Because of uniqueness, we have

Ty[uf] = u®, vl >0, (3.61)

pepoT TN

with Oy = £71O. By Theorem 3.7, the sequence {uf} is increasing and by (3.42), u$ < U.
It follows that {u$} converges to a function uS which is a positive solution of (1.17) with
replaced by O.

Step 1: O :=R¥Y. Then Oy = RY. Letting k — oo in (3.61) yields to

N N
Tyfust ] = uss V0> 0. (3.62)

RN
Therefore us is self-similar and thus it can be written in the separable form
RY RY _ 25
Uso () = Uod (ry0) =1 PTw(o)
where r = |z|, 0 = I%I € SN~1 and w satisfies (1.16). Since p} < p < p}, it follows from Theorem
E that w = w*, the unique positive solution of (1.16). This means

]RN 2s

Uso () =1 P Tw*(0). (3.63)
This implies (3.41).
Step 2: O := B or B'. In accordance with our previous notations, we set B, = ¢~'B and
(B'®)y = (7B’ for £ > 0 and we have,
Ty[uZ] = B and Ty [uB’) = ulF) (3.64)
and
WP < B < < B < B g < < (3.65)

RY RY _RY
When ¢ — 0, ufg T us and u (B")e 4 OO* where uo" and s are positive solutions of (3.42)

in Rf such that
B RY RY  _R¥Y (B’
< usd Cuod <TUsd <uy ¢ 0<l<1. (3.66)

Furthermore there also holds for £, ¢ > 0,
e By
ToeluZ) = Ty[TuB)) = w2 and Tog[uZ] = To [To[uB )] = ulE? (3.67)
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Letting £ — 0 and using (3.64) and the above convergence, we obtain
B T and B =T >0 (3.68)
Again this implies that fo and ﬂﬂfg are separable solutions of (1.15). Since pj < p < p}, by
Theorem E,
u{iﬁ(w) = H]oRg(x) = u]fg(a:) = rfﬁw*(a) with r = |z|, o= %, x # 0.

Step 3: End of the proof. From (3.60) and (3.64) there holds

uBr < Tull) <P 0<r<1. (3.69)

N

Since the left-hand side and the right-hand side of (3.69) converge to the same function uﬂo%,

we obtain
T

2s 2s
}%Zﬁu&(éx) = |x|_ﬁw*(m) (3.70)
and this convergence holds in any compact subset of Q. Take |z| = 1, we derive (1.18). Estimate
(3.41) follows from Proposition 3.4.

(ii) Case 2: 0 < p < pj. Then by Proposition 3.6, limy_, u%(m) = oo for every x € €.
O

APPENDIX A. APPENDIX - SEPARABLE SOLUTIONS

A.1. Separable s-harmonic functions. We denote by (r,0) € R, x SN~ the spherical
coordinates in RY, consider the following parametric representation of the unit sphere

SNt = {0 = (cospo’,sing): 0’ € SN2 T <9 <I}, (A.1)
hence z = rsin¢. We define the spherical fractional Laplace-Beltrami operator A by
Asw(o) = lim A, w(o) (A.2)
e—0
with

- (w(o) = w(n)rV ! .
Asewolo) 1= N’s//R+st—l\Be(s>) (1+72—27(o,m))> " 45(md (A.3)

where o = (1,0). If u : (r,0) — u(r,0) = rPw(0o) is s-harmonic in RN \ {0}, it satisfies, at
least formally,

Asw — L gw =0 on SN-1 (A.4)
where L g is the integral operator
e B 1)N-1
Logo)i=axs [ [ Tt (A3)
0 SN (1472 = 27(o,m))

whenever this integral is defined. We will see in the next two lemmas that the role of the
exponent 3y = N is fundamental for the definition of £, gw since we have

Lemma A.1. If N >2, 5 € (0,1), 3 < N and (6,1) € RVN=1 x RN~ such that (o,n) # 1, we
define
o) -8 _ 1 N-1
T T
Bs g(o,n) 1:/ ( ) ~—dr. (A.6)
0 (1+72—2r(c,n))z"*

Then

(1) Bspl(o,n) <0<+<= <N —2s,
(ii) Boplon) = 0= B =N —2s,
(iii) Bsg(o,m) > 0<+= > N — 2s.
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Proof. Since 8 < N, the integral in (A.7) is absolutely convergent. We write

1 (78 — 1)7N-1 & (78 — 1)7N-1
B; 5(0,1m) :/ N+Sd7+/ ﬁ+sd7—
0 (1+7%—27(0,m))? 1 (1+7%=27(0,m))2
= I+1I.
By the change of variable 7+ 771
1 —B _ 1\ N—1+cs
H:—/ U
0 (1472 —27(0,m))2 "
where ¢, = 8+ 2s — N. Since
LB _ 1)(#N-1 _ ;N—=1+cs
T T T
B g(o,n) = / ( ) N )dT, (A.7)
0 (I1+72—=27(c0,n))2""
the claim follows. O

As a byproduct of (A.7) we have the following monotonicity formula

Lemma A.2. If N > 2 and s € (0,1), then for any (o,n) € SV~ x SN=1 the mapping
B+ Bsg(o,m) is continuous and increasing from (N — 2s, N) onto (0, c0).

In the next result we analyze the behavior of B, s(o,7) when o — 7 — 0 on SNV,

Lemma A.3. Assume N > 2, s€ (0,1) and 8 < N with § # N — 2s, then
I- If N > 3, there exists ¢ = ¢(N, 3,s) > 0 such that

1B, g(o,m)| < clo—n[* N2 V(o,n) € SN x gNL, (A.8)

II- IfN =2,
(i) either s > 3 and (A.8) holds with N = 2,
(ii) either s = + and

2
|Bsg(o,n)| < c(—Injo—n|+1) V(o,n) € §* x ! (A.9)
iii) or 0 < s < & and
(iii) 3
|Bs,g(o,m)| < c Y(o,n) € St x St (A.10)

Proof. First, notice that the quantity
/; (7.—,8 . 1)(7_1\!—1 . TN—1+cS)dT
N
0 (1472 —27(0, 77))7+S

is uniformly bounded with respect to (o,n). The only possible singularity in the expression

given in (A.7) occurs when (o,n) = 1 and 7 = 1. We write (5,n) = 1 —3x? and t = 1 — 7, hence
N N
(1+72—27(0o, 77))7+5 =+ (1- t)/{2)7+5
Yo

~ N (14 ()?)
as t — 0. Moreover
(77 =V = N = (=) - 1(( - N - (L)Y
=cft2+O03) as t— 0.
Hence
/1 (1P )N N /% (L= 877 (L= N — (1 =)V T+es)
1 0

dt
b+ —2rlom) B (P + (1)) 27

1 2

2K €T
~ cst’NQS/ ——dx.
0 (1+a2)z*e
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IfN:2ands<%,

= 2
1-2s [ 2% x

for some M > 0 independent of k. If N =2 and s = %

L 2
" 1
/2 xildlen () (1+0(1))
0 (14 x2)tz k
andifN:3orN:2ands>%,

1
b 2 o] 2
/ dex—>/ R
0 (1+4a2)27*s 0 (14+a22)2ts

as k — 0. Since 0,17 € SN there holds k2 = 2(1 — (o,1)) = |o — n|*. Thus the claim follows.
O

Proposition A.4. Assume N > 2, s € (0,1) and B < N with B # N — 2s. Then w — L, gw
is a continuous linear operator from LI(SN=1) into L"(SN™1) for any 1 < q,r < oo such that

1 1 1-—
1,1 2-s) (A.11)
r o q N -1

Furthermore, Ls g is positive (resp. negative) operator if § < N —2s (resp. N —2s < < N).

Proof. By Lemma A.3, for any n € SV~ Bsg(.,n) € LYSV 1) forall 1 < a < % if

N >3or N=2and s> 3; Beg(-,1n) € Ni<gene L*(S") if N =2 and s = 5 and B, (.,7) is
uniformly bounded on S' if N =2 and 0 < s < % The continuity result follows from Young’s
inequality and the sign assertion from Lemma A.1. O

The above calculations justifies the name of fractional Laplace-Beltrami operator given to Ay
since we have the following relation.

Lemma A.5. Assume N > 2 and s € (0,1), then

Asw(o) = bN7SCPV/SN_IWdS(n) + Bsw(o), (A.12)

where B is a bounded linear operator from LI(SN~1) into L"(SN™Y) for q, r satisfying (A.11)
and

bn,s = 2aN,s/ dixjv (A.13)
0 (2241)27"s
Proof. If (o,n) € SV=1 x SN=1 we set (o,n) =1 — 1x%. Then
/oo TN_ldT B /1 (TN—I +725—1) dr
o (ar 2l ) ET S (L2 arto ) E

Then we put t = 1 — 7, hence, when t — 0, we have after some straightforward computation

S H2 K 2
(P14 2y (2= (N +2s —2)t + O(t?)) <1 + St + 0 ((91212) >>
(1+72—2r(am)3 s (12 + 52) 5+
_242t40(t?)

(t2 + H?)%Jrs )
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This implies

/1 (P14 72571) dr
0 (

N
1+72—27(o,n))z"*

1

= 2H1N28/de + 2n2N28/ _wdr 0(K3Ns)/” _ 2fdr
0 (x2+ 1)%4—3 0 (22 + 1)%4—3 0 (a2 1)%4—3

1
o0 d = 2d
— 2,%1_N_28/ L - —i—O(l) +O(H3—N—S)/ € ‘TN
0 (2241)2** 0 (z2+1)27"°

=
=

(A.14)

Since k = |o — 1|, the claim follows from Proposition A.4 and the kernel estimate in Lemma A.3.
O

Lemma A.6. Under the assumption of Lemma A.5 there holds

/ wLls gwdS
gN—1

n — ! dS(n) B _ 1) | N1 _ N-ltes
v /0 (/SN—l (1472 - 2T<eN,n>)¥+s> ( bl

Proof. There holds by Cauchy-Schwarz inequality
/ wls gwdS
SgN-1

Mlw(@)|dSm)dS(o) \ —p 1y N-1 __N-lte,
< [ (fof, el ) oo

< c35 / widS  Ywe L*(SNTY), (A.15)
SN-1

where

dr.

dr

/ / / SO as()as(o) ) x (0 - 1) [N - PN g

SN-LJSN=1(] 4 72 —27<0n>)

< / / / d5(7) = (7P -1) |7’N71 — =t dr | w?(n)dS(n).

SN—1 0 SN-1 (1 + 72 27_<U’ n>)7+s
Since, by invariance by rotation, we have
/ dS(o) B / dS(o)
S (e - 2rlo ) BT SV - 2rey,0)) BT

we derive (A.15). O

We denote the upper hemisphere of the unit sphere in RN by S iv L= gN-1n RJX .

Proposition A.7. Let N > 2, s € (0,1) and N —2s < < N. Then there exist a unique
As,3 > 0 and a unique (up to an homothety) positive ¢ € Wg’z(Sf_l), such that

Asth1 = As g Ls g1 in SN (A.16)

Furthermore the mapping 5 — As g is continuous and decreasing from (N —2s, N') onto (0, 00).
Finally As g =1 if and only if 5 = N — s and 11(0) = (sing)”.

Proof. We first notice that

- W(n))z SN-1
/SN wAswdS = /SN 1/ /SN " +7_2 - 27’<0‘ 77>) dS(n)drdS (o), (A.17)




26 PHUOC-TAI NGUYEN AND LAURENT VERON

for any w € C3(SY~1). By Lemma A.5 and (A.11) with r = ¢ = 2,

/S o / /S v —2_;(00(2;)2 — N 1dS(n)drdS (o)

2 2
< C36 HWHWS’Q(S_I,_V*l) + c37 ||wHL2(SiV*1) 5

where
n
||(.UHW52 sN-1) /SN 1/SN . |77 N (1432)3 dS(n)dS(o).

Since, by Poincaré inequality [16], there holds

2 2
HWHWOS»Q(Si\I—l) > €38 HWHLQ(Sf—l) s

we obtain that the right-hand side of (A.17) is bounded from above by (%036 + 2603378) Hw”%/VS’Q(SN_l)-
o (5%
Next we use the expansion estimates in Lemma A.5 to obtain that
FN-1 4 251 1
2 Nis = (42 N L +s
(L+72—27(0,m))? (1% + K%)=

where k = |0 — n| < 2. Hence

Vi=1-71¢€(0,6), ¥(o,n) € STt x S

'\3‘8

o N=ldr S €0 dt L I-N-2s dt
2 _ J4s — 24 . 2)5+s 2 Nois
0 (a2 —2e(e)i T o (24 0 (2+1)5

Therefore,

€

/ AwdS > / i L
wAw > ———————— [|W||55,2, aN =11 -
SNt ’ 0 2(t2+1)%+5 weH(sEh

Finally we obtain

1 2
o ”‘*’”Ws’%sfﬁ

63

2
< c39 ”angﬂ(gi\“l) .

We consider the bilinear form in W ’2(S iv -1

w. ) = > (w(o) —wn) o) N +dS(o
Alw, () = /S]I_l/o /sf—l(1+72—27<a,n>)]2v dS(n)drdS (o).

Then A is symmetric and there holds

1
Alw,w) = /SN wAswdS > ||w||Wsz(SN 1y

1 1
? C
|A(w, Q) < (/SNIWASWCZS> </ B C-A CdS> < % kuwgﬂ(sf—l) HCHWOS’Q(SiV_l)'
+

By Riesz theorem, for any L € W*S’Z(Siv_l) there exists wy, € WS’Z(Siv_l) such that
Alwr, Q) =L(C)  VCeWy*(SY™).

We denote w, = A;Y(L). It is clear that A;! is positive and since the the embedding of
Wy ’Z(Siv 1) into L2(SY ') is compact by Rellich-Kondrachov theorem [16], A7
operator. Hence the operator

and

is a compact

w A o L gw
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is a compact positive operator (here we use the fact that 8 > N —2s which makes B g positive).
By the Krein-Rutman theorem there exists p > 0 and ¢ € W(]S’Z(Sivfl), 11 > 0 such that

AT o L gt = by

The function ; is the unique positive eigenfunction and p the only positive eigenvalue with
positive eigenfunctions. Furthermore p is the spectral radius of A5 o B; g. If weset A\; g = pl,
we obtain (A.16). It is also classical that A; g can be defined by

As,g 1= inf {fSJIZ—l wAswdS :w € W()S’Z(Sf*l),w > O,/ wl gwdS = 1} . (A.19)
S

N-1
+

Using (A.7), Lemma A.2 and monotone convergence theorem, we derive that the mapping

B — /Sf—lujLSﬁWdS

is increasing and continuous. This implies that 5 +— A, g is decreasing and continuous. Since

/N 1w£575wd5 — oo when 8 1T N, the expression (A.19) implies that A\; 3 — 0 when 5 1 N.
G-

+
Next, if w > 0 is an element of Wg’z(Sivfl) such that / wlspwdS = 1, we derive from

N-1
S+

Poincaré inequality [16] and (A.15),

2 2 €38
s 1y > 1y > —.
HWHWO‘Q(SiV 1) =~ C38 Hw”L%Sf 1) = Cas
Since c35 — 0 when 8 | N — 2s, we infer that lim A3 = co. Consequently the mapping

B—N—-2s

B+ As g is a decreasing homeomorphism from (NN —2s, N) onto (0, c0) and there exists a unique
Bs € (N — 25, N) such that As g, = 1. The following expression of the Martin kernel in RY is
classical, N

MF* (z,y) =cnsaylz —y™ Vo e RY,y e oRY, (A.20)
hence, if y = 0, it is a separable singular s-harmonic function expressed in spherical coordinates
with z = (r,0) by

RN
Ms " ((r,0),0) = cyor* N (sin ¢)®.

This means that the function o — w(o) = (sin¢)®, which vanishes on
W5’2(Sffl) N LOO(Sffl), satisfies

SN=1 and belongs to
Asw - £57N_Sw - 0.

The uniqueness of the positive eigenfunction implies that this function is ¢; and 8 = N — s.
O

A.2. The nonlinear problem.

A.2.1. Separable solutions in RN . If we look for separable positive solutions of

(—Au+uP =0 in RY, (A.21)
under the form u(x) = T_P%w(a) where x = (r,0) € Ry x SV~! then w satisfies
Asw — L zslerwp:O in SN, (A.22)
’p7

Proposition A.8. Assume N > 2 and s € (0,1).
(1) If p > p§ then there exists no positive solution of (A.22).
(i1) If pi < p < p§ then the unique positive solution of (A.22) is a constant function with
value
1

sp = (c35)7~ 1, (A.23)

where ¢35 is the constant defined in Lemma A.6.
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Proof. If p > p}, we assume that there exists a solution w > 0 of (A.22). Then w satisfies
/ wAswdS — wL, 25 wdS + / wPtds = 0.
gN-1 gN-1 'p-1 gN-1

Since p > p3, we have ¢y < 0 which implies

/ wl, 2s wdS <0.

gN-1 'p—1
Then w = 0 since the two other integrals are nonnegative.
Next, if p] < p < pj it is clear that if w is a constant nonnegative solution of (A.22) then we

have

1 N-1 N—1+cs

// (T JiS()dr = w? Vo € §N1.
SN-1 (14712 —-27(0,n))2 3+

Using invariance by rotatlon of the integral term on SN~!, we derive the claim. Conversely,
assume w is any bounded nonconstant positive solution, then it belongs to C%(S™N~1) by [25].
Let 09 € SV~! where w is maximal, then .Asw(ag) > 0 thus

= 1 N—1 _ _N—1+cs
WP(o0) < £, 22 (o) < oo / / (T N N e (o)
SN-1 (1+7%2—2(0g,n)2"*

Hence w(og) < €5 p. Similarly min w > £, contradiction. O
GN—

Corollary A.9. Assume N > 2, s € (0,1) and p] < p < p5. Then the only positive separable
solution u of (A.21) in RN\ {0} is

2> Uz) = by |z 7T . (A.24)

2s
A.2.2. Separable solutions in RY . If we consider separable solutions = — u(z) = r~ »-Tw(o) of

problem (1.15) then w satisfies (1.16).

Proof of Theorem E.
Step 1: Non-existence. Assume that such a solution w > 0 exists, then

/ wAswdS — wLl, 2s wdS +/ wPdS = 0.
SNfl SNfl SNfl
+ + +

Yp—1
Hence

(A2 = 1) / WL, 2 wdS + / WPdS < 0. (A.25)
SN71 ‘p—1 SN71

Tp—1

If A, 2. > 1, equivalently p > p3, the only nonnegative solution is the trivial one.
7 p_

Step 2: Emistence. Consider the following functional with domain W’ 2(Siv Hn LPH(Siv -,
1
w— J(Ww):= / wAswdS + —— lwPtds — / wl 20 wdS. (A.26)
_ p+ 1 N 1 p—1
Because of Lemma A.6, J(w) — oo when ||WHW§,2(Si\ffl) + ||wHLp+1(Sz+v_1) — 00. Furthermore,

for € > 0, we have

_ 2 _
Tled) = (AS’% 1) /SN—I%ESfSl%dS o

p+1
/ o P as

This implies that inf J(w) < 0 if A, 2. < 1, and thus the infimum of J in Wg?(SY ™) N
p—1
L]fl(SiV ~1Y is achieved by a nontrwlal nonnegative solution of (1.16).

Step 3: Uniqueness.

(1) Existence of a mazximal solution. By [25] any solution w is smooth. Hence, at its maximum
00, it satisfies Asw(og) > 0, thus

w(ag)? < ﬁs,%w(%) < w(og)css.
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This implies that supw < £ ,. From the equation the set £ C W ’Q(Sf _1) of positive solutions
of (1.16) is bounded in W§’2(Sf_1) N L®(SY™1) and thus in C*(SV=1) N C2(SY ) by [25].
We put @(o) = sup{w(c) : w € £}. There exists a countable dense set S := {o,,} C S}~ ! and
a sequence of function {wy,} C & such that

nlg& wn(ok) = w(og).

Furthermore, this sequence {w,} can be constructed such that {w,(ox)} is nondecreasing for
any k. Finally by local compactness estimate, {w,} converges to @ in C*~9(SN=1)n CZ(Sivfl)
for any 6 € (0,s) and weakly in W ’2(Siv ~1). This implies that @ belongs to £. Tt follows
from [25, Th 1.2] that any w € & satisfies

w(o) < cao (dist (0,08 7)) = eaop® Vo e SN (A.27)

RY RY RY
(ii) Existence of a minimal solution. This follows from Theorem 3.7 that u, © 1 uss and ues

is self-similar and it is the minimal solution of (1.17) in RY which satisfies

lim —2 . (A.28)

Thus uoo ( r,o)=r_ = 1w( ) and w is the minimal positive solution of (1.16). Furthermore it
follows from (3.41) that

w(o) > ca (dist (0,08 —1))5 =cng®  Voe SV (A.29)

if ¢ = ¢(o) is the latitude of o.
(i1i) End of the uniqueness proof. By combining (A.27) and (A.29) we infer that there exists
K > 1 such that

w<Kw in YL (A.30)

Assume @ # w, then

1
e
is a positive supersolution (by convexity) of (1.16). Moreover

1 1
w2 - Jrﬁ

is a positive subsolution of (1.16) smaller than w; hence also than w. It follows by classical con-
struction that there exists a solution @ of (1.16) which satisfies wy < @ < wy, which contradicts
the minimality of w. O
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