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BOUNDARY SINGULARITIES OF SOLUTIONS TO SEMILINEAR
FRACTIONAL EQUATIONS

PHUOC-TAI NGUYEN AND LAURENT VERON

ABSTRACT. We prove the existence of a solution of (—A)°u+ f(u) = 0 in a smooth bounded
domain €2 with a prescribed boundary value p in the class of positive Radon measures for a
large class of continuous functions f satisfying a weak singularity condition expressed under
an integral form. We study the existence of a boundary trace for positive moderate solutions.
In the particular case where f(u) = «? and u is a Dirac mass, we prove the existence of several
critical exponents p.
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1. INTRODUCTION

Let  C RY be a bounded domain with C? boundary and s € (0, 1). Define the s-fractional
Laplacian as

(—A)°u(z) = lm(—A)iu(z)

e—0
where
u(z) — u(y) ['(N/2 +s)
—-A)?¢ = ans ———dy, s = ————5(1 —s).
(=A)Zu(z) := an, /RN\BE(@ z — y[N+2s Y, an, TN2D(2 — 8)3< s)
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2 PHUOC-TAI NGUYEN AND LAURENT VERON

We denote by G and M$! the Green kernel and the Martin kernel of (—A)® in Q respectively.
Denote by Gt and M the Green operator and the Martin operator (see section 2 for more
details).

Let p(z) be the distance from x to 992. For § > 0, denote

Qg :={zeQ:p(x) < B}, Dg:={xecQ:px)>p}, Lg:={xecQ:p(x) =0}

Definition 1.1. We say that a function u € Lloc(Q) possesses a s-boundary trace on 082 if
there exists a measure p € M(ON) such that

lim 81~ S/ lu — M []|dS = 0. (1.1)
,8*)0 Eﬁ

The s-boundary trace of u is denoted noted by tr s(u).
Let f € C(R) be an increasing function with f(0) =0, 7 € MM(Q, p®) and p € M(IN). In

this paper, we study nonlinear problem of the form
(=A’u+ f(u)=7 inQ
trs(u) =p (1.2)
u=20 in Q°.
Definition 1.2. Let 7 € M(Q) and p € M(IN). A function u is called a weak solution of
(1.2) if u € LY(2), f(u) € L*(Q, p*) and

/( (=A)°¢+ f(u dw—/&df /MQ A)edr, VE € X (Q). (1.3)
)
The linear problem associated to (1.2) is
(—A)Yu=r in Q
trs(u) = p (1.4)
u=0 in Q°

Proposition A. Assume s € (3,1). Let 7 € M(, p°) and p € M(0Q).
(i) Problem (1.4) admits a unique solution. The solution is given by

w=G2r] + My, (15)
(ii) There ezists a positive constant ¢ = ¢(N,s,) such that
[ell 1oy < elliTllona,pe) + lellonany)- (1.6)

Next we deal with (1.2) with L! data.
Theorem B. Assume s € (1,1) and f € C(R) is nondecreasing and tf(t) > 0 for every
teR.
[. EXISTENCE AND UNIQUENESS. For every 7 € LY(Q,p%) and p € L'(09), problem (1.2)
admits a unique weak solution u. Moreover,

uw=GYr — f(u)] + My inQ, (1.7)
G -MP 7] Su <GP+ MO [ut] in Q. (1.8)

II. MONOTONICITY. Assume 7,7 € LY(Q), p, ' € LY(0) and v and v’ be the solutions of
(1.2) with data (1, 1) and (7', 1) respectively. If 7 < 1" and p < p' then u <’ in Q.
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Put

Note that p] < p5 < p3.

An important feature of (1.2) is that this problem does not admit solutions for every
measures 7 and p and the solvability of (1.2) depends on the properties of the nonlinearity
f. This is reflected in the following result.

Theorem C. Assume f is a continuous nondecreasing function on R satisfying f(0) = 0 and

/1oo[f(8) — f(=8)]s™ ! P2ds < 0. (1.9)

Then for every T € M(Q, p°) and p € M(ON) there exists a unique solution of (1.2). This
solution satisfies
u=G[r — f(u)] +MZ[u], (1.10)
~G{[r ] - MJ[p7] < u < GPIr ] + MY [ut]. (1.11)
Moreover, the mapping (7, 1) — w is nondecreasing.

Theorem D. Assume s € (%, 1) and f is a continuous nondecreasing function on R satisfying
f(0) =0 and (1.9). Let z € 9Q and k > 0. Let u}, be the unique solution of

(=A)°u+ f(u) =0 in Q

trs(u) = ko, (1.12)
u=>0 in Q°.
Then N
uy (@
lim Uep@) =k. (1.13)

Qozx—z Mg(.%’, Z)

We next assume that 0 € 0€2. Let 0 < p < p5 and denote by u% the unique solution of

(—A)u+uP =0 in Q
trs(u) = kdo (1.14)
u =0 in Q°.

By Theorem C, uf! < kM$(-,0). Moreover, k — uj’ is increasing.
In the Appendix we develop the study of separable solutions of
—A)? P =0 in RY
(—A)u + u %n 7_]5 (1.15)
u =0 in RY.
when p > 1. Writting such a solution under the form u(z) = u(r,o) = rii%lw(a), with 7 > 0
and o € Sffl, we obtain that w satisfies

Asw =L, 2s w+wP =0 in Siv_l
'p—1

_— 1.16

w=20 in SN, ( )

where A; is a nonlocal operator naturaly associated to the s-fractional Laplace-Beltrami

operator and £, 2. a linear integral operator with kernel. In analyzing the spectral properties
'p—1
of As; we prove
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Theorem E. Let N > 2, s € (0,1) and p > p;.
I- If p5 < p < pj there exists no positive solution of (3.20) belonging to W5’2(Siv_1).
II- If p] < p < p5 there exists a unique positive solution w* € W§’2(Siv_1) of (3.20).
As a consequence of this result we obtain the obtain the behaviour of u% when k£ — oo.
Theorem F Assume s € (%, 1). Let @ = RY or Q be a bounded domain with C? boundary

containing 0.
I- If p € (p},p3) then ul :=limy_,o u% s a positive solution of

(—A)Pu+uP =0 in Q
{ u =0 in ° (1.17)
(i) If @ = RY then
N 2s
u&’ (x) = |z| " Tw"(0), witho = |$—|, vz € RY.
x
(ii) If Q2 is a bounded C? domain with OS2 containing O then
2s
lim 2|71l (2) = w*(0), (1.18)
Q52 —0
H=cesyt
locally uniformly on Siv —L. In particular, there exists a positive constant ¢ such that
-1 s —&fbs Q g —ptls
cp(x)’lz|” 1t <wugi(x) <ep(z)’lz| -1, VaeQ. (1.19)

II- Assume p € (0,p7]. Then limg_, oo u% =00 in €.

2. LINEAR PROBLEMS

Throughout the present paper, we denote by c,c, c1,co,C, ... positive constants that may
vary from line to line. If necessary, the dependence of these constants will be made precise.

2.1. s-harmonic functions. We first recall the definition of s-harmonic functions (see [3,
page 46], [4, page 230], [6, page 20]). Denote by (X, P*) the standard rotation invariant 2s-
stable Lévy process in RY (i.e. homogeneous with independent increments) with characteristic
function

B0t — ot ¢ e RN ¢ > 0.

Denote by E* the expectation with respect to the distribution P¥ of the process starting from
z € RY. We assume that sample paths of X; are right-continuous and have left-hand limits
a. s. The process (X;) is Markov with transition probabilities given by

Pz, A) = P*(X; € A) = (A — o)

where 11; is the one-dimensional distribution of X; with respect to P°. It is well known that
process (X, P*) has the generator (—A)®.

For each Borel set D C RV, set tp := inf{t > 0: X; ¢ D}, i.e. tp is the first exit time
from D. If D is bounded then tp < oo a.s. Moreover, we use the notation

E*u(Xy,) = E*{u(Xy,) : tp < oo}
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Definition 2.1. Let u be a Borel Borel measurable function in RN. We say that u is s-
harmonic in Q if for every bounded open set D &€ €2,

u(z) = E*u(X:,), x€D.
We say that u is singular s-harmonic in € if u is s-harmonic and uv = 0 in QF.

Put

Ds:=<u: RY — R : Borel measurable such that/ w .
gy (1 [z[)VH2s

The following result follows from [5, Corollary 3.10 and Theorem 3.12] and [6, page 20].

Proposition 2.2. Let u € D;.

(1) u is s-harmonic in Q if and only if (—A)*u =0 in Q in the sense of distributions.

(ii) w is singular s-harmonic in Q if and only if u is s-harmonic in  and u = 0 in Q°.
2.2. Green kernel, Poisson kernel and Martin kernel. In what follows the notation
f ~ g means: there exists a positive constant ¢ such that ¢~ f < g < c¢f in the domain of the

two functions or in a specified subset of this domain.
Denote by G<! the Green kernel of (—A)* in Q. Namely, for every y € €,

(~AYG2(,y) =5, nQ
G?()?/) =0 in Q°
where 0, is the Dirac mass at y. The following properties are well-known (see [1, Lemma
3.2]):
(1) G is in continuous, positive in {(z,y) € A x Q: x # y}, G¥(z,y) = GL(y, x) for every
z,y € RN x # y (symmetric) and G%(z,y) = 0 if z or y belongs to Q°.
(ii) (—=A)*G(x,-) € L1(Q°) for every x € Q and (—A)*G(z,y) < 0 for every z € Q and
y € Q°.
By [13, Corollary 1.3], for every z,y € Q, z # vy,

G2 (w,y) ~ min |z -y N p(2)*ply) lo —yI N} (2.1)

The similarity constant in the above estimate depends only on Q and s. Denote by G} the
associated Green operator

G2 (x) = / G y)dr(y), 7€M, ).
Q

Put

) P} if 5 € [0, Y52), )
YT N+s if v e [N*QSS 8] ( ) )
N—2s+v v N 55l

The following estimate was obtained in [11, Proposition 2.3 and Proposition 2.6].

Lemma 2.3. Assume v € [0, s] and ks, be as in (2.2).
(i) There exists a constant ¢ = ¢(N, s,7v,Q) > 0 such that

HG?[T]HM’%,W(Q’pS) < CHTHmt(Q,m) VT € M(Q, p7). (2.3)

(ii) Assume {1,} C M(Q, p) converges weakly to T € M(, p?). Then G[r,] — G[7] in
LP(Q, p®) for any p € [1, ks ).
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Let PS be the Poisson kernel of (—A)* defined by (see [7])

Gz, 2) =c
P& = —an_s | ——""dz, YreQ Q°.
s(xay) an, S/S;|Z_y‘N+QS Z, reiLyc

Then by [1, Proposition 2] (see also [13, Theorem 1.4]), P (z,y) = —(—A)*G%(x,y) for every
z e Qandy e Q°. Moreover, P is continuous in Q x Q° (see [4, Lemma 2]) and there holds
(see [13, Theorem 1.5])

p(x)® 1
p(y)*(L+ p(y))* o —yN

The similarity constant in the above estimate depends only on € and s. Denote by P! the
corresponding operator defined by

P) = [ PRy, v e m@)
Q

P2z, ) ~ , VreQyeq (2.4)

Fix a reference point zo €  and denote by M the Martin kernel of (—A)* in €, i.e.

Q
MSQ(:L‘,Z) = lim 7615 (z,y)

. Vo eRY ze .
03z G xory) ‘

By [14, Theorem 3.6], the Martin boundary of € can be indentified with the Euclidean bound-
ary 092 Denote by M the associated Martin operator

MOlpe) = [ MP(e2)du(z), e MOR)
onN
The following results can be found in [4, 14]

Proposition 2.4. (i) The mapping (z,2) — M (x,z) is continuous on Q x 9. For any
z € 09, the function M(.,z2) is singular s-harmonic in Q with M (zq,2) = 1. Moreover, if
2,2 € 00, z # 2 then lim,_,,» M3 (x,z) = 0.

(ii) There exists a positive constant ¢ = ¢(€2, s) such that for any x € Q and z € 0,

p@)le — 2N < M2(2,2) < epla)la — 27V, (2.5)

(iii) For every finite monnegative measure u on 0 the function M [u] is singular s-
harmonic in Q with u(zg) = uw(RY). Conversely, if u is a nonnegative singular s-harmonic
function in Q then there exists a unique finite nonnegative measure p on OS) such that
u = M[u] in RN,

(iv) If u is a nonnegative s-harmonic function in S then there exists a unique finite non-
negative measure p on 0 such that

u(w) = M2[u)(x) + POu] (x) Ve € .

Lemma 2.5. (i) There exists a constant ¢ = ¢(N, p,y, Q) such that

Q
M1l sy, Cllmany Yo € MO, > s 26)
(ii) If {pn} C IM(ON) converges weakly to p € M(ON) then ML u,] — ML{u] in LP(Q, p7)

for every 1 < p < %tz
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Proof. (i) By using (2.5) and a similar argument as in the proof of [2, Theorem 2.5], we obtain
(2.6).

(ii) By combining the fact that M (z,2) = 0 for every x € Q¢ and 2 € 9Q and Proposi-
tion 2.4 (i) we deduce that for every z € RN, M$®(z,-) € C(09). Tt follows that M [u,] —
M [p] everywhere in Q. Due to (i) and the Holder inequality, we deduce that, for any
1<p< %—tz, {M (]} is uniformly integrable with respect to p’dz. By invoking Vitali’s
theorem, we obtain the convergence in LP(€2, p7). O

2.3. Boundary trace. We recall that, for 5 > 0,
Qg :={xeQ:p(x) <P}, Dg:={zcQ:p(x)> B}, Lg:={xecQ:plx)=7p}
The following geometric property of C? domains can be found in [17]
Proposition 2.6. There exists 9 > 0 such that
(1) For every point x € Qg,, there exists a unique point o, € 0Q such that |x — o,| = 0(z).
This implies x = 0, — 6(x)n,, . B B
(i) The mappings x — 6(x) and x + o, belong to C?(Qg,) and C*(Qp,) respectively.

Furthermore, lim,_, ;) Vé(z) = —n,, .

Proposition 2.7. Assume s € (0,1). Then there exist positive constants ¢; = c1(N,Q,s)
such that, for every B € (0, By),

gt <pe Mz, y)dS(z) <1 Yy € ON. (2.7)
g
Proof. For ry > 0 fixed, by (2.5),
Mg (z,y)dS (z) < (2:8)
Eﬁ\Bro(y)

which implies

lim Mz, y)dS(x) =0 Vy e dQ. (2.9)
F=0J55\Byy (v)
Note that for r( fixed, the rate of convergence is independent of y.

In order to prove (2.7) we may assume that the coordinates are placed so that y = 0 and
the tangent hyperplane to 92 at 0 is zx = 0 with the x axis pointing into the domain. For
r € RN put o’ = (21, ,xy_1). Pick ro € (0, Bp) sufficiently small (depending only on the
C? characteristic of Q) so that

1
i(lﬂﬂ'l2 +p(2)?) < [2]* Yz € QN By, (0).

Hence if z € $5 N B, (0) then 1(|2/| + 8) < |z|. Combining this inequality and (2.5) leads to

/ M, 0)dS(x) < 2 [ ('] +5) Nas(x)
25N Br (0) E5,0

< p° / (2’| + B)Nda’
|:C/|<7"()

< coff / K (t+ B)~2dt
0

=387
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Therefore, for 8 < rq,
gi-s / M&(z,0)dS(z) < ca. (2.10)
EBQBTO(O)

By combining estimates (2.8) and (2.10), we obtain the second estimate in (2.7). The first
estimate in (2.7) follows from (2.5). O
As a consequence, we get the following estimates.

Corollary 2.8. Assume p € (0,1). For every p € MT(9Q) and 8 € (0, By), there holds

e ellanga) < B . M [uldS < e |l llgneaon (2.11)
B

with ¢1 is as in (2.7).

Proposition 2.9. Assume s € (3,1). Then there exists a constant ¢ = c(s, N,€2) such that
for any T € M(£2, p°) and any 0 < 5 < Py,

BL=s G[r]dsS < c/ p°d|T|. (2.12)
S Q
Moreover,
lim 817% [ G¥[r]dS =0 (2.13)
£5—0 s

Proof. Without loss of generality, we may assume that 7 > 0. Denote v := Gf} [7]. We first
prove (2.12). By Fubini’s theorem and (2.5),

L r@as@ ses([ [ euas@ iy

+ 5 /Q /E@\Bg " |z — y|7VdS(x) p(y)SdT(y)>

= Il,,B + IQ,B'
Note that, if 2 € X5 and |z — y| < 5/2 then /2 < p(y) < 38/2. Therefore

B0 5 < oI / & — [V dS(x) /Q p(y)* dr(y)

Z[gﬂBﬂ(y)
2

8/2

S%ﬁ”s/ TZS_NTN‘QdT/p(y)SdT(y)
0 Q

< 07/ p(y)* dr(y).

Q
We have
I < 0755/ T‘NTN‘Qd?"/ p(y)® dr(y) :CSBS_I/ p(y)® dr(y).
B/2 Q Q

Combining the above estimates, we obtain (2.12).
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Next we demonstrate (2.13). Given € € (0, [|T[lgn(q p+)) and B1 € (0, 80) put 71 = ™Xp,
’ 1

and 7 = TXa,, - We can choose 81 = f31(€) such that
1

/ p(y)* dr(y) < e. (2.14)
le

Thus the choice of 81 depends on the rate at which fQB p°® dt tends to zero as § — 0.
Put v; = G[r;]. Then, for 0 < 3 < 51/2,

/ o1(2) dS(x) < e85 / py)*dmi (y),
P Q

which yields

lim Bl_s/ vi(x)dS(z) =0. (2.15)
£B—0 b
On the other hand, due to (2.12),
ﬁl_s/ V2 ds < 610/ ,OsdTg < cq1€ Vﬂ < ﬁo. (2.16)
Ss Q
From (2.15) and (2.16), we obtain (2.13). O

Define

5 Q
M (z,z) == lim M
2y—z p(y)*

By [1, page 5547], there is a positive constant ¢ = ¢(€2, s) such that
o)l — 2N < M (x, 2) < ep(x)®|e — 2|7, VoeQ,ze . (2.18)
This follows

it <eil [ plae 2 Nase)

(2.17)

< p(z)t=* - Mz, 2)dS(z) (2.19)

< 013/ px)|z — 2| ™NdS(z) < c12 Vr € Q.
o0N

Following [1], we define, for any z € 09,

Qrul(z) := lim = (z) ’
E [ul(2) := lim oo ME(z,y)dS ()

Lemma 2.10. Assume s € (%, 1). Let u,w € Dy be two nonnegative functions satisfying
(—A)u< 0 < (—A)’w in
e (2.20)
u= 0 in Q°,
Ifu<w in RN then (—A)%u € MT(Q, p°) and there exists a measure p € MH(9Q) such that
lim 51—3/ lu — M []|dS = 0. (2.21)
B—0 P

Moreover, if u =0 then u = 0.
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Proof. By the assumption, there exists a nonnegative Radon measure 7 on ) such that
(—A)’u = —.

We first prove that 7 € 9T (Q, p*). For any 8 € (0, ), denote by 73 the restriction of
7 to Dg and by vg the restriction of u on ¥g. From [1, Theorem 1.4], there exists a unique
solution vg of

(=A)’vg = —13 in Dg
ESDB [vg] =0 on X
vg = u|D/c3 in Dj.

Moreover, the solution can be written as
D D .
vg + Gg 715 = Ps 5[u|D§] in Dg. (2.22)

By the maximum principle [1, Lemma 3.9], v = u and pL? [u|D%] < w a.e. in RY. This,

together with (2.22), implies that Go? [75] < w in Dg. Letting 3 — 0 yields G[r] < co. For
fixed 29 € Q, by (2.1), G(z0,y) > cp(y)® for every y € Q. Hence the finiteness of G[7]
implies that 7 € 9T (2, p%).

We next show that there exists a measure pu € M1 (9Q) such that (2.21) holds. Put
v = u+G$[7] then v is a nonnegative singular s-harmonic in  due to the fact that G}[r] = 0
in Q°¢. By Proposition 2.2 and Proposition 2.4 (iii), there exists a finite measure p on 92 such
that v = M%[u] in RYN. By Proposition 2.9, we obtain (2.21). If g = 0 then v = 0 and thus
u=0. g

Definition 2.11. A function u possesses a s-boundary trace on 0S) if there exists a measure

p € MH(9N) such that

lim 81~ / lu — M2[]|dS = 0. (2.23)
£—0 s

The s-boundary trace of u is denoted noted by tr s(u).

Remark. (i) The notation of s-boundary trace is well defined. Indeed, suppose that pu
and g satisfy (2.23). Put v = (M%[u — i'])+. Clearly v < MP[|u| + |1/]], v = 0 in Q°
and limg_,q 81 7% fE,@ |v|dS = 0. By Kato’s inequality [8, Theorem 1.2], (—A)*v < 0 in Q.
Therefore, we deduce v = 0 from (2.20). This implies My — /] < 0. By permuting the role
of i and g/, we obtain M$ [y — /] > 0. Thus pu = p'.

(i) It is clear that for every u € M(ON), tr (M [u]) = p. 1fs > 1, by Proposition 2.9,
for every T € M(Q, p*), tr s(GP[7]) = 0.

2.4. Weak solutions of linear problems.

Definition 2.12. Let 7 € M(Q) and p € M(ON). A function u is called a weak solution of
(1.4) if u € L' () and

/u(—A)Sgdx:/§dT+/M§[M](—A)S§dz, VE € X, (Q). (2.24)
Q Q Q

Proof Proposition A. The uniqueness follows from [11, Proposition 2.4]. Let u be as in
(1.5). By [11],

/ (1 — M) (~A)€ di = / GOr] (—A)€ dir = / cdr Ve € X,(Q).
Q Q Q
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This implies (2.24) and therefore u is the unique solution of (1.4). Since s € (3,1). By

Proposition 2.9, trs(u) = trs(M%[u]) = p. Finally, estimate (1.6) follows from Lemma 2.3
and Lemma 2.5. u

3. NONLINEAR PROBLEMS

In this section, we consider the nonlinear problem (1.2). The definition of weak solutions
of (1.2) is given in Definition 1.2.

3.1. Subcritical absorption. Proof of Theorem B.

MonNoTONICITY. Let 7,7 € LY(2), p, ' € L*(0S2) and u and v/ be the solutions of (1.2)
with data (7, u) and (77, i) respectively. We will show that if 7 < 7" and p < g/ then u </
in Q. Indeed, put v := (u — )4, it is sufficient to prove that v = 0. Since (1.10) holds, it
follows

ul <GP[I7] + |f ()] +M[pl] in Q.
Similarly
/| <GP+ [f ()] +MI[|w']] in Q.
Therefore
0 <v < Jul + || < GLl7| + |7 + [f(w)] + | £ ()] + M|l + |1]] = w.

By Kato inequality, the assumption 7 < 7/ and the monotonicity of f, we obtain

(—A)*v < sign 4 (u— ') (T — 7') = sign , (u —u')(f(u) — f(u)) < 0.
Therefore
(A <0< (-A)°w in Q.
Since pu < g/, it follows that tr s(v) = 0. By Lemma 2.10, v = 0 and thus u < u'.

EXISTENCE.

Step 1: Assume that T € L*>(Q) and p € L*>(09).

Put f(t) := f(t+M3u]) — F(MD[u]) and 7 := 7 — f(M[u]). Then f is nondecreasing and
tf(t) > 0 for every t € R and 7 € L*(Q, p*). Consider the problem

(Afv+iw=7 o -
v=20 in Q°.

By [10, Proposition 3.1] there exists a unique weak solution v of (3.1). It means that v €
LY(®), f(v) € L}(Q,p*) and

/ (W(=A)E + F(0)€) da = / crdr, VE € X,(Q). (3.2)
Q Q

Put u := v + M$®[y] then u € L' (Q) and f(u) € L' (2, p*). By (3.2) u satisfies (1.3).

Step 2: Assume that 0 < 7 € LY(Q, p®) and 0 < p € L' (09).

Let {7,} € C*(Q) be a nondecreasing sequence convering to 7 in L*($, p*) and {u,} C
C'(99) be a nondecreasing sequence convering to x4 in L'(99). Then {M}[u,]} is increasing
and by Lemma 2.5 (ii) it converges to M [u] a.e. in Q and in LP(Q, p*) for every 1 < p < p}.
Let u, be the unique solution of (1.2) with 7 and u replaced by 7, and pu, respectively.
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By step 1 and the monotonicity of f, we derive that {u,} and {f(u,)} are nondecreasing.
Moreover

/ (un(— A€+ F(un)€) da = / Edr + / MO)(~AYede  VEEX(Q).  (3.3)
Q Q Q

Let n € C(Q) be the solution of

—A)’n=1 in Q
(=A)"n n 2 (3.4)
n=20 in Q
then ¢ 1p® < 1 < ¢p® in Q for some ¢ > 1. By choosing ¢ = 7 in (3.3), we get
lunllLrq) + I1f (un)ll 1) < elllmll i pey + linll L oa)) (3.5)

< A(ITllprapey + 1l L o))

Then {u,} and {f(u,)} are uniformly bounded in L'(Q2) and L'(2, p*) respectively. By the
monotone convergence theorem, there exists u € L'(Q) such that u, — w in L'(Q) and
flun) — f(u) in LY(Q, p%). By letting n — oo in (3.3), we deduce that u satisfies (1.3),
namely u is a weak solution of (1.2).

The uniqueness follows from the monotonicity.

Step 3: Assume that T € L*(Q, p°) and p € L*(09).

Let {7,} € C*(Q) be a sequence such that {7,/ } and {7, } are nondecreasing and 7.5 — 7
in L1(, p%). Let {u,} € C*(09) be a sequence such that {x}F} and {u, } are nondecreasing
and p — pF in L'(0Q). Let u, be the unique solutions of (1.2) with data (7, u,). Put
Vp i= Uy — M [uy,]. For any m,n € N, we have

{ (=22 (U — vn) + f(m) = Fun) = T — T in O

+

Uy — U, = 0 in Q°.

By [10, Proposition 2.4], for any ¢ € X,(Q),

/|vm Un|(— )3£d$+/g§sign(vm—vn)(f(um)—f(un))dxS/Qfsign(vm—vn)(Tm—Tn)dx.

By choosing £ = 1 and Lemma 2.5 (i), we obtain

/ v — vnldx + / o 1| vm — vn|dz < / N|Tm — T|dx +/ 77|M?[Mm — pin]|dz
Q Q Q Q

< c(||rm — 7'nHLl(Q,,oS) + [l — NHHLl(aﬂ))
where
P (T) 1= U () — un(2)
0 if up () = up(z).

This imples that {v,} is a Cauchy sequence in L'(Q) and hence converges in L'(2) and (up
to a subsequence) a.e. to a function v. Therefore {u,} and {f(u,)} converge a.e. to u and
f(u) respectively with u = v + M$[u].

Let w1, and ws, be the unique solutions of (1.2) with data (7,7, ) and (=7, , —u;,)
respectively. By (i), for any n € N, wy , <0 < wy,, and

_G?[Tn] Mﬂ[ﬂn] <w2n§un<w1n<@ [ ]+MQ[MH] (36)
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By step 2, the sequences {w1}, {f(win)}, {—w2,} and {—f(w2,)} are increasing and con-
verge to wy in LY(Q), f(w1) in LY(Q, p*), —ws in L1() and — f(w2) in LY(Q, p*) respectively.
Since |up| < wipn — won, |f(un)| < f(win) — f(wz,), due to generalized dominated conver-
gence theorem, {u,} and {f(u,)} converge to u and f(u) in L(Q) and L' (1, p®) respectively.
By passing to the limit in (3.3), we derive that u satisfies (1.3).

The unigness follows from the monotonicity. O
Define
C@.p) = {C€C@): p*C € C@)}.
This space is endowed with the norm
IKle@ps = P ¢l -
We say that a sequence {7,} C M(Q, p°) converges weakly to a measure 7 € M(L2, p°) if

lim [ (dr, = / Cdr V¢ e C(Q,p®).
Q Q

n—oo
Proof of Theorem C.
MonoToNICITY. The monotonicity can be proved by using the same argument as in the
proof of Theorem B.
EXISTENCE. Let {7,,} C C*(Q) and {1, } € C1(9Q) such that 77 — 7F weakly and p;> — p*
weakly. Then there is a positive constant ¢ independent of n such that
ITnllon,p) < lTllonpsy  and llimllonan) < ¢ llillamean) -
Let up, w1, and wa,, as in the proof of Theorem B. Then
|un| < max(win, —wapn) < G?H%H + M?“Mﬂ“ (3.7)
This, together with (2.3), (2.6) and (3.8), implies that
HUnHMp;(Q’ps) < C(HTanm(Q,ps) + ||.“n||£m(89)) < Cl(||7'||zm(ﬂ,ps) + ”M||m(ag))~ (3.8)
We have
[ wral-ay¢+ s do = [ cart + [ M)~y da,
[ wan=87€+ fwne do = = [ cary - | M2hl(-A)€ds, Ve € Xu(@),

and subtracting the first estimate by the second one in (3.4), we obtain

/Q (w10 — wan) + (Flwr) — Flwan)] de = /Q ndlral + /Q M|l dr.  (3.10)

By taking into account that |u,| < wy, — wan, |f(un)| < f(win) — f(we,) and ¢~ 1p® <y <
cp® for some positive constant ¢, we infer

lunll Loy + 1 ()l roypey < ellimalliga,pe) + i llonean))
< ([ITlanps) + 1Ellancon))-
This implies that {u,} and {f(u,)} are uniformly bounded in L*(Q2) and L*(£, p*) respec-

tively.

Since {7, — f(un)} is uniformly bounded in L'(£, p*) and the mapping ¢ — G3[¢] is

compact from L(€, p*) into LP(Q) for any p € [1, NL_S) (see [11, Proposition 2.6]), we derive

(3.11)
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that there is a subsequence, still denoted by {u,}, and a function u such that v, — u in
LP(Q2) and a.e. in Q. It follows from the continuity of f that f(u,) — f(u) a.e. in Q.

By Holder inequality, we infer that {u,} is uniformly integrable in L!().

We next prove that {f o u,} is uniformly integrable in L'(Q, p*). Define f(s) := f(|s|) —
f(=|sl), s € R. Then f is nondecreasing in R and |f(s)| < f(s) for every s € R. For £ > 0
and n € N, set

Ap(0) :={x € Q: |up(z)] > L}, an(l):= /A o p®dx.

We take an arbitrary Borel set D C €) and estimate

/ | o) e = / ) + / [ )
D DNAR(0) D\An(£)

! ] (3.12)
</  Jwdn e+ fo | s

On one hand, we have

/ Fun)p®de = an(0) f(0) + /OO an(s)df(s)ds.
An (L) ¢

From (3.8), we infer a,(s) < és7P2 where ¢ is a positive constant independent of n. Hence,
for any [ > /£,

¢ l (3.13)
* C * ~
<erPf(l) + — /31p2fsds.

(1) 1), (s)

By assumption (1.9), there exists a sequence {l;} such that I — oo and l;pgf(lk) — 0 as
k — oo. Taking | = I in (3.13) and then letting k¥ — oo, we obtain
OO0+ [ anlo)iieas < [T fs)as (3.14)
¢ ppt+1Je

From assumption (1.9), we see that the right hand-side of (3.14) tends to 0 as ¢ — oc.
Therefore, for any € > 0, one can choose ¢ > 0 such that the right hand-side of (3.14) is
smaller than €/2. Fix such ¢, one then can choose § > 0 small such that if [, p°dz < 0 then

£ [p pPdx < €/2. Therefore, from (3.12), we derive

/psdx<(5$/ | f(un)|p’dx < e.
D D

This means {f o u,} is uniformly integrable in L'(Q, p*).
By Vitali convergence theorem, we deduce that up to a subsequence, still denoted by {uy},
such that u, — u in L'(Q) and fou, — fowu in L'(Q, p*). We have

/(un(—A)S§+f(un)§) dﬂC—/€dTn+/M?[un}(—A)5§dx, V¢ € X(Q). (3.15)
Q Q Q

By letting n — oo we obtain (1.3), i.e. u is a solution of (1.2). O
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Proposition 3.1. Assume f is a continuous nondecreasing function on R satisfying f(0) = 0
and (1.9). Then for every z € 092,

= 0. (3.16)

lim
Q5z—z MSQ(I', Z)

Proof. By (2.1),
GL(z,y) < crap(@)®|lz — y| N min{p(y)*, [z — y*}, Va £y

Hence

< eisle— 2N /Q 2 -y~ min{lz — oI, ly — 2°}F(y — 2"V )d.

(3.17)
Put

D1 :=QNB(x,|x —z]/2), Dy :=QNB(z,|x—z[/2), D3:=Q\(D;UDy), (3.18)

L=z — 2N /D o =yl ™V min{lz — yl ly = 2"} (ly — 21" M)dy, i=1,2,3.
For every y € Dy, |z — 2| < 2|y — z|, therefore

I < ciglz — 2|V f(lz — 2[*7) / o =y Ndy < crre — 2N f (|l - 2.

D1
Hence
lim I; < ep7 lim |z — 2|V f(jz — 2)57Y) = 0. (3.19)
T—rz r—z
We next estimate . For every y € Dy, |x — z| < 2|z — y|, hence
oo
B<es [ ly=sfly =Ny < [ @,
Do |lz—z|s—N
Therefore, by (1.9),
oo
lim Iy < c19 lim t71 P2 f(s)ds = 0 (3.20)
Tr—z

T—z ‘x_z‘sfj\]

Finally, we estimate I3. For every y € Ds, |y — z| < 3|z — y|, therefore

I3 < cyola — Z|N/

D3

\xfz|S_N N
ly — 2"V f(ly — 2°N)dy < car|z — zyN/O £ = f(t)dt. (3.21)

Put

a(r) = /0 5 f()dt,  go(r) =N,

If lim,—0g1(r) < oo then by (3.21), lim,—,, I3 = 0. Otherwise, lim,,0g1(r) = oo =
lim, 0 g2(r). Therefore, by L’ hopital’s rule,

/
N —
tim D) gy 1) N 28 Ny g (3.22)
r—0 go (T) r—0 g9 (7“) r—0 N
By combining (3.21) and (3.22) we obtain
‘st

|lx—=z
lim I3 < ¢go lim |z — z|N/ t~ N f(t)dt = 0. (3.23)

T—z

We deduce (3.17) by gathering (3.19), (3.20) and (3.23). O
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Proof of Theorem D. From Theorem C we get
kM (2, 2) = GLF (M (- 2)))(2) < uil . (2) < kM (x, 2), (3.24)
which implies
GLL M 2D(@) - vex()
_ < <k.
MQ(z, z) T M (x,2) T
We derive (1.13) due to Proposition 3.1. O

k

3.2. Power absorption.

Lemma 3.2. Let p € (0,p3). There exists a constant ¢ = ¢(N,s,p, ) > 0 such that for any
x € Q and z € 0N, there holds

S|y o |S—(N—=5s)p . S *
cp(z)’la — 2] i s <P<r:
GIME(, 2))(@) < § —cpla)*Infa 2| =5 (3.25)
cp(x)® if 0<p<

N —
Proof. We use a similar argument as in the proof of Proposition 3.1. It is easy to see that for
every x € Q and z € 09,

GLIME (-, 2)P)(x) < cosp(z)® /Q o=y Ny — 2| VP min{|z — y|*, |y — 2"}y (3.26)
Let D;, i =1,2,3 be as in (3.18) and put
i pla)® [ o=y ly AP minglo = gy - =1 Y

By proceeding as in the proof of Proposition 3.1 we deduce easily that there is positive
constants caq = c24(N, s,p, ) such that

Ji < cup(x)|lz — 2|~V =12, (3.27)
and
cosp(x)®|x — 2|~ NP if N <P< D5
diam(§2) ) S
J3 < C24P($)s/ re NP gy < & —cosp(a)® In o — 2] if p=+
lz—2|/2 - s
cosp(x)® it 0<p< N
(3.28)
Combining (3.27) and (3.28) implies (3.25). O

Next we assume that 0 € 02. Let 0 < p < p5 and denote by u% the unique solution of
(1.14). By Theorem C, u’ < kM$(-,0) and k +— u{’ is increasing.
For any ¢ > 0, put
Tylul(y) := K%u(ﬁy), Yy € Q=710
If w is a solution of (1.17) in 2 then Ty[u] is a solution of (1.17) with ©Q replaced by €.
By Corollary A.9, the function

v Ux) = by plz| 77, o 40, (3.29)
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where £, is a positive constant, is a radial singular solution of
(=AY u+uP =0 inRY\{0}. (3.30)

Lemma 3.3. Assume p € (p},p5). Then there ezists a positive constant C depending on N,
s, p and the C? characteristic of Q0 such that the following holds. If u is a positive solution
of (1.17) wvanishing on 0Q\ {0} and u < U in Q then there holds

_ (pt1)s
u(z) < Cp(x)’|z|” »~1 Vel (3.31)
Proof. Let P € (022 \ {0}) N B1(0) and put
1 1
d=d(P):= §]P] <3

Let 5y be the positive constant in Proposition 2.6. Put
ug(y) = Tylul(y) y € Qq:=d Q.
Then ug is a solution of

{ (=A)Yu+u? =0 in Q4 (3.32)

u =0 in (Qd)c.
and ug vanishes on 094 \ {0}. Moreover

_2s __2s_

ua(y) < TalUl(y) = d»=1U(dy) = Lsply| =7 = U(y).
Put P; = d~'P and let By be the constant in Proposition 2.6. We may assume [y < i. Let
Cp € C®(RY) such that 0 < ¢ < 1in RY, ¢ = 0in Bg,(Py) and ¢ = 1 in RY \ Bag, (Py). Let
ng € C(Qq) be the solution of (3.4) with Q replaced by Q4. For [ > 0, denote
Vd,l =CpU +1n,.
We will compare ug with Vg;.
Step 1: We show that Vg is a super solution of (3.32) for [ large enough.
For y € Qg4 \ Bag,(Pa), Cp(y) =1 and hence

Ul) ~ (UG

(=8)*(CpU)(y) = lim

e—0 RN\ B, () |y — Z|N+2S
. U(z) = ¢p(2)U(2)
= (=A)*U(y) + lim dz
AT fangy Iy A
U(z)

> (81U - [

v 5. ak
B ) |y_z|N+23

%(Pd
> (—A)°U(y) — ez
where c4q = caa(N, s,p, Bo). Since (4 N Bag,(0)) C (Qq \ Bag,(FPa)), it follows that, for any
y € Qg N Bag, (0) \ {0},
(=A)Vau(y) + (Vau ()" = (=A)*(CPU)(y) + U(=A)*na(y) + (Cp(y)U(y) + Ina(y))?
> (=A)°U(y) —cos + 1+ U(y)?.
Therefore if we choose [ > c9g then

(—A)SVd,l -+ (le)p >0 inQynN Bgﬁo (0) \ {O} (333)
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Next we see that there exists co7 > 0 such that
[(=A)*(CPU)| < cor in Qq \ Bag,(0).

Consequently,
(=A)Vay = (=A)*(CpU) + U(=A)"n4
> —co7 + 1.
Therefore if we choose | > c97 then
(=A)*Vg; >0 in Qg )\ Bag,(0). (3.34)
By combining (3.33) and (3.34), for I > max{cas, cor}, we deduce that Vg, is a super solution
of (3.32).

Step 2: We show that uqg < Vy; in 4. By contradiction, we assume that there exists x¢ € (g
such that

(ud — Vd,z)(ll?o) = max(ud — Vd,l) > 0.
€Qy
Then (—A)*(uq — Va;)(xo) > 0. It follows that
0< (—A)S(ud — Vd,l)(l'o) < —(ud(iﬁo)p — VdJ(iUo)p) < 0.
This contradiction implies that ug < Vy; in €.
Step 3: End of proof. From step 2, we deduce that
ug <lIng in Qg N Bﬂo (Pd)

We note that n4(y) < edist (y, 94)*® for every y € Q4. Here the constant ¢ depends on N, s
and the C? characteristic of 4. Since d < 1, a C? characteristic of Q4 can be taken as a C?
characteristic of 2. Therefore the constant ¢ can be taken independently of P. Consequently,

uq(y) < ledist (y,00q)° Yy € QqN B, (Py).
This implies
u(z) < c’p(m)sd_(p;%l)s Vo € QN Byg, (P). (3.35)
Put
F1:=Qg,N Bﬁ(()) N{z:p(x) < Bolz|}, Fo:=8Qz, N Bﬁ(()) NA{x : p(x) > Bolz|}.

If x € F1 then let P € 99\ {0} such that p(x) = | — P|. It follows that
1
2
By combining (3.35) and (3.36), we get

(1= fo)le] < d = P < 2(1+ fo)lal < 1. (3.36)

, _(p+D)s _(p+D)s
u(z) < (1= PFo) =t p(x)’|lz] »-1.

If © € F, then (3.31) follows from the assumption v < U. Thus (3.31) holds for every
x € g, N B#(O). IfxeQ)\ B#(O) then by a similar argument as in Step 1 and Step 2
+Bo +Bo

without simlarity transformation, we deduce that there exist constants ¢ and B € (0, M)

depending on N, s, p and the C? characteristic of ) such that (3.31) holds in BB(P> N Q for
every P € 00\ B L (0). Finally, since u < U, estimate (3.31) holds in D ;. Thus (3.31)
1+8p 3

holds in €. 0
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Proposition 3.4. Assume p € (pi,p3). Then ul := limy o u% s a classical solution of
(1.17). Moreover, there exists ¢ = ¢(N, s,p,) >0 such that

(p+1)s (p+1)s

o)z vt <ufl(x) < ep(z)flz|” Pt VreQ. (3.37)

Proof. We first claim that for any k& > 0,
uf! <U in Q. (3.38)
Indeed, by (2.5),
u(z) < EM(xz,0) < cogkp(x)®|z| N < cosklz|*™N Vz e Q.

Since p < p3, it follows that
uy (2)
0320 U(z)

=0.

By proceeding as in Step 2 of the proof of Lemma 3.3, we deduce that ug < U in Q.
Consequently, u'l 1= limg oo u! is a solution of (1.17) vanishing on 9Q\ {0} and satisfying
uSl, < U in Q. In light of Lemma 3.3, we obtain the upper bound in (3.37).
Next we prove the lower bound in (3.37). For any k& > 0 and z € €2, we have

uid(x) > kM (2,0) — KGIMI(, 0))(x)
= Cag Vep(a)®|z| "N (1 - 629030]{31)71‘x|N+57(N*5)p)_

_ N+4s—(N-s)
One can choose r > 0 such that z € QN (B2,:(0) \ B-(0)). Put k = ar p=T p, where
a > 0 will be made precise later on, then

_ (p+D)s -~
u () > esrap(x)®lz|” P10 (1 — cagezoal ).

1
By choosing a = (2ca9c30) »-1, we deduce for any x € Q) there exists k£ > 0 depending on |z|
such that

_ (ptD)s
uy (z) 2 es2p(@)®|z| v 1
Since ufl > u$! in Q we obtain the first inequality in (3.37). O

Proposition 3.5. Assume 0 < p < pi. There exist ko = ko(N,s,p) and ¢ = ¢(N,s,p,)
such that the following holds. There exists a decreasing sequence of positive numbers {ry}
such that limg_,oo 7 = 0 and for any k > ko,

cp(x)®|z|~N if 0 < p<pi,
u (z) > , Yz eQ\ B, (0). (3.39)
cp(x)’|a| (= Infz)" ifp=pi,
Proof. For any £ > 0, we have
u(z) > (M3 (x,0) — PGEME(-,0)P)(z) Va € Q. (3.40)

Case 1: p € (7=, p1). Put k1 := (2029030)N+2§*Np and take k > ki. For £ > 0, put rp, = E*%,
then ¢ = r, . Take arbitrarily € Q\ B,, (0) then one can choose ¢ € (max(2~°k, k;), k) such
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that x € QN (B,,(0) \ B, (0)). From (3.40), (2.5) and (3.25), we get
2

ug (@) > g p(w)* ] N (1 — cagezol? VTN T)
> cgglp($)5\x|_Nr[S(1 - c29c;),orév+2stp)

> (2e29) " p(a)fe| Ny

> eaap(x)®|z| N0

Here the second estimate holds since p < p3 and the third estimate holds since N > Np — 2s

and £ > ky. Since k > £, we deduce that

usl (z) > ezp(x)®|z| V7%, Vo € Q\ B, (0). (3.41)

Case 2: p = . Put ky = (222004)) N5 and take k > ky. For £ > 0, put r; = £, then
¢ =r,®. Take arbitrarily € Q\ B, (0) then one can choose ¢ € (max(2°k, k), k) such that
z € QN (B, (0)\ B (0)). From (3.40), (2.5) and (3.25), we get

2

(@) 2 e ()]l N (1+ eagesot " fa| In )
— r
> ¢ pla) |~V * (1 eapesory 7 In(5)

> (2e20) ' p()* [ N

> exzp(a)®la] ™V

Here the third estimate holds since ¢ > ky and N — sp > 0. Therefore (3.41) holds.

Case 3: p € (0, ). Put k3 = (2c29c30) N and take k > ks. For £ > 0, put rp = E_%,
then £ = r,°. Take arbitrarily € Q\ B;, (0) then one can choose ¢ € (max(2~°k, k3), k) such
that x € QN (B,,(0) \ B%g (0)). From (3.40), (2.5) and (3.25), we get

ug () = ey Lp(a)la] N (1 — cageol? ] V)

> cyg p(2)* 2| N1 (1 — eagezory )

> (2¢29) ' pl(a)°fa| Ny
> eazp()®|z[ N0
Here the third estimate holds since £ > k3 and N + s — sp > 0. Therefore (3.41) holds.

Case 4: p = pj. Put ky = exp((2029030)N+5—€N—S)P) and take k > k4. For ¢ > 0, put
re= (¢ ln(ﬁ))_%, then ¢In(¢) = r,;* and ¢ < r,® when £ > 3. Take arbitrarily x € Q \ B, (0)
then one can choose ¢ € (max(2~°k, k4), k) such that x € QN (B,,(0) \ B% (0)). From (3.40),
(2.5) and (3.25), we get

ug (x) = co Lp(@)* |z N (1 = eagego PN (V7P)

N+s—(N—s)p

> g Lp(@)*|2] N (1 = eageso ()" )
_ s _ _ N+4s—(N=s)

= ey p()*[a| N (1 = cageso () =)

> (2c20) ()| N

> eyap(a) el N (~ Infa) .
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Here the last estimate follows from the following estimate

Ty |z ~*

- In(¢) g—r In|z|

Since ug(z) > ug(z), we derive
ujt (@) = eaap(a)” ||~V 75 (= Infa) "

By putting ko := max(k1, k2, k3, k1), we obtain (3.39). O

Proposition 3.6. Assume 0 < p < pj. Then limg_, u%(m) = oo for every x € €.

Proof. The proposition can be obtained by adapting the argument in the proof of [9, Theorem

1.2]. Let 79 > 0 and put
O ::/ us (z)dz.
By (0)

O > / o) |2 N = (— In |z)) " Ldz,
(BroN\Br, (0)

Then

which implies
lim 6 = oo. (3.42)

k—o00
Fix yo € Q\ By, (0) and set 6 := £ min{p(yo), [yo| — r0}. By [12, Lemma 2.4] there exists a
unique classical solution wy of the following problem
(=A)w +wy =0 in Bs(yo),
wg =0 in RY\ (Bs(yo) U Bro (0)), (3.43)
wi = u in By, (0).

By [12, Lemma 2.2],
uf! > wy  in Bs(yo). (3.44)
Next put @y := wk — XB,,(0)Uk then wy, = wy, in Bs(yp). Moreover, for x € Bs(yo)

wy, ()

wy,(2) — wi()
) ‘Z _ x|N+2s

|2 — | N+2s dz

(=A)’wg(z) = — lim dz + lim
€20/ Bs(yo)\Be () €20JB5(yo)\Be(z

— lim wi(z) — wi(x) & +/ usl(z) & (3.45)
0 Jp\B (z) |2 — x|NT2s By (0) |2 — x|NT2s
(=A) wi(z) + Aby,

Y

where A = (|yo| + ro) V725 It follows that, for = € Bs(yo),
(=A) g (x) + Wp(x) > (—A) w(x) + wh (z) + Ad, = Aby, (3.46)

Therefore wy, € C(Bs(yo)) is a supersolution of

(—=A)’w + wP = A in Bs(yo),
{ w=0  inRY\ Bs(yo). (3.47)
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Let n9 € C(Bs(yo)) be the unique solution of

(=A)*no =1 in Bs(yo),
N (3.48)
o =0 1in R™ \ Bs(yo).
We can choose k large enough so that the function
1
1Mo (A0y)
2maxgny 1o
is a subsolution of (3.47). By [12, Lemma 2.2] we obtain
1
. 1o (Ab)?
>———=" VxeB . 3.49
wy () > Smaxgr g 5(yo) (3.49)
Put
. 70
c:= min ————
T z€Bs(yo) 2maxpn 1o
then we derive from (3.49) that
1
wi(x) > c(Abg)P. (3.50)
By combining (3.42), (3.44) and (3.50), we deduce that
lim u(z) = o0 Vz € Bs(yo).
k—o00 2
This implies
lim u(z) = o0 Yz e Q.
k—o0
]

Theorem 3.7. Assume p € (1,p}) and either @ = RY = {x = (2/,2n) : zx > 0} or 00
is compact with 0 € 02. Then, for any k > 0, there exists a unique solution solution uﬂ of
problem (1.14) satisfying ust < kM (-,0) in Q and
Q
uy, (@)
—L = =k, 3.51

Moreover, the map k — u? 1§ 1ncreasing.

Proof. Step 1: FExistence. For R > 0 we set (0p = QN B and let u := ugR be the unique

solution of
(=AYu+uP =0 inQp

trs(u) = kdo (3.52)
u=0  onQ%.
Then
wlP(z) < kMSR(2,0) Vo€ Qg. (3.53)

Since R +— M2 (.,0) is increasing, it follows from (1.13) that R ugR is increasing too with
the limit «* and there holds

u*(x) < kM (z,0) VreQ. (3.54)
From (3.53), we deduce that

ugR(:r) < cklz|*™N Vo € Qg
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where ¢ depends only on N, s and the C? charateristic of . Hence by the regularity up to the
boundary [19], {u(k)R’} is uniformly bounded in C§ (Q\ B.) and in C757*(Q\ B,) for any € > 0.
Therefore, {u%R} converges locally uniformly, as R — oo, to u* € C(Q\ {0}) N C?T(Q).
Thus v* is a positive solution of (1.14). Moreover by combining (1.13), (3.53), the fact that

M2 4+ M and ugR 1 u, we deduce that tr 5(u*) = kdp and
o w(w)
lim ——l _ —
Q550 M (z,0)
Step 2: Uniqueness. Suppose u and v’ are two weak solutions of (1.17) satisfying max{u,u'} <
EME(-,0) in  and
1 ——t— =1 ———— =k 3.55
Q550 M$(x,0) Q550 M$(x,0) (3:55)
Take € > 0 and put ue := (1 + €)u’ + ¢, v := (u — ue)y. Then by (3.55) there exists a smooth
bounded domain G C (2 such that v = 0 in G° In light of Kato’s inequality, we derive
(-=A)*v < 0in G. Moreover, v < kM$(-,0) in G. By (2.20) we obtain v = 0 in G and
therefore u < (1 + €)u’ + € in Q. Letting € — 0 yields v < u/ in Q. By permuting the role of
u and ', we derive u = v’ in .
By a similar argument as in step 2, we can show that k +—> u% is increasing. O

Proof of Theorem F. (i) Case 1: p} < p < p5.
Since 9 € C?, there exist two open balls B and B’ such that B € Q C B’® and 9BNOB’ =
{0}. Since ME(z,0) < M?(z,0) < MP"(x,0) it follows from Theorem 3.7 that
ub <ufl <uf” (3.56)
where the first inequality holds in B and the second inequality holds in 2.
Let O be B, Q or B’“. Because of uniqueness, we have

Ty[uf] = u® ,, Ve >0, (3.57)

kep—1T N

with Oy = £710. By Theorem 3.7, the sequence {u$} is increasing and by (3.38), uf < U.
It follows that {u{} converges to a function uS which is a positive solution of (1.17) with Q2
replaced by O and vanishes on 00 \ {0}.

Step 1: O := ]Rf. Then O, = Rﬂ\_f. Letting k — oo in (3.57) yields to
RY RY
Tyluod | = tos Ve > 0. (3.58)
N
Therefore U]EJ is self-similar and thus it can be written in the separable form
RY RY _ 25
Uoa () = uod (r,0) =1 P Tw(o)

where r = |z|, 0 = é—| € SN=! and w satisfies (3.20). Since p¥ < p < p3, it follows from
Theorem E that w = w*, the unique positive solution of (3.20). This means

]RN _ _2s

Uso () =7~ P Tw*(0). (3.59)
This implies (3.37).

Step 2: O := B or B'°. In accordance with our previous notations, we set By = ¢~'B and
(B'®)y = 7B’ for any ¢ > 0 and we have,

Ty[uB] = uBt and T,[uB] = w5 (3.60)

o0 o0
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and
N /e Yot
wBl < uBt <yt <uB < F o<t <. (3.61)

RY re RY RY RY . .
When £ — 0, uZ + uss and ugf Je 1 s where uss and Us are positive solutions of (3.38)

in Rf such that
RY RY RY rc
ull <usd <usd <o <ulf 0<r<L (3.62)

. . . .. Y, . . RY _RY .
This combined with the monotonicity of ufg and uEE e implies that u~d and Usd vanish on

ORY \ {0} and are continuous in @\ {0}. Furthermore there also holds for ¢, ¢ > 0,

By rc /e By
TpoluB) = Tp[T[uB]) = v and Tpo[uB”) = Tp[TouB")) = uSEe)e (3.63)

Letting £ — 0 and using (3.60) and the above convergence, we obtain
RY RY RY RY
QOJ =Ty [QOJ] and Usd = Ty [EOO+] 7 >0. (3.64)
Again this implies that g]}fg and ﬂ]}iﬁ are separable solutions of (3.19) in RY vanishing on
8]1%5 \ {0}. Since p} < p < p3, by Theorem E,
N RN RN 2s

ust (z) = o (2) = uss (z) = 1 7-Tw*(0).

Step 3: End of the proof. From (3.56) and (3.60) there holds

ulr <] <o 0<e<. (3.65)
N
Since the left-hand side and the right-hand side of (3.65) converge to the same function u]i““,

we obtain

. 25 ~ 2 X
lim ¢r—Tul, (bx) = |z| P~ Tw*(—) (3.66)
£—0 ‘l’|

and this convergence holds in any compact subset of Q. Take |z| = 1, we derive (1.18).

Estimate (3.37) follows from Proposition 3.4.
(ii) Case 2: 0 < p < pj. Then by Proposition 3.6, limj_, ug(x) = oo for every x € Q.
]

APPENDIX A. APPENDIX - SEPARABLE SOLUTIONS

A.1. Separable s-harmonic functions. We denote by (r,0) € R, x SV~! the spherical
coordinates in RY, consider the follonwing parametric representation of the unit sphere

SN-1 = {o = (cosgo’,sing): 0" € SN=2, —I2<¢<1Z}, (A1)
hence xz = rsin ¢. We define the spherical fractional Laplace-Beltrami operator A by
Asw(o) = lim A, cw(o) (A.2)
e—0

with
- (w(o) —w(m)rV .
Aneolo) == N’S/ /]I§+><SN_1\BE(7) (1472 —27(o,n)) 2" 45 (A.3)

where @ = (1,0). If u: (r,0) — u(r,0) = rPw(c) is s-harmonic in RV \ {0}, it satisfies, at
least formally,

Aw —Lopw=0  on SV! (A.4)
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where L, g is the integral operator

i [ (P -p )
R A N e gk < L (A5)

whenever this integral is defined. We will see in the next two lemmas that the role of the
exponent 3y = N is fundamental for the definition of £, gw since we have

Lemma A.1. [f N > 2, s€ (0,1), B < N and (o,1) € RVN=1 x RN~ such that (o, n) # 1,
we define
(178 — 1)7N-1

B g(o,n) ::/ dr. (A.6)
0 (1472 —2r(0,n) 7"
Then

(i) Bspg(o,n) <0<= <N —2s,
(i1) Bspg(o,n) =0<= =N —2s,
(i1i) Bsg(o,m) >0 <= > N — 2s.

Proof. Since 8 < N, the integral in (A.7) is absolutely convergent. We write

1 ~B _ 1)7N-1 00 —B _ 1), N-1
Bs,ﬁ(ga 77) = / (T )T N dr +/ (T )T N dr
0 (1+72—27(0,m))2"" L (1+72—=27(o,m)2 "

=141

By the change of variable 7+ 771

1 -8 _ 1 N—1+cs
II = —/ (r )T ~—dr,
0 (1472 —27(0,m))2 "

where ¢ = 8+ 2s — N. Since

Boplon = |

0 (1472 —27'(0,77))%Jrs
the claim follows. O

1 (T—ﬁ - 1)(7_N—1 o TN—1+CS)

dr, (A7)

As a byproduct of (A.7) we have the following monotonicity formula
Lemma A.2. If N > 2 and s € (0,1), then for any (o,n) € SN=1 x SN~ the mapping
B +— Bg g(o,n) is continuous and increasing from (N — 2s,N) onto (0,00).
In the next result we analyze the behaviour of Bs g(o,n) when o —n — 0 on SN-1,
Lemma A.3. Assume N > 2, s € (0,1) and 8 < N with B # N — 2s, then
I- If N > 3, there exists ¢ = ¢(N, 3,s) > 0 such that
|Bsglom)| < clo—n’~"7 W(on) € ST x SN (A-8)
ILIfN =2,
(i) either s > % and (A.8) holds with N = 2,
(i) either s = 1 and
Bsglo,n)| < e(=Info—n[+1)  V(o,n) €S x5! (A.9)
(iii) or 0 < s < 1 and
|Bs g(0,m)| < ¢ V(o,n) € St x S* (A.10)
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Proof. First, notice that the quantity

/é (T—ﬁ . 1)(7_N—1 _ TN—1+cs)d
-
0 (1472 —2r(o,n)2"

is uniformly bounded with respect to (¢,7n). The only possible singularity in the expression
given in (A.7) occurs when (o,n) = 1 and 7 = 1. We write (o,n) =1— 3x? and t =1 — 7,
hence

(1 +72 - 27 (o, n))gﬁ = (t2 +(1- t)KQ)%H

~ N (14 (2)?)

S

+s

as t — 0. Moreover
(7 =DV = N = (1= ) 11— )N = (=)
=csft2+O(t%) as t—0.
Hence

/1 (=N Ve /% (=0 — D=V = (Ve
1 0

N
N R e (24 (1 — t)K2) 2+

1 2

2K X
~ CSK3—N—25/ —da.
0 (1+a2)zte

IfN:Qands<%,

<M

L 2
1-2s | 2% T
k /0 1+ 22)1+s dx

for some M > 0 independent of k. If N =2 and s = %

L 2
" 1
/2 T dr=m () (1+o0(1))
0 (1+$2)1+§ K
andiszSorN:Qands>%,

5 2 o0 2
0 (14+az2)27"s 0 (1+az2)=z*s

as k — 0. Since o, € SN there holds k? = 2(1— (o,7)) = |o — n|*. Thus the claim follows.
O

Proposition A.4. Assume N >2, s € (0,1) and f < N with f # N —2s. Then w +— L, gw

is a continuous linear operator from LI(SN=1) into L"(SN~Y) for any 1 < q,7 < oo such that
1 1 2(1-
1,1 2= (A.11)
r o q N -1

Furthermore, L 3 is positive (resp. negative) operator if § < N —2s (resp. N—2s < 3 < N).
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Proof. By Lemma A.3, for any n € SV, B, 5(.,n) € LSV forall 1 < a < N]J\Sl_S if
N>3or N=2and s> %; Bs3(.,n) € Ni<acoo L4(S") if N =2 and s = 3 and B, s(.,1n) is
uniformly bounded on S'if N =2 and 0 < s < % The continuity result follows from Young’s
inequality and the sign assertion from Lemma A.1. O

The above calculations justifies the name of fractional Laplace-Beltrami operator given to
A since we have the following relation.

Lemma A.5. Assume N > 2 and s € (0,1), then

Asw(o) = by sCPV vt W(ZS(U) + Bsw(o), (A.12)

where By is a bounded linear operator from LI(SN=1) into L™ (SN=1Y) for q, r satisfying (A.11)
and

bns = QCLN,S/OdeN. (A.13)
0 (z2+1)2ts
Proof. If (o,m) € SN1 x SN=1 we set (5,n) =1 — £x%. Then
0 AN-14- o (P14 7271 gr
/0 (1472 —27(0c, 77))%+S B /0 (1472 —27(0, 77))%-5-3

Then we put t =1 — 7, hence, when ¢t — 0, we have after some straightforward computation

s)tr? K2 2
(P14 721y (2— (N +2s — 2)t + O(t2)) (1 + S + 0 <(tzi%z) ))
(72— 2r(g) 3" (82 + r2) 5t
2426+ O(t?)

(2 + ,{2)%4—5 ’
This implies

/1 (P14 721 g
0 (

1+ 72 —27(0, n})%“

l =
= 2”1_N_28/de + 2H2_N_28/Km + O(Fa?’_N_S)/Kﬁdaj
0 (x2+ 1)%+8 0 (22 + 1)%+s 0 (a2 + 1)%+S

1
> d ® 2d
2N [T o)+ o [T T
0 (22+1)21 0 (z2+1)27

=
-

(A.14)

Since k = |o — 7|, the claim follows from Proposition A.4 and the kernel estimate in Lemma A.3.
U

Lemma A.6. Under the assumption of Lemma A.5 there holds

< 035/ widS  VYwe L2(SNTh, (A.15)
SN—l
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1
c35 = / / dS(n) ~ (% —1) ’TN_I _ N-ltes
0 SN—1 (1_|_7-2 _27-<eN’17>)5+S

Proof. There holds by Cauchy-Schwarz inequality

/ wﬁsﬁwdS‘
SN-1

/ (/ / n)||w(o)|dS(n )dS( s)) (+F 1) |7_N71 _ N-l+te
SN=LJSN=1(1 4+ 72 — 27(o, 7]>)

where

dr.

dr

/ / / W) dS(n)dS(a) x (177 =1) }TN_I — NIt gr
SN=LJSN=1(1 4 72 — 27 (0, 77>)
S/ (/ (/ dS( ) - ) (7_75 . 1) ‘TNfl _TNflJrcs dT) wz(n)dS(n)
sv-1 \Jo \JsV-1 (1472 —2r(0,n))2"*
Since, by invariance by rotation, we have
/ dS(o) B / dS(o)
SN=1(14 72 — 27(0, 77>)%+S SN=1(14+ 72— 27(e,, J>)%+S7

we derive (A.15). O

Proposition A.7. Let N > 2, s € (0,1) and N —2s < < N. Then there exist a unique
As,3 > 0 and a unique (up to an homothety) positive 11 € WS’Q(SiV_l), such that

A = AspLspn  in SY L (A.16)

Furthermore the mapping 8 — s g is continuous and decreasing from (N —2s, N') onto (0,00).
Finally As g =1 if and only if B = N — s and (o) = (sing)*.

Proof. We first notice that

2
/ wAwdS = / / / w(n)) TN ldS(n)drdS(o), (A7)
SN 1 SN 1 SN 1 1+T2—2’T<O' 77>)
for any w € C} (SN_l). By Lemma A.5 and (A.11) with r = ¢ = 2,

o . 7)) i) raso)
SNl SNl 1+7_ _27_<0_n>) Nis

2 2
< c36 HwHWSB(Sf’l) + c37 ||w”L2(SiV_1) )

where

2 (w(o) —w(n)’
wl|7 s, 1, = dS(n)dS(o).
Il Ve (sEh) /Sfl/sivl p— oV (masto)

Since, by Poincaré inequality [18], there holds

2 2
HWHWO&Q(S{:*I) > C38 HWHLQ(Si\/—l) .
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we obtain that the right-hand side of (A.17) is bounded from above by (%036 + 200332) HWHIZ/VS,Q(SN_l).
o 5y

Next we use the expansion estimates in Lemma A.5 to obtain that
FN-1 4 251 1
e 2 4 2\ 5 +s
(1472 —27(0,m))> (1 + k)2

where k = |0 — n| < 2. Hence
o N-ldr
/ -
0 (14+72—=27(c,n))2""

/

Therefore,
/ wAswdS > /
S 0

Vit=1—7¢€(0,e0), Y(o,m) € Sivfl X Sivfl,

MB

© — Hl—N—2s/ dt
£2 4+ Kx2)2 TS 0 (2+1)2Ts

|3

dt
( )2
LT
22+ 1) F W
Finally we obtain

L jwl?
Ca0 w Wos,z(sirfl)

/SN ) / /S ) —wlm): TN=1dS(n)drdS(o) (A.18)

¥ (1 + 72 —27'(0 n)) 2 PR

2
< C39 HWHWOSQ(S_’zY_l) .

We consider the bilinear form in W ’2(Siv -1

w.C) = - (w(o) —wn) o) n- +dS(o
Alw, () = /Sf—l/o /sf—l(1+72—27<a,n>)]¥ dS(n)drdS (o).

Then A is symmetric,

1 2
Aw,w) = /SN_lwAswdS > 5wl sy

and

1 1
C52
|Aw,¢)| < ( /S f_lwtswds> ( / f_gzuazs) < 7 Mwllypgen -1y I lygsn-1y -

By Riesz theorem, for any L € W~*2(SY ') there exists wy, € WS’Q(SiV_l) such that

Alwr, ) = L) Ve Wg(sY™h).
We denote wy, = A;'(L). It is clear that A ! is positive and since the the imbedding of
Wy 2(5 N1 into L2(SY 1) is compact by Rellich-Kondrachov theorem [18], A;! is a compact
operator. Hence the operator
w A o L pw

is a compact positive operator (here we use the fact that 5 > N — 2s which makes B;g
positive). By the Krein-Rutman theorem there exists > 0 and ¢; € WOS’2(S]+V*1)3 Y1 >0
such that

As_l © Es,ﬁwl = M%-
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The function 11 is the unique positive eigenfunction and p the only positive eigenvalue with
positive eigenfunctions. Furthermore y is the spectral radius of A;! o Bsg. If we set A\ g =
p L, we obtain (A.16). It is also classical that A g can be defined by

As,g := inf {fsi\]l wAwdS 1w e Wg’z(SiV_l),w > 0’/51\’

+

leS”deS = 1} . (A.19)

Using (A.7), Lemma A.2 and monotone convergence theorem, we derive that the mapping
B — / wLl gwdS
syt

is increasing and continuous. This implies that 3 +— A; 3 is decreasing and continuous. Since

/N lwﬁs,gwdS — oo when 1 N, the expression (A.19) implies that Ay g — 0 when 31 N.
sN-

Next, if w > 0 is an element of W§’2(Siv_1) such that /N 1w£5”3wd5’ = 1, we derive from
SN

Poincaré inequality [18] and (A.15),
2 2 €53
”w“Wg'Q(Sj_V’l) > €53 HWHLz(Sinl) > P

Since c51 — 0 when 8 | N — 2s, we infer that 5 lij{fn ) As,3 = 0o. Consequently the mapping
—N-2s

B — Asp is a decreasing homeomorphism from (N — 2s, N) onto (0,00) and there exists a
unique s € (N —2s, N) such that A, 3, = 1. By (??), the Martin kernel in RY taken at (z,0)
is a separable singular s-harmonic function. It is expressed by

N

M ((r,0),0) = enor* N (sin §)°.
This means that the function o — w(c) = (sin ¢)*, which vanishes on S~ 1 and belongs to
W§’2(Sivfl) N L“(Sivfl) satisfies
Asw — ES,N,sw =0.

The uniqueness of the positive eigenfunction implies that this function is ¢, and f = N — s.
O

A.2. The nonlinear problem.

A.2.1. Separable solutions in RN . If we look for separable positive solutions of

(—A)Yu+uP =0 in RV, (A.20)
under the form us(z) = r_%w(a) where z = (r,0) € Ry x SV~! then w satisfies
Asw — L lew—l—wp:O in SN-L, (A.21)
7p7

Proposition A.8. Assume N > 2 and s € (0,1).
(i) If p > p3 then there exists no positive solution of (A.21).
(i) If p7 < p < p5 then the unique positive solution of (A.21) is a constant function with
value )
Es,p = (635)E ) (A22)
where cs1 is the constant defined in Lemma A.6.
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Proof. From (A.21) we get
wAswdS — wL, 2s wdS + WwPtlds = 0.
SN-1 SN-—1 'p—1 SN—1

Assuming that w > 0, then if p > p3, we have ¢, < 0 which implies / wLl, 25 wdS < 0.

SN-1 'p—1
Then w = 0 since the two other integrals are nonnegative. Next, if we assume p} < p < p3 it
is clear that if w is a constant nonnegative solution of (A.16) we have from

1 N 1 N—l—i—cs
/ / T )dS(n)dT —w?  YoeSVL
sN=1 (1472 —27(0, 77))

Using invariance by rotation of the integral term on SV~ we derive the claim. Conversely,
assume w is any bounded nonconstant positive solution, then it belongs to C2(SN=1) by [19].
Let 09 € SN~! where w is maximal, then Asw(ao) > 0 thus

= 1 N—1 _ _N—1+cs
wP(a0) < L, 2o W (00) < w(og / / (r_ & ) TN )dS(T]dT = c51w(0p).
SN-1 (1472 —2(0g,m)2"*

Hence w(og) < ls,p. Similarly mln w > {sp, contradiction. O
SN

Corollary A.9. Assume N > 2, s € (0,1) and p] < p < p3. Then the only positive separable

solution u of (A.20) in RN \ {0} is

2s
x—=U(x) =Llep|x| »T. (A.23)
2s
A.2.2. Separable solutions in RY. If we consider separable solutions z — u(z) = r~ »Tw(o)
of problem (3.19) then w satisfies (3.20).
Proof of Theorem E.
Step 1: Non-existence. Assume that such a solution w > 0 exists, then

/ wA,wdS — wLl, 2s wdS +/ wPdS = 0.
SN—l SN—l ’ SN—l

p—1

Hence

(Agze — 1)/ wﬁszswdS’—i—/ WPdS < 0 (S1)
"p—1 SNfl yp—1 N-1

If )\ 2o > 1, equivalently p > p3, the only nonnegative solutlon is the trivial one.

Step 2. Ezistence. Consider the following functional with domain W” (Sf Hn Lp“(SiV -1,

1
wi— J(w) ::/ ) wAswdS—l—? - 1| wlPttds — / wL, zslwdS. (S52)

Because of Lemma A.6, J(w) — 00 when H"JHWS’Q(Sf*l) + Hw||Lp+1(Sz+v_1) — 00. Furthermore,

for € > 0, we have

j(€¢1) = 62 ()\s’pasl — 1) /Sf—l¢1£8’;?i¢lds . |¢1|p+1 dS

This implies that inf J(w) < 0 if A, 2 < 1, and thus the infimum of J in Wos’z(SiV_l) N
7p7

LﬂH(Sf ~1) is achieved by a nontrivial nonnegative solution of (3.20).
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Step 3: Uniqueness.
(i) Existence of a maximal solution. By [19] any solution w is smooth. Hence, at its maximum
00, it satisfies Asw(og) > 0, thus

w(o0)” < ﬁsyﬁw(%) < w(op)ess.

This implies that supw < ¢ ,. From the equation the set & C W ’2(5 iv _1) of positive solutions
of (3.20) is bounded in WS’Q(SiV_l) N L2(SY1) and thus in C*(SN=1) N C2(SY1) by [19).
We put @(o) = sup{w(c) : w € £}. There exists a countable dense set S := {0} € S¥ !
and a sequence of function {w,} C & such that

Jim_wp(0k) = (o).

Furthermore, this sequence {w,} can be constructed such that {w, (o)} is nondecreasing for
any k. Finally by local compactnes estimate, {w,,} converges to @ in C*~(SN=1)nC?(SV~1)
for any ¢ € (0,s) and weakly in W ’Z(Sf ~1). This implies that @ belongs to £. It follows
from [19, Th 1.2] that any w € & satisfies

w(o) < 5 (dist (0,08 )) = eaop® Vo e SN (A.24)

(ii) Existence of a minimal solution. This follows from the first part of the proof of Theorem
1.5 which asserts that u% 1 ufl and ufl, is self-similar and it is the minimal solution of (1.17)
in Rf which satisfies

lim —2n o, (A.25)
z—0 MS]R+ (x7 0)

Thus ue(r,o) = rip%slg(a) and w is the minimal positive solution of (3.20). Furthermore it
follows from (3.37) that

Q(U) > C55 (dist ((7, GSiV_l))S = C55¢S Vo € Siv_l, (A.26)

if = ¢(0) is the latitude of o.
(iii) End of the uniqueness proof. By combining (A.24) and (A.26) we infer that there exists
K > 1 such that

w< Kw in S_]:Ll. (A.27)

Assume W # w, then

1 _
w1 ::g—ﬁ(w—g)

is a positive supersolution (by convexity) of (3.20). Moreover

(1, 1
w2\ Tag ) ¥

is a positive subsolution of (3.20) smaller than w; hence also than w. It follows by classical
construction that there exists a solution @ of (3.20) which satisfies wy < & < wj, which
contradicts the minimality of w. O
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