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Abstract 
The vibration behavior of wind turbine substructures is mainly dominated by their first few 
vibration modes because wind turbines operate at low rotational speeds. In this study, 13 
degrees of freedom (DOF) model of a wind turbine is derived considering fundamental 
vibration modes of the tower and blades which are modelled as rigid beams with torsional 
springs attached at their root. Linear equations of motion (EOM) governing the structural 
behavior of wind turbines are derived by assuming small amplitude vibrations. This model is 
used to study the coupling between the structural and aerodynamic behavior of NREL 5 MW 
model wind turbine. Aeroelastic natural frequencies of the current model are compared with 
the results obtained from the finite element model of this wind turbine. Quasi-steady 
aerodynamic loads are calculated considering wind velocity changes due to height and tower 
shadow effects. In this study, vibration responses are simulated at various wind velocities. 
The derived 13 DOF simplified model of the wind turbine enables to simulate the influence of 
change in parameters and operating conditions on vibration behavior with less computational 
effort. Besides that, the results of the simplified models can be interpreted with much ease. 

 
Keywords 
Aeroelastic – Wind turbine – Rigid beam 

 
Department of Engineering Sciences and Mathematics, Luleå University of Technology, Luleå, Sweden 
*Corresponding author:  sudhakar.gantasala@ltu.se 

 
 
INTRODUCTION 

 
Wind turbine structures consist of both rotating and non-
rotating substructures manufactured in different materials. In 
order to perform a dynamic analysis of wind turbines, 
detailed structural model along with loads predicted from the 
aerodynamic analysis of the blades are needed. Dynamic 
changes in the wind and rotational effects force flexible 
blades to vibrate. Rotation and vibrations of the blades 
change the effective wind velocity generating aerodynamic 
loads. Thus the structural and aerodynamic analyses of the 
wind turbine are coupled to each other, dynamic behavior of 
the wind turbine structures can be accurately predicted 
considering this coupling. Finite element methods (FEM) can 
be used to model structural behavior and computational fluid 
dynamics (CFD) techniques are used for predicting 
aerodynamic loads. Coupled structural and aerodynamic 
analysis using detailed FEM and CFD models is 
computationally expensive for parametric studies in the 
design stage. To determine the influence of this coupling on 
the vibration behavior, simple models for structural and 
aerodynamic calculations are used in this study.   

In literature, rigid and flexible beam models are used to 
analyze the dynamics of the isolated rotating blades 
considering pitch, flap, and lead-lag vibrations. Chopra [1,2] 
considered rigid wind turbine blades with root hinges and 
analyzed its linear and nonlinear dynamic behavior with and 
without external loadings. Kim and Lee [3] considered a 
simple structural model for wind turbine with only 10 degrees 
of freedom (DOF). They analyzed the effect of asymmetry in 
the blade stiffnesses on the system stability over a range of 

rotational speeds. Ramakrishnan and Feeny [4] modeled wind 
turbine blade as a non-linear flexible beam and reduced its 
equation of motion to a nonlinear Mathieu equation to study 
super-harmonic resonances. Wind turbine blades are made of 
aerofoil cross sections which are twisted and tapered along 
the blade length. The vibration behavior in bending and torsion 
are therefore coupled. Kim and Lee [5] derived the equations 
of motion for coupled flapping, lead-lag and torsional 
vibrations of pre-twisted wind turbine blades. They calculated 
modal frequencies of the blade using the assumed 
modeshape method.  

Fundamental vibration modes of all the substructures 
contribute more to the dynamic response of the wind turbine 
than the other higher frequency vibration modes because wind 
turbines operate at low rotational speeds. In this study, 13 
DOF model of the wind turbine structure is derived considering 
fundamental vibration modes of all the substructures. Tower 
and blades are modeled as rigid beams with equivalent 
inertias and supported by springs at their roots. This 
configuration duplicates first bending vibration modes of the 
substructures through the deformation of the torsional spring 
(as shown in Fig. 1). Lagrange’s equations are used to derive 
the equations of motion (EOM) for a three blade horizontal 
axis wind turbine. MATLAB symbolic math toolbox is used to 
derive the EOM. Turbine components like the hub and nacelle 
are assumed to be rigid bodies. Tower and blades kinetic 
energies are calculated considering their distributed mass 
properties. Small amplitude vibrations are assumed for all the 
DOF and EOM are linearized by retaining only the first order 
terms. Structural modeling of the wind turbine stationary and 
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rotating substructures together will yield coupled nonlinear 
differential equations with periodic coefficients irrespective of 
the type of the reference coordinate frame. Periodic 
coefficients of the linear differential equations for symmetric 
blades can be eliminated by using multi-blade coordinate 
transformation [3,6] and eigenvalue analysis can be used to 
calculate natural frequencies of the structure. MBC 
transformation models collective blades motion in the 
stationary frame of reference. For symmetric blades, MBC 
transformation yields constant coefficients in the EOM if the 
gravity effect of the rotating blades is ignored. The influence 
of the gravity on natural frequencies can be ignored [5]. 
Blade element momentum (BEM) theory [7] is used for 
calculating quasi-steady aerodynamic loads acting on the 
blades. Wind shear is modeled using wind profile power law 
using mean wind velocity at nacelle height. Tower shadow is 
modeled using potential theory of flow around a cylinder for 
calculating wind velocity near the tower [7]. NREL 5 MW 
model wind turbine data [8,9] is considered as an example 
for this study. Aeroelastic natural frequencies of this 13 DOF 
rigid beam model in the operating wind velocity range of 3-25 
m/s are compared with the results predicted from the FEM 
model of this wind turbine [10]. Vibration responses of the 13 
DOF model are simulated at various wind velocities using the 
operating parameters like rotating speeds, pitch angles of the 
NREL 5 MW model wind turbine [8] and considering 
aerodynamic coupling with structural behavior. In this study, 
variations in the wind velocity due to wind shear and tower 
shadow are only considered. Thus the spectral vibration 
responses of the 13 DOF model consist of frequencies 1P, 
3P (P refers to the rotational frequency) and their harmonics.  

 
 

Figure 1. Wind turbine: (a) geometric model,  
(b) flexible beam model, (c) rigid beam model 

  
1. STRUCTURAL MODEL 
 
Geometric model of the wind turbine with the considered 
degrees of freedom of the substructures is shown in Fig. 
2(a). Reference coordinate system OXYZ is fixed at the base 
of the tower which is used to derive the EOM. The tower can 
oscillate about X and Y axes at the origin O with DOF’s α 
and β respectively, which are known as tower fore-aft and 
side-to-side vibrations. Hub and nacelle are considered as 
two rigid masses with their center of gravity (C.G.) locations 
C and B at distances lh and ln respectively from the yaw axis 
(point A). These two bodies are fixed on top of the tower and 
can rotate relative to the tower about the yaw axis with a 
DOFγ . The nacelle is a stationary part which encloses the 
generator and other systems. The generator has both 

stationary and rotating parts. The generator rotor is connected 
to the hub through a gearbox. In this model, inertias of the 
generator rotor and the hub are lumped to a single inertia and 
attached to an equivalent drive shaft. Torsional vibration of the 
equivalent drive shaft is denoted asψ . Blade vibrates with in-
plane (lead-lag), out-of-plane (flap) and torsional 
DOF iii ,, εϕθ (i refers to the blade number) respectively. 
These motions are defined about a local coordinate system 
xbiybizbi fixed at the root of the blade as shown in Fig. 2(a). 
Position vectors are defined initially and then energy 
equations for all the substructures are obtained to derive the 
EOM using Lagrange’s equations. Kinetic energy is denoted 
by KE and potential energy is denoted by PE.  
 

       
                   (a)                                                   (b) 

Figure 2. (a) Geometric model of the wind turbine structure 
with the considered DOF in the model, (b) Hub and nacelle 

local coordinate systems in which inertia of masses are defined 
 

1.1 Tower: 
As the tower cross section changes along the length, kinetic 
energy of a small element of length dy located at a distance y 
from the origin O along the axis Y is defined initially and it is 
integrated over the full length of the tower to calculate total 
kinetic energy of the tower. Position vector of a small element 
of length dy is defined below.  
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where TX(α) and TZ(β) are the transformation matrices about 
X and Z axis (given in Appendix).  

Kinetic, potential energies of the tower and generalized 
dissipative forces due to damping are given below.     
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where KEtower and PEtower are the kinetic and potential 
energies of the tower; L is the length of the tower; Qα and 
Qβ are the generalized forces; ρAtower is mass per unit length 
of the tower; 

( )Ytowerq is the Y coordinate of the position 

vector of the tower; g is acceleration due to gravity; Kα, Kβ 

and Cα, Cβ are stiffness, damping coefficients of the springs 
and dampers restricting tower vibrations α, β. 
 

1.2 Hub and Nacelle: 
A hub is a joint that connects turbine blades to the rotating 
shaft and transfers energy to the generator through the 
gearbox. In this model, hub rotating on the low speed shaft 
and generator rotating on the high speed shaft are modeled 
as a single inertia. This equivalent inertia mass rotates with 
an angular velocity of ω and undergoes torsional 
oscillations on an equivalent drive shaft whose torsional 
stiffness and damping coefficients are known. As this 
equivalent inertia mass is located on top of the tower, 
gyroscopic moments are generated in the system due to the 
change in orientation of its angular velocity vector due to the 
tower vibrations and yaw motion. Rotational kinetic energy 
of the equivalent inertia mass accounts for the gyroscopic 
moments which are calculated using inertia tensor defined 
about its C.G. and angular velocity vector defined in the 
local coordinate system R1:x1y1z1 as shown in Fig. 2(b). The 
order of rotations followed to get the position vector is 

( )ψωγβα +t,,,  respectively and the same rotation order is 
used to transform the velocity vectors γβα  ,,   into the 
R1:x1y1z1 coordinate system. Position, angular velocity 
vectors, energy expressions of the rigid hub and nacelle 
masses and generalized dissipative forces due to damping 
are given in Eq. (3) & (4). 
 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( )

ψγ

ψγ

α
βγψω

β
γψωγψω

ψω

γβα

ψψγγ

ψγ



















CQ,CQ

qgmKKPE

IP
ID

ID

dt
qd

mKE

TTtT

TtTtT

l
LTTTq

Yhhhub

hh

h
T

h
h

hhub

T
Z

T
Y

T
Z

T
Y

T
Z

T
Zh

h

YZXh

==

++=

Ω















Ω+=
















++
















++
















++

















+
=Ω
















=

22

1

2

1

2
1

2
1

00
00
00

2
1

2
1

0
0

0
0

0

0
0
0

0

  (3) 

( ) ( ) ( )

( ) ( ) ( )

( )Ynnnacelle

n

n

n

n
T

n
n

nnacelle

T
Z

T
Y

T
Yn

n

YZXn

qgmPE
IP

ID
ID

dt
qdmKE

TTT

l
LTTTq














=

Ω















Ω+=
















+
















+
















=Ω

















−
=

00
00
00

2
1

2
1

0
00

0

0

0

0

2

1

α
βγ

β
γγ

γβα

     (4) 

 

where hq , nq and hΩ


, nΩ


are the position, angular velocity 
vectors of the hub and nacelle masses mh, mn respectively; 
TY(γ) and TZ(ωt+ψ) are the transformation matrices about Y 
and Z axis (given in Appendix); KEhub, KEnacelle, PEhub, PEnacelle 
are the kinetic and potential energies of the hub and nacelle 
masses; IDh, IDn are transverse mass moment of inertias of 
the hub and nacelle masses about the local coordinate 
system defined at their mass centers (shown in Fig. 2(b)) 
parallel to OXYZ coordinate system; IP1 is the sum of hub 
and generator polar moment of inertias about the low speed 
shaft  

LSSGenh IP,IP ; IPn is the nacelle polar moment of inertia; 

L1 is the distance of hub rotational axis above the ground 
along the tower centerline; 

( ) ( )YY nh q,q  are the Y coordinates of 

the position vectors of the hub and nacelle C.G.; Kγ and Cγ 
are stiffness and damping coefficients of the springs and 
dampers of the yaw actuation system which control relative 
position of the rigid hub and nacelle mass assembly with 
respect to tower; Kψ and Cψ are stiffness and damping 
coefficients of the equivalent drive shaft. 
 

1.3 Blades: 
Blade in-plane (lead-lag) vibrations defined about zbi axis of 
the rotating coordinate system placed at the root of the blade 
are denoted by iθ , out-of-plane (flap) vibrations defined 

about ybi axis are denoted by iϕ  and torsional vibrations 

defined about xbi axis are denoted by iε  (refer Fig. 2(a)), 
where i = 1,2,3 denote the blade number. The kinetic energy 
of the blade is obtained by integrating the kinetic energy of a 
small element of length dr located at a radial distance of r 
from the blade root, over the full length of the blade (lb). 
Position vector of the small element dr is given below.   
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where ( ) ( ) ( )iXiYiZ T,T,T εϕθ  are the transformation matrices 
given in the Appendix; (r,cgy,cgz) are the coordinates of the 
C.G. of the blade section in local coordinate system xbiybizbi.  
Energy expressions for the ith blade are given below. 
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where iiiii bbbbb Q,Q,Q,PE,KE
εϕθ  are the kinetic, potential 

energies and generalized forces of the ith blade; ρAblade is 
the mass per unit length of the blade;  

( )Yibq is the Y 

coordinate of the position vector of the ith blade;  

iii
K,K,K εϕθ and iii

C,C,C εϕθ are stiffness, damping 
coefficients of the springs and dampers restricting ith blade 
in-plane, out-of-plane, torsional vibrations iii ,, εϕθ . 

Total kinetic and potential energies of the system are 
obtained by summing up individual contributions from all the 
substructures. 
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Equations of motion are derived from the total energy 
expressions of the system using Lagrange’s equations 
given in Eq. (8) for all the generalized coordinates. 
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where jq  generalized coordinates iii ,,,,,, εϕθψγβα   

                  (i =1,2,3) 
 

Equations of motion obtained from the Eq. (8) are 
coupled nonlinear differential equations in the generalized 
coordinates. In the current work, small amplitude vibrations 
are assumed and linear EOM are obtained after retaining 
first order terms. Linear EOM in the matrix form is given in 
Eq. (9) and whose matrices contain periodic terms.  

                               
{ } { } { } { })()()()()()()( tftqtKtqtCtqtM =++ ωωω       (9) 

 
where M(ωt), C(ωt), K(ωt) are the system matrices,  

{ } [ ] T,,,,,,,,,,,,(t)q 321321321 εεεϕϕϕθθθψγβα= and 

{f(t)} is the force vector 
 

Rotating blade’s DOF are transformed into multi blade 
coordinates [6] using the transformation matrix given in Eq. 
(10).  
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and I4 is a 4x4 identity matrix which retains first four non-
rotating DOF as it is in the final transformed coordinate 
vector. 321 ,, ξξξ are the instantaneous azimuthal positions of 
the blades with respect to a fixed reference. The blades are 
placed symmetrically around the circumference of the hub.  

The relationship between{ })(tq  and multi-blade 
coordinate’s vector { })(tqB  is given in Eq. (11). 
 

                     { } { })t(qT)t(q B=                            (11) 
 

where 
{ } [ ] T

scscscB ,,,,,,,,,,,,(t)q εεεϕϕϕθθθψγβα 000=   
 

Difference between { })(tq  and { })(tqB  is only in the 
blades in-plane, out-of-plane and torsional vibrations. 
Subscripts 0, c, s refer to collective, progressive and 
regressive modes of the blade assembly which can excite 
tower vibration modes. In collective mode, the vibrations of 
the blades are in phase with each other, whereas in the 
progressive and regressive modes, phase difference exists 
between blade vibrations as defined in the matrix TB(ωt). 
Detailed explanation of these coordinates and MBC 
transformations are given in [6]. The EOM obtained after 
MBC transformation in the matrix form are given in Eq. (12). 
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Gravity effect changes stiffness over the azimuthal 
rotation of the blade [5] which makes KB matrix still periodic in 
time even after MBC transformation. Neglecting gravity term 
makes the system matrices time invariant for symmetric 
blades, and therefore eigenvalue analysis can be used to 
calculate natural frequencies. However, for asymmetric 
blades, time invariant system matrices cannot be obtained 
using MBC transformation even after neglecting gravity 
terms.  

Data required to simulate the derived 13 DOF model are 
computed from the structural details of NREL 5 MW model 
wind turbine. The inertia properties of all the subsystems can 
be calculated from the data given in [8,9]. Fundamental 
vibration modes of all the subsystems obtained from the FEM 



analysis of this wind turbine structure are also reported in 
these references. Using the natural frequencies and inertia 
properties reported in [8,9], unknown equivalent spring 
stiffness coefficients for vibration DOF α, β, iii ,, εϕθ  are 
calculated.  

 
2. AERODYNAMIC MODEL 
 
Beam element momentum (BEM) theory [7] is used to 
calculate aerodynamic loads considering wind shear and 
tower shadow effects. Wind shear is modeled using wind 
profile power law using mean wind velocity at nacelle height 
and a parameter of 0.2 for the amount of shear. Tower 
shadow is modeled using potential theory of flow around a 
cylinder [7]. The tower diameter variation along its height is 
also taken into account in the calculation of the wind velocity 
near the tower. Prandtl’s tip loss factor and Glauert 
corrections are considered in the BEM theory used in this 
study. Aerodynamic loads are calculated at the aerodynamic 
center of the aerofoil sections of the blade. Velocity triangle 
without and with considering blade vibrations are shown in 
Fig. 3. 
 

     
 

    
Figure 3. Velocity triangle at the blade section (a) without and 

(b) with considering blade vibrations 
 

Expressions for the inflow angle, angle of attack 
without considering blade vibrations are given in Eq. (13) & 
(14). 
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where,
00 aoaif ,ΘΘ are the inflow angle and angle of attack, 

ignoring the blade vibrations; tp+Θ is the sum of blade pitch 

and section twist angles; Vw and ω are the wind velocity and 
rotational frequency of the blade; r is the radial distance of 

the blade section from the hub center; a and a’ are the axial 
and tangential induction factors.  
 Blade vibration velocities change the relative velocity of 
wind entering the blade section as shown in Fig. 3(b). As the 
structural model of the blade is built with respect to pitch axis, 
due to the offset between aerodynamic center and pitch axis, 
both the inflow angle and the angle of attack (AOA) depend 
on torsional vibrations. Expressions for the inflow angle, angle 
of attack considering blade vibrations are given in Eq. (15) & 
(16).  
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where, aoaif ,ΘΘ  are the inflow angle and angle of attack 

considering blade vibrations; iii ,, εϕθ  are the velocities of the 
ith blade in-plane, out-of-plane and torsional vibrations; iε is 
the ith blade torsional vibration; aAC is the distance between 
the aerodynamic center (A.C.) and pitch axis (P.A.) (shown in 
Fig. 3) of the blade section. 
 Change in the AOA due to blade vibrations can be 
approximated according to Eq. (17).  
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 Lift, drag and pitching moment coefficients at aoaΘ  can 
be expanded using Taylor series expansion about the 

0aoaΘ  
as given in Eq. (18).  
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where, CL, CD, CM are the lift, drag and moment coefficients of 
the aerofoil; CL’, CD’, CM’ are the slopes of the lift, drag and 
moment coefficient curves.   
 

 Aerodynamic loads considering these coefficients are 
expressed in Eq. (19)-(21) where, if written in matrix form the 
coefficients of the variables iiii ,,, εεϕθ  can be separated into 
matrices CAero and KAero which are known as aerodynamic 
damping and stiffness matrices. 
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The aerodynamic loads in Eq. (19)-(21) are introduced 
in the structural model given in Eq. (9) and the EOM 
considering structural and aerodynamic coupling is given in 
Eq. (22). Aeroelastic natural frequencies can be calculated 
by transforming { })(tq  in Eq. (22) to multi-blade 
coordinates{ })(tqB  and using the eigenvalue analysis of 
the system. 
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3. RESULTS AND DISCUSSION 
 

Data of the model wind turbine [8] are inserted into the 
system of Eq. (12) and eigenvalues are obtained at zero 
speed and by ignoring gravity terms. Natural frequencies of 
the present 13 DOF model are compared with the values 
predicted using FAST (aeroelastic simulation tool) [8] in 
Table 1. As FAST doesn’t model blade torsional vibrations 
its natural frequency in the current rigid beam model is 
compared with the frequency value predicted in [5] where 
blade is modeled using FEM. Natural frequencies calculated 
using these two models (FEM vs. 13 DOF model) at zero 
speed match well and thus this 13 DOF model can be 
considered as a good representation of dynamic behavior of 
the wind turbine structure in the low frequency vibration 
modes.  
 NREL 5 MW wind turbine operates over a wind velocity 
range of 3-25 m/s and its rotational speed increases from 
7.35 rpm at a wind velocity of 3 m/s to 12.1 rpm at a wind 
velocity of 11.4 m/s and operates at this rotational speed till 
25 m/s wind velocity by changing pitch angle of the blades 
[8]. Natural frequencies of the 13 DOF model considering 
only the rotational speed variation with wind velocities 
between 3-25 m/s are shown in Fig. 4. Natural frequencies 
of the blade DOF change till 11.4 m/s wind velocity due to 
increase in rotational speed and thereafter remains constant 
as there is no change in the rotational speed. Aerodynamic 
loads calculated for mean wind velocities in the range 
between 3-25 m/s at the nacelle are used to determine 
aeroelastic natural frequencies of this model which are 
plotted in Fig. 5. Differences in the natural frequencies in 
Fig. 4 & 5 are only due to the aerodynamic coupling 
considered in the latter case. 
 Aeroelastic natural frequencies calculated using the 
FEM model of this wind turbine are reported in Ref. [10] 
which are shown in Fig. 6. All vibration modes except tower 
bending modes change with an increase in wind velocity. 
Lag modes in Fig. 5 & 6 follow the same trend with 
increasing wind velocities. Flap modes decrease with an 
increase in wind velocity in Fig. 6, whereas in Fig. 5, only the 
collective and regressive flap modes are  decreasing  with  

Table 1. Comparison of natural frequencies 
 

Mode 

Natural frequency 
(Hz) 

FEM 
13 DOF 
Model 

Tower fore-aft (α) 0.3240 * 0.3237 
Tower side-to-side (β) 0.3120 * 0.3291 

Yaw motion (γ) - 6.8346 
Drivetrain torsion (ψ) 0.6205 * 0.6099 

Blade regressive lead-lag (θs) 1.0793 * 1.1170 
Blade progressive lead-lag (θc) 1.0898 * 1.1399 
Blade collective lead-lag (θ0) - 3.7978 

Blade regressive flap (φs) 0.6664 * 0.6399 
Blade progressive flap (φc) 0.6675 * 0.6542 
Blade collective flap (φ0) 0.6993 * 0.6879 

Blade regressive torsion (εs) - 5.5705 
Blade progressive torsion (εc) - 5.5738 

Blade collective torsion (ε0) 5.6 ~ 5.5708 

* From Ref.[8], ~ From Ref.[5] 
 

 
Figure 4. Natural frequencies variation considering rotational 

speed changes with wind velocities using 13 DOF model 
 

increase in wind velocity. Aeroelastic flap modes will be 
accurately predicted by flexible beam models which captures 
aerodynamic coupling accurately. Differences in the 
aeroelastic natural frequencies reported in Fig. 5 and Fig. 6 
arise due to simplification of flexible structure with rigid beam 
model and can be attributed to two reasons: centrifugal 
stiffening and aerodynamic loads. The rigid beam model 



doesn’t account for centrifugal stiffening of the rotating beam 
in bending. In the current model, wind turbine blades are 
assumed as rigid beams with torsional spring attached at the 
blade root. If the blade is modeled as flexible, lower part of 
the blade vibrates with high amplitudes as it experiences 
higher loads and also it is less stiff when compared to the 
blade geometry near the root. So, rigid beam approximation 
for the blade doesn’t take this into account. 
 

 

 Figure 5. Natural frequencies variation considering 
aerodynamic coupling and rotational speed changes at 

various wind velocities using 13 DOF model 
 

Wind turbine substructures experience periodic loads 
due to gravity, wind shear and tower shadow effects 
(ignoring turbulences and wind gusts). For a wind turbine 
with three blades, tower experiences loads with frequency 
equal to three times the rotational speed (denoted by 3P) 
due to the tower shadow effect. Structural loads (due to 
gravity and rotational effects) and aerodynamic loads 
exciting in-plane and out-of-plane vibrations of one blade 
over one full revolution for a wind velocity of 3 m/s are shown 
in Fig. 7. Structural loads in case of the blade in-plane 
vibrations are mainly produced by gravity effect and in case 
of out-of plane vibrations are mainly due to the rotational 
effects. Structural loads due to gravity dominate 
aerodynamic loads in case of blade in-plane vibrations, 
whereas aerodynamic loads are dominant in the case of out-
of-plane blade vibrations. Tower shadow creates a sharp 
change in the aerodynamic loads whenever the blades come 
in front of the tower and in Fig. 7(b)&(d) the blade comes in 
front of the tower at an azimuthal position of 270 ̊. 

 

  
                

Figure 6. Natural frequencies variation considering 
aerodynamic coupling with FEM model of the  

NREL 5 MW model wind turbine [10] 
 

 
 

Figure 7. (a) & (b) Loads exciting blade in-plane vibrations,  
(c) & (d) loads exciting blade out-of-plane vibrations 

 
As the tower and blades DOF are coupled in the EOM, 

loads exciting rotating blades will excite tower vibrations also. 
Tower fore-aft vibrations are excited by thrust forces acting  on  
the  blades and side-to-side vibrations are excitedby tangential 
forces acting on the blades. Structural loads generated due to 
gravity and rotation don’t excite tower vibrations in case of 
symmetrical blades, as the summation of forces of the three 
blades becomes zero. Fast Fourier transforms (FFT) of the 



vibration responses at various wind velocities are shown in 
Fig. 8. Tower vibrations in Fig. 8(a)&(b) consist of 3P 
frequency and its harmonics which are excited by the tower 
shadow effect. Blade vibrations in Fig. 8(c)&(d) show 
dominant 1P frequency component and its harmonics. The 
synchronous component of the vibrations (1P) is excited by 
periodic loads (both structural and aerodynamic) shown in 
Fig. 7 and the harmonics of 1P are excited by sharp change 
in loads caused by the tower shadow effect. Blade’s in-plane 
vibrations are mainly excited by periodic loads due to gravity 
whose magnitude is constant for all the wind velocities, thus 
the amplitude of the 1P frequency component in the in-plane 
blade vibrations at different wind velocities remains same. In 
the Fig. 8(d), the magnitude of the 1P frequency component 
of the blade out-of-plane vibrations increases with an 
increase in wind velocity due to two reasons: increasing 
structural loads due to increase in rotational speed and 
increasing aerodynamic loads due to wind shear at high wind 
velocities. Consideration of aerodynamic coupling in the 
model only changes damping and stiffness matrices as given 
in Eq. (22). So, structure vibrates with the same frequencies 
(harmonics of the rotational speed) when aerodynamic 
coupling is considered in the model. Some of the vibration 
frequencies (harmonics of the rotational speed) are close to 
the aeroelastic natural frequencies of the substructures and 
excite resonances. However, these resonances are highly 
damped and due to that their vibration amplitudes are less 
dominant than the amplitudes of 1P vibration frequencies. 

 

 

 
 
 

 
 

 
 
 

 
 

Figure 8. (a) Tower top fore-aft vibrations, (b) Tower top side-
to-side vibrations, (c) Blade tip in-plane vibrations,       

(d) Blade tip out-of-plane vibrations 
 
SUMMARY & CONCLUSIONS 
The dynamics of the large wind turbine structure like NREL 5 
MW model wind turbine are simulated by reducing it to a 13 
DOF model. Natural frequencies and vibration responses at 
various wind velocities are predicted considering aerodynamic 
coupling with the structural behavior. Aeroelastic natural 
frequencies of the current and FEM models for increasing 
wind velocities follow the same trend (except progressive flap 
and drivetrain torsion) with an offset in the predicted values. 
This offset is due to the lack of the centrifugal stiffness effect 
created by the rotating beam in bending and inaccurate 
estimation of the aerodynamic coupling with rigid beam 
approximation. Using this model, the dynamics of the wind 
turbine can be simulated with less computational effort at the 
cost of accuracy. This model can be further improved by 
considering modal functions instead of the rigid beam 
approximation to represent flexible beam vibrations, wherein 
centrifugal stiffening and the appropriate aerodynamic 
coupling will be included in the model, which improves 
accuracy without increasing the number of DOF in the model.   
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