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Abstract Spectral clustering is one of the most impor-
tant image processing tools, especially for image segmen-
tation. This specializes at taking local information such
as edge weights and globalizing them. Due to its unsuper-
vised nature, it is widely applicable. However, traditional
spectral clustering is O(n3/2). This poses a challenge,
especially given the recent trend of large datasets. In
this article, we propose an algorithm by using ideas from
Γ−convergence, which is an amalgamation of Maximum
Spanning Tree (MST) clustering and spectral cluster-
ing. This algorithm scales as O(nlog(n)) under certain
conditions, while producing solutions which are similar
to that of spectral clustering. Several toy examples are
used to illustrate the similarities and differences. To val-
idate the proposed algorithm, a recent state-of-the-art
technique for segmentation - multiscale combinatorial
grouping is used, where the normalized cut is replaced
with the proposed algorithm and results are analyzed.
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1 Introduction

Spectral clustering has been widely popular due to its
usage in image segmentation [32]. It plays an impor-
tant role in globalizing local information in the recent
state-of-the-art method for segmentation - multiscale
combinatorial grouping [30]. Although convolution neu-
ral networks form the current state-of-the-art for image
segmentation [26], this can be attributed to the avail-
ability of huge labelled datasets. There exists domains
where data is not easy to obtain, such as hyperspec-
tral image datasets, where unsupervised techniques can
be very useful. In methods such as those described in
[35], even after using convolution neural nets, spectral
clustering is used as the last step for segmentation.

An overview of spectral clustering procedures can
be found in [38]. One of the reasons for the popular-
ity of the spectral clustering procedure is its ability to
detect non-convex clusters. Spectral clustering method
proceeds by constructing an edge-weighted graph from
the data and use the eigenvectors of the Laplacian of
the graph. However, the calculation of the eigenvectors
is computationally expensive, and is prone to errors.
Several efforts were made to increase the speed and ac-
curacy of the spectral clustering methods [42,10,17,18],
including parallelizing [34]. In [30], the authors propose
to reduce the size of the similarity matrix to speed up
the normalized cuts procedure for image segmentation
[32].

Another clustering method which allows to detect
non-convex clusters is that of Maximum Spanning Tree
(MST) based clustering [43]. This method proceeds by
constructing an MST on the edge-weighted graph and
by removing the edges with least similarity. The main
advantage of this method is that it is fast and scales well
for big data. However, these methods also have some
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Fig. 1 Figure illustrating the motivation of the article. On the left we have an example graph with the edge weights denoting
the similarities. The objective is to perform clustering such as spectral clustering. Intuitively, it is easy to infer that nodes d
and e would belong to the same cluster as they have the similarity of 0.99. Hence, there is a scope to reduce the computations
required. However, it is not obvious to decide on which similarity values should be considered high enough so as to merge the
corresponding incident nodes. Moreover, assume we have indeed reduced the graph size by merging nodes, as in figure on the
right. It is not clear what the edge weights in the contracted graph would be? These questions are answered using the power
watershed framework.

ambiguity in clusters and results in degenerate solutions.
(MST-based clustering is discussed in detail in section
2.)

In this article, the aim is to develop an algorithm
which uses efficient MST-based clustering within a clus-
ter and more computationally expensive spectral clus-
tering near the borders of the clusters. This is achieved
by computing the limit of minimizers (a.k.a Γ−limit)
of spectral clustering. We obtain a faster version of
spectral clustering while preserving the properties of
spectral clustering, referred to as power spectral clus-
tering or Power Ratio cut or more simply PRcut. The
study of Γ−limits is referred to as the Γ−convergence.
Γ−convergence is widely used in the areas of computer
vision and in the field of calculus of variations (See
chapter 5 of [6]). In [11], the authors proposed Power
Watershed - Γ−limit of the energy function in [33] and
demonstrated its similarity with watershed transforma-
tion [12,13]. It turns out that the Power Watershed
performs better in several cases compared to the fre-
quently used seeded segmentations. In [27], the power
watershed framework was extended and a simple generic
algorithm was proposed to calculate the limit of min-
imizers under some conditions. Other applications of
the power watershed framework can be found in [16,
15,40]. The methods described in [16,15,40] use power
watershed framework to reduce the size of the graph. In
this article, we propose to use power watershed frame-
work for spectral clustering - by computing a Γ−limit of
spectral clustering. This article is a significant extension
of the conference version [8]. The following are main
contributions of this article -

1. A novel algorithm for clustering, PRcut, is proposed.
Using power watershed framework, it is shown that
PRcut is faster than spectral clustering while giving

similar results. Also, efficient algorithm for imple-
menting PRcut is proposed.

2. Several properties of PRcut are exhibited by using
toy examples and compared with MST-based clus-
tering and spectral clustering.

3. To conclusively show that PRcut can be used in
place of spectral clustering, application to multiscale
combinatorial grouping (MCG)[30] is demonstrated.
Specifically, the spectral clustering step in MCG is
replaced with the proposed method and empirically
shown that PRcut is faster while preserving the
overall accuracy of the method.

4. The concept of discretization of the weights is intro-
duced. This adds further flexibility to the PRcut, in
the sense that in the base case PRcut is equivalent to
spectral clustering. Thus, PRcut can be considered
an extension of spectral clustering as well.

5. Applications to hyperspectral images and high di-
mensional datasets are also discussed.

The outline of the article is as follows - In section
2, various concepts required for the rest of the article -
spectral clustering, MST clustering and Γ−convergence,
are introduced. In section 3, we start with a generic
algorithm to calculate a Γ−limit and characterize differ-
ent parts of the algorithm to obtain an implementable
version. In section 4, we further increase the efficiency
by identifying the relation between eigenvectors and
connected components of the Laplacian. In section 5,
we explore the PRcut in detail. We compare PRcut
with MST-based clustering and spectral clustering using
several toy examples to illustrate the differences and
similarities. To validate the claim that PRcut is similar
to classic spectral clustering, we use multiscale combina-
torial grouping (MCG). MCG [30] was a state-of-the-art
algorithm for segmentation which used spectral cluster-
ing as a step in the pipeline. We replace this step with
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the PRcut algorithm and compare the results. It can be
deduced that the PRcut algorithm is faster than spectral
clustering while giving similar results. Also shown are
applications to hyperspectral image data.

Gist of the article: As stated earlier, in this article
we develop an algorithm which combines the efficiency
of MST-based clustering within a cluster and accuracy
of spectral clustering at the boundaries. This is achieved
by considering the Γ−limit of the spectral clustering, To
compute the said Γ−limit we use the power watershed
framework developed in [27]. The solution thus obtained
is referred to as power spectral clustering or PRcut.

To understand the redundancies Power Spectral Clus-
tering exploits, consider a simple graph as shown in fig-
ure 1. The edge weights shown indicate the similarities
between the end points of the edge. Intuitively, it is clear
that computations are not required to infer that the
nodes d and e would belong to the same cluster since
they have a similarity of 0.99. Similarly, e and f does
not belong to the same cluster since their similarity is
0.1.

However, it is not clear as to where to make a clear
distinction? That is, picking a threshold. Moreover, as-
sume we have contracted the edge (d, e) considering a
single node for d and e, as shown in figure 1. It is not
clear what the new edge weights would be? These ques-
tions are implicitly answered when one considers the
limit of minimizers, which is obtained using the power
watershed framework. As it would be illustrated in this
article, the power watershed limit results in algorithm
4.

2 Background

The main mathematical structure used in this article is
that of an edge-weighted graph - G = (V,E,W ). Given
an image I, the set of vertices is taken as the pixels in
I, the set of edges is given by the 4-adjacency relation.
The edge weights W : E → R+ are constructed by using
the pixel values. The edge weights are assumed to reflect
the similarity between two pixels/points.

Note that both spectral clustering and MST clus-
tering operate on edge-weighted graphs. Thus, these
methods can be used on any data which can be rep-
resented as edge-weighted graphs. For data in general
euclidean space, k-nearest neighbors graph is used [38].
In this article, small toy examples of general data are
also used for better analysis.

D is a diagonal matrix, diag(d1, d2, · · · , dn), such
that

di =
∑
j

wij (1)

The Laplacian of a graph is defined by

L = D −W (2)

We know that the Laplacian is a symmetric positive-
semi-definite matrix, and hence has non-negative real
eigenvalues. The eigenvalues are represented by 0 =

λ1 ≤ λ2 ≤ · · · ≤ λn. The corresponding eigenvectors are
denoted by {e1, e2, · · · , en}. Let A ⊆ V . Denote

1A(x) =

{
1 if x ∈ A
0 otherwise

G≥w denotes the thresholded graph, with vertex set
V and edge set, E≥w, consisting of only those edges
whose weights are greater than or equal to w.

2.1 Spectral Clustering

Spectral clustering methods work by projecting the
data onto a subspace, so that similar points are close
by and dissimilar points are far apart in the projected
subspace. There are 3 steps which form the core of
spectral clustering methods-

1. Given a set of points {xi} (dataset), construct a
graph, G, with each data point as a vertex.

2. Construct the Laplacian for the obtained graph and
calculate the first m eigenvectors of the Laplacian.
The value of m is fixed based on the number of
clusters required. Let H be the matrix such that the
ith column of H is the ith eigenvector ei.

3. Using rows of the matrix H as new representation of
the points xi, use classical clustering methods such
as k-means to obtain the final clusters.

The Laplacian in (2) is known as an unnormalized
Laplacian. Some works also consider the normalized
Laplacians, L1, L2 as well [32,29], where,

L1 = I−D−1W ; L2 = I−D−1/2WD−1/2 (3)

Why does spectral clustering work? The idea
behind working of spectral clustering methods can be
intuitively understood using two results - (i) Suppose the
graph G hasm connected components, {A1, A2, · · · , Am}.
Then the basis of the vector space spanned by the firstm
eigenvectors is {1A1

,1A2
, · · · ,1Am

} and (ii) The eigen-
spaces of a matrix and its perturbation are ‘close’ [38].
Assume that the similarity between points from two
different clusters is small, and similarity between points
from same cluster is high. Then, from the above results,
the first few eigenvectors of the Laplacian are close to
the indicator of the clusters. Hence simple clustering
methods work well on this projected data.
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2.1.1 Different formulations of spectral clustering

The spectral clustering can also be analyzed in an op-
timization framework. Given a similarity graph G =

(V,E,W ), consider the graph cut measure

cut(A1, A2, · · · , Am) =
1

2

m∑
i=1

W (Ai, Ai) (4)

where

W (A,B) =
∑

i∈A;j∈B
wij (5)

A denotes the complement of A in the vertex set V . m
denotes the size of the partition required which is equal
to the number of clusters. Note that cut(., .) measures
how similar the clusters are by taking the sum of the
weights of the edges connecting distinct clusters, and
hence can be used to partition a graph. In practice,
however, minimizing the cut(., .) does not give good
results, since it generally separates one vertex, and gives
degenerate solutions. Also, minimizing cut(., .) form ≥ 3

is NP-hard [36]. Thus, it was proposed to use a variation
of the above cost function. Ratio cut [38] is given by

Rcut(A1, A2, · · · , Am) =
1

2

m∑
i=1

W (Ai, Ai)

|Ai|
(6)

Here |Ai| is the cardinality of set Ai. Note that ratio cut
penalizes small clusters, and hence avoids degenerate
solutions. Let G be a graph constructed from the data
set, and let L denote its corresponding Laplacian. It is
shown that minimizing the Rcut(., .) for m clusters is
approximately equivalent to solving the optimization
problem in (7) [38].

minimize
H∈Rn×m

Tr(HtLH)

subject to HtH = I
(7)

where, I is the identity matrix. From the Rayleigh-Ritz
theorem, it is known that the solution to optimization
problem in (7) is obtained by considering the first m
eigenvectors of L as columns of H [25].

Another variation of the cut(., .) cost function, pro-
posed in [32] is the Normalized cut (Ncut) cost function
given by

Ncut(A1, A2, · · · , Am) =
1

2

m∑
i=1

W (Ai, Ai)

vol(Ai)
(8)

where vol(Ai) =
∑
i di. It can be shown that for m

clusters, Ncut(., .) is approximately equivalent to the
solution of the following optimization problem[38].

minimize
H

Tr(HtLH)

subject to HtDH = I
(9)

It is known that the solution to this optimization prob-
lem is obtained by taking the first m eigenvectors of
I−D−1W as columns of H [25].

2.2 Maximum Spanning Tree Clustering

Another method of clustering which can detect non glob-
ular clusters in the data is maximum spanning tree based
clustering. Let G = (V,E,W ) be a connected similarity
graph. A spanning tree, T , is a connected acyclic sub-
graph of G whose vertex set is V . Each spanning tree
can be assigned a numerical value by taking the sum of
the weights of the edges in the tree,

w(T ) =
∑

e∈E(T )

w(e) (10)

A spanning tree with the maximum weight is known
as the Maximum Spanning Tree (MST). There are sev-
eral clustering methods based on MST [43]. Although
MST-based clustering is not so prevalent in cluster-
ing general data, in the context of image segmentation,
slight variations of MST-based clustering was shown
to be very useful, thanks to its equivalence to water-
sheds (as described in [12,13]). A generic MST-based
clustering algorithm is

1. Given a similarity graph G = (V,E,W ), construct
an MST, T , and sort the edges of T according to the
weights.

2. If the required number of clusters is equal to m, add
edges starting from highest weight until the number
of components m are reached. The ties are broken
arbitrarily.

MST-based clustering is categorized under graph based
clustering, and is related to the hierarchical approaches.
In fact, MST-based clustering as described above is
equivalent to single link hierarchical clustering.

The main problems with MST-based clustering are -
(i) It is prone to noise and outliers, (ii) In practice, it
gives small clusters or degenerate solutions which are not
so meaningful, and (iii) Arbitrariness in breaking of ties
results in non uniform solutions. In the later sections it
will be seen that the proposed method, PRcut, is similar
to MST-based clustering and does not suffer from these
problems.

2.3 Γ -convergence and Power Watershed Framework

Let min{Fi(x) : x ∈ X} be a sequence of minimum
problems. A question of interest is the limiting behav-
ior of the minimizers of this family as i → ∞. Ideally
this would be substituted by a single minimum problem
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min{F (x) : x ∈ X} which captures the limiting behav-
ior. Few of the advantages of such a substitution are -
1) This gives an approximate solution to the family of
minimizers which are much harder to calculate than the
limit, 2) Dependence on a parameter is nullified, and
3) This results in a new method which would present a
different model which was previously modeled with Fi.
The theory of Γ−convergence focusses on understand-
ing the conditions under which such a substitution is
possible [6].

In this article, however, we are interested in calculat-
ing a Γ−limit of the spectral clustering discussed above.
Recently the authors in [11] calculated Γ−limit of the
seeded random walker cost function [33], and proposed
Power watershed seeded segmentation. This Γ−limit
involves an MST, and hence links the random walk
segmentation with MST clustering. In [27], a generic
algorithm was proposed to calculate a Γ−limit, which
we review here.

Let 0 < α1 < α2 < · · · < αk ≤ 1 and Qi(x) is
continuous for all i. Consider the cost function

Q(p)(x) =

k∑
i=0

αpiQi(x) (11)

The problem is to calculate the limit of minimizers of
Q(p)(x) as p → ∞. Observe that the function itself
converges to 0 at every point if αk < 1, and hence
minimizers of the limit would be the whole space. Let C
be a compact set. For the sake of simplicity, we assume
that we are interested in finding the solutions in C.
Define

Mk = argmin
x∈C

Qk(x) (12)

i.e, Mk is the set of minimizers for Qk. Now recursively
define, for i = k − 1, · · · , 1.

Mi = argmin
x∈Mi+1

Qi(x) (13)

Observe that we have the following relation between Mi,
i = 1, · · · , k.

Mi ⊆Mj for all 1 ≤ i < j ≤ k (14)

Theorem 1 ([27]) Let X∗ be the union of the sets of
minimizers of Q(p) (as defined in (11)) for all p. Then
every limit point of X∗ belongs to the set M1.

The above theorem can be interpreted in terms of scale.
If one interprets each αi as a scale, then theorem 1
states - Γ−limit (limit of minimizers) belongs to the
set of solutions which minimizes all the cost functions

at different scales αi starting from the largest scale αk.
The main consequence of theorem 1 is that one can now
formulate algorithm 1 to calculate a Γ−limit [27].

Algorithm 1 Generic Algorithm to Compute Γ−limit.
Input: Function Q(p)(x) =

∑k
i=1 α

p
iQi(x), where 0 ≤ α1 <

α2 < · · · < αk ≤ 1.
Output: M1

1: Mk = argminQk(x) where x ∈ C
2: for i from k − 1 to 1 do
3: Compute Mi = argminQi(x) where x ∈Mi+1

4: end for

Theorem 1 ensures that a Γ−limit belongs to the
output of algorithm 1. The converse is not true in gen-
eral, i.e, all solutions obtained from algorithm 1 need
not be a Γ−limit. However, it can be shown that they
are ‘equivalent’, in the sense that the value of the cost
function is same for all p, and hence in the limit as well.

Proposition 1 Let x∗ be a Γ−limit for Q(p). Let x̂ be
a solution obtained from algorithm 1. Then we have that,
for all p

Q(p)(x∗) = Q(p)(x̂) (15)

The proof of the proposition 1 is straightforward.
Although algorithm 1 might not calculate a Γ−limit,
we have that it calculates equivalent solution as far as
the cost function is concerned.

In the special case when Q(x) is taken to be the
ratio cut cost function, we have the converse as well.
This is described in theorem 2.

To summarize, we have computed the Γ−limit for
the cost functions of the form in (11). This resulted
in a generic algorithm 1. This is referred to as Power
Watershed framework in the rest of this article. The
limit obtained by using the algorithm 1 is also referred
to as Power Watershed limit. Detailed analysis of the
Power Watershed and its relation to existing works can
be found in [27].

3 Γ−limit of spectral clustering

In several cases discrete models are used for modeling
the data, while the data might be continuous. This is
especially true in the case of graph-based models [11].
Thus a discretization scheme is required for using dis-
crete models in real data. We introduce the definition of
a discretization scheme which is then used for calculating
a Γ−limit.

Let G = (V,E,W ) be a graph. Recall that W : E →
R+.
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Definition 1 (Discretization Scheme) A discretiza-
tion scheme is a decomposition of W , i.e for all edges e,
we have

W (e) = Ŵ (e)ω(e) (16)

where Ŵ : E → Z+ and ω : E → R+, with a condition
that if W (e1) < W (e2), then Ŵ (e1) < Ŵ (e2).

An example of a discretization scheme is given by taking
the least integer function.

W (e) = bW (e)c W (e)

bW (e)c
= Ŵ (e)ω(e) (17)

Here Ŵ (e) = bW (e)c and ω(e) = W (e)/bW (e)c. Intu-
itively, Ŵ is the discrete version of W and ω is error
with respect to the discretization. It is also clear that
there are several discretization schemes possible.

As another example, one can consider the following
decomposition of the weights

W (e) = bcW (e)c W (e)

bcW (e)c
= Ŵ (e)ω(e) (18)

where c is an arbitrary positive constant.
An exponentiated graph is denoted by

G(p) = (V,E,W (p)) (19)

where W (p)(e) = (Ŵ (e))pω(e). Accordingly we can de-
fine D(p), a diagonal matrix,

[D(p)]ii =
∑
j

W
(p)
ij (20)

and a Laplacian L(p) = D(p) −W (p).
We define a Γ−limit of spectral clustering by the

limit of minimizers of the optimization problem (21) as
p→∞.

minimize
H∈Rn×m

Tr(HtL(p)H)

subject to HtH = I
(21)

In the case of the optimization problem theorem (21)
as above, teh converse of 1 holds. This is summarized
in the following theorem.

Theorem 2 Given the notation as in theorem 1, and
considering the Q(p) to be the optimization problem in
(21), we have that any point in M1 is a limit point of
X∗.

The proof of the above theorem is given in the ap-
pendix.

Since the datasets are finite, Ŵ takes only finite
number of values. Also, since the optimization problem
does not change with positive scalar multiples, one can

assume without loss of generality that the distinct values
may be denoted by 0 < w1 < w2 < · · · < wk < 1,
indicating the k distinct weights Ŵ (e) can take. Denote
by Gi the graph with the vertex set, V , and the edge set
consisting of only those edges e such that Ŵ (e) = wi.
The weight of an edge e in Gi is given by the function
ω(e). The Laplacian for the graph Gi is denoted by Li.
Then it is easy to see that

L =

k∑
i=1

wiLi (22)

and hence,

Tr(HtLH) =

k∑
i=1

wiTr(H
tLiH) (23)

Accordingly, for the exponentiated graphs we have

Tr(HtL(p)H) =

k∑
i=1

wpi Tr(H
tLiH) (24)

Note that (24) is in the form of (11) and hence we can
use the generic algorithm 1 to calculate a Γ−limit.

Let M denote the set of all possible m dimensional
subspaces of Rn. Each subspace in M can be associated
with an n×m matrix H, such that the column space of
H is the subspace. Note that this matrix is not unique.
Also, let H(M) denote the set of all matrices whose
column space is equivalent to any of the subspaces in
the setM . LetM(H) denote the set of all column spaces
of matrices in a set of matrices H. It is easy to see that
the following relations hold true.

M(H(M ′)) = M ′

H(M(H ′)) ⊇ H ′

where M ′ is a set of subspaces and H ′ is a set of
matrices. With this notation, the generic algorithm 1
in the case of ratio cut optimization would be the one
in algorithm 2. However, this algorithm is not imple-
mentable. One needs to characterize all the solutions
to the optimization problem in (7) to obtain an imple-
mentable version. This will in turn characterize the Mi

and H(Mi) at every stage i of the algorithm 2.
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Algorithm 2 Generic Algorithm to Compute Γ−limit.
Input: A weighted graph, G, with distinct weights w1 <

w2 < · · · < wk. Number of clusters to calculate m.
Output: M0

1: Set i = k, Mi =M
2: Construct the graph Gi at level i, and Laplacian Li.
3: Solve the optimization problem

minimize
H∈Rn×m

Tr(HtLiH)

subject to HtH = I

H ∈ H(Mi)

(25)

4: Let Hi be the set of possible minimizers of the above
optimization problem. Set Mi−1 =M(Hi).

5: Set i = i - 1
6: if i = 0 then
7: Stop.
8: return M0

9: else
10: Goto Step (2)
11: end if

3.1 Solutions to ratio cut optimization problem

Given a Laplacian L of dimensions n×n, let λ1 ≤ λ2 ≤
· · · ≤ λn denote the eigenvalues and {e1, e2, · · · , en} de-
note the corresponding eigenvectors. Let λ(m) denote the
mth smallest eigenvalue. Let A be the matrix obtained
by stacking all the eigenvectors of L whose eigenvalue
is less than or equal to λ(m). Assuming that there are l
such eigenvectors, the dimension of A would be n × l.
Here m is the number of clusters required. Let l2 be the
number of eigenvectors whose eigenvalue is exactly equal
to λ(m), and l1 be the number of remaining vectors. We
then have l1 + l2 = l. Let K be the matrix

K =

[
Il1×l1 0

0 Xl2×(m−l1)

]
(26)

where X is any matrix such that KtK = I. Let Y be
any orthogonal matrix. Theorem 3 characterizes the sets
H(Mi) and Mi at every stage.

Theorem 3 The set of all solutions to the optimization
problem (7) is the set of all solutions of the form AKY .

Now, starting at highest level k (edge set consisting
only of edges with weight wk) we have Mk =M . From
theorem 3, we know that all the solutions to the opti-
mization problem (25) for i = k is of the form AkKY ,
where Ak is the matrix obtained by stacking the eigen-
vectors for Lk whose eigenvalue is less than or equal to
the mth smallest eigenvalue of Lk. At level k − 1, we
have Mk−1 =M(AkKY ). Now, we have the following
lemma.

Lemma 1 Given the notation as above, we have

H(M(AkKY )) = {matrices of the form AkKY } (27)

Thus at level k−1 we need to solve the optimization
problem,

minimize
H∈Rn×m

Tr(HtLk−1H)

subject to HtH = I

H ∼ AkKY

(H ∼ AkKY is read H is of the form AkKY ) which is
equivalent to solving the optimization problem

minimize
K

Tr(Y tKtAtkLk−1AkKY )

subject to KtK = I

Now, since Y is orthogonal, we have

Tr(Y tKtAtkLk−1AkKY ) = Tr(KtAtkLk−1AkK)

Noting the special form of K as in (26), solving the
above optimization problem is equivalent to solving the
optimization problem

minimize
X

Tr(Xt[AtkLk−1Ak]l2×l2X)

subject to XtX = I

where, [AtkLk−1Ak]l2×l2 is the lower-right l2 × l2 block.
Here l2 indicates the number of times the eigenvalue
λ(m) repeats in Lk. Also matrix [AtkLk−1Ak]l2×l2 is sym-
metric positive semi-definite. Hence theorem 3 applies.
Let Âk−1 the matrix obtained by stacking the eigenvec-
tors of [AtkLk−1Ak]l2×l2 whose eigenvalue is less than or
equal to the mth smallest eigenvalue of [AtkLk−1Ak]l2×l2 .
Then all the solutions are of the form Âk−1KY . Let

Ak−1 =

[
Il1×l1 0

0 Âk−1

]
(28)

Then, we have that Hk−1 is the set of all matrices which
are of the form AkAk−1KY . This follows from the fact
that the matrices K and Y are arbitrary under the
constraint that KtK = I and Y is some orthogonal
matrix. Repeating this procedure, one can can obtain
an algorithm to calculate a Γ−limit. This is summarized
in algorithm 3.
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Algorithm 3 Algorithm to Compute Γ−limit for re-
laxed Ratio-cut.
Input: A weighted (similarity) graph, G, with distinct weights

w1 < w2 < · · · < wk. Number of clusters, m.
Output: N1

1: Set i = k, Ni = In, l1 = 0, l2 = n {l2 indicates the
number of eigenvectors at the end whose eigenvalue is the
same.}

2: Construct the graph Gi at level i, and Laplacian Li.
3: Construct matrix C = [Nt

iLiNi]l2,l2
4: Calculate the first eigenvectors of the generalized eigen-

value problem

Cx = λx (29)

such that the eigenvalue is less than or equal to λ∗ =
λ(m−l1). Let A be the matrix with the eigenvectors com-
puted, stacked as columns.

5: Construct Â as

Â =

[
I 0
0 A

]
6: Set Ni−1 = NiÂ.
7: Set l1 to be the number of eigenvectors with eigenvalue is

strictly less than λ∗.
8: Set l2 to be the number of eigenvectors with eigenvalue is

strictly equal λ∗.
9: Set i = i− 1
10: if i = 0 then
11: return N1

12: else
13: Goto Step (3)
14: end if

A heuristic explanation of algorithm 3 is - One starts
with a trivial representation of the points, In and at
each stage, iteratively refines the representation based
on the solutions of the optimization problem at that
stage.

4 Implementation

Although algorithm 3 is implementable, note that every
stage of the algorithm involves several matrix manipu-
lations and eigenvector calculations. Since eigenvector
calculations are not so robust, this algorithm does not
work well in practice. Algorithm 4 provides an efficient
alternative which is equivalent to algorithm 3.

Recall that a connected component of a graph G is
the maximal subgraph of G which is connected. Note
that in the first iteration of algorithm 3 the eigenvectors
in step 4 are the indicators of the connected components.
This property holds true for next iterations until the
number of components are greater than the required
number of clusters. This is formalized in proposition 2.

Proposition 2 Let G be a similarity graph. At a given
level j, let {C1, C2, · · ·Cnc

} be the connected components

of the graph G≥wj . And nc is greater than or equal to
the required number of connected components. Also let C
be the matrix obtained by stacking the vectors 1Ci

/|Ci|
in columns. Then

(a) Tr(CtLiC) = 0 for all i > j

(b) Any solution to the optimization problem (25) at
level j is of the form CY where Y is any orthogonal
matrix.

Proposition 2 allows us to optimize the first steps of
algorithm 3 by considering the connected components
instead of calculating the eigenvectors.

Also, recall that a discretization scheme (definition
1) was considered in calculating a Γ−limit. By suitably
altering the discretization scheme, one can assume with-
out loss of generality that G≥w2

has at least m (required
number of clusters) connected components, and that
G≥w1 has exactly one connected component.

In practice, this is assured by taking the union of all
classes below the threshold. For instance, suppose initial
weights considered are 0 ≤ w1 < w2 < · · · < wk ≤ 1.
Assume that if G≥wi

has at least m components and
G≥wi−1

has less than m components. Then one can
reorganize the weights to be 0 ≤ w1 < wi < · · · < wk ≤
1. This validates the assumption that G≥w2

has at least
m (required number of clusters) connected components,
and that G≥w1 has exactly one connected component.

During the first few iterations, while the number of
components in the graph are greater than m, algorithm
3 computes the eigenvectors of the appropriate Lapla-
cians. These eigenvectors are known to be equivalent to
indicator vectors of the corresponding connected compo-
nents. Hence, constructing the matrix Â constitutes of
stacking the indicator vectors of connected components.
Using proposition 2, we have that while the number
of connected components is greater than m, one can
compute the matrix Â by simply stacking the indicator
vectors. This is equivalent to checking if the number
of components is greater than m at various thresholds.
Thresholding a graph to obtain connected components
is equivalent to constructing an MST and removing the
lower weight edges. Hence we refer to this as MST phase.
This is described in steps 1-4 of algorithm 4.

Using the indicator vectors of the connected compo-
nents, one can construct the matrix N . This constitutes
steps 5-7 of algorithm 4.

Then using all remaining edges, one constructs the
Laplacian L1. The last step (last iteration of algorithm
3) constitutes of constructing the matrix N tL1N and
computing the eigenvectors. This constitutes steps 8-11
of algorithm 4.
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Algorithm 4 Simplified Efficient algorithm to compute
Γ−limit for relaxed ratio-cut.
Input: A weighted graph, G, with bucketed weights w1 <

w2 < · · · < wk. Number of clusters required - m.
Output: N - A representation of the subspace spanned by

Γ−limit of the minimizers.
1: Set i = k.
2: while Number of connected components of G≥wi

is greater
than or equal to m do

3: Set i = i− 1 {We refer to this as an MST-Phase}
4: end while
5: Let {Cj}, j ∈ {1, 2, · · · , nc} be the connected components

in G≥wi
.

6: Let ICj
be the vector

ICj
(x) =

{
1/
√
|Cj | if x ∈ Cj

0 othwerwise
(30)

7: Construct the matrix N with ICj
as the column vectors.

8: Let G1 be the graph with the vertex set same as G and
the edges are taken to be all the edges with weight < wi.
Let L1 be the corresponding Laplacian.

9: Let L1 given by NtL1N .
10: Calculate the first m eigenvectors of L1 and construct A

using these eigenvectors as columns.
11: return NA.

Observe that one can write the Lapalcian of the
original graph (using the same terminology of algorithm
4) as

L = L1 + L≥wi0
(31)

where L1 is the Laplacian in step 8 of algorithm 4, L≥wi0

is the Laplacian of G≥wi0
. i0 is the value of i in step 5.

Also,

N tL≥wi0
N = 0 (32)

Thus, the optimization problem from step 10 of algo-
rithm 4

minimize
H∈Rn×m

Tr(Ht(N tL1N)H)

subject to HtH = I
(33)

is equivalent to (since N tN = I)

minimize
H∈Rn×m

Tr(HtL1H)

subject to HtH = I

H = NX for some X

(34)

which is equivalent to the optimization problem

minimize
H∈Rn×m

Tr(HtLH)

subject to HtH = I

H = NX for some X

(35)

Thus, another interpretation of the Γ−limit is - It is a
solution to the ratio cut optimization problem with an

additional constraint of belonging to the column space
of N . Observe that the matrix NN t is a projection
matrix onto this subspace. We refer to the output of the
algorithm 4 as Power Ratio cut or shortly PRcut.

Time Complexity of algorithm 4: Let n be the
number of data points. Assume that |V | ∼ O(n) and
|E| ∼ O(n). Observe that steps 1-4 mimics the con-
struction of minimum spanning tree [14], and hence is
O(nlog(n)). In steps 5-7, observe that we are construct-
ing a sparse matrix and hence is O(nc). Since N and L1

are sparse matrices, step 9 is O(n). Step 10, assuming
the worst case scenario of L1 being dense matrix, is
O((nc)3). Thus the complexity of algorithm 4 is

O(nlog(n)) +O(n3c) (36)

Under the additional assumptions that nc ∼ O(m) and
m ∼ O(1) we have that the complexity of algorithm 4
is O(nlog(n)).

Note that nc depends mainly on the dataset and
indirectly on the discretization scheme. This is the only
aspect through which the discretization scheme affects
the complexity.

In the trivial case of considering the discretized
weights as all equal to 1, we have that the PRcut is
identical to Ratio cut.

5 Applications and Analysis

It is clear from above that PRcut is an amalgam of
MST-based clustering and spectral clustering. It com-
bines ‘good’ properties of both of these methods. In
particular, it is faster than spectral clustering and more
accurate than MST-based clustering. All the eigenvec-
tor computations are carried out using the SciPy sparse
library [22]. The code for generating the results used in
this article is available at [7].

Since PRcut is designed to work on weights which
take a discrete set of value, one needs a discretization
scheme. This discretization scheme is sometimes referred
to as bucketing of weights. In this article, we use k-means
based bucketing. Observe that the problem of bucketing
weights can be rephrased as - combine the weights into
buckets so that weights within a bucket are ‘alike’. This
is once again a clustering problem in itself and hence
one can use any clustering method to cluster the weights.
k-means is a simple choice known for its efficiency and
simplicity. In this case, each weight is represented by
the mean of the cluster to which the weight belongs
to. Note that the number of buckets is an important
parameter. The greater the number of buckets the faster
the algorithm is. However, the correct number of buckets
to preserve the quality of the result depends on the
domain of application.
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Remark (Choosing the number of buckets:)
Observe that if the number of buckets is equal to one,
then power spectral clustering is identical to the spectral
clustering algorithm. As the number of buckets increase,
the time taken for the algorithm reduces. If the number
of buckets are very large one ends up with MST-based
clustering. The ideal number of buckets would be a
value somewhere in between and depends majorly on the
domain of application. For clustering on BSDS datasets,
it has been found that 3 buckets provided an optimal
performance.

5.1 Comparison with MST-based clustering

Observe that in algorithm 4, steps 1-4 mimics that of
MST based clustering. However in the last step instead
of breaking ties arbitrarily, PRcut takes into account
the sizes of the clusters. In fact, PRcut is a specific
example of MST based clustering.

The main difference between PRcut and MST based
clustering is - while PRcut uses criterion based on size
to pick the final clusters, MST based clustering makes
this decision arbitrarily. To illustrate the difference bet-
ter, consider a simple graph as in figure 2(a). The solid
black lines indicate a choice of MST constructed. Figure
2(b) indicates a solution obtained by MST-based cluster-
ing. Given the MST from figure 2(a), since MST-based
clustering picks the edge randomly, there is 1/2 chance
that figure 2(b) is obtained as a solution. On the other
hand, since PRcut takes into consideration the sizes of
the clusters, only the solution in figure 2(c) is obtained.
Thus PRcut performs better in such cases as in figure 2.

5.2 Comparison with spectral clustering

Notably, PRcut preserves several good properties of
spectral clustering as well. In particular, it preserves the
property of being able to discover non-globular clusters.
For instance, consider the data as in figure 3(a). Figure
3(b) indicates the results obtained using the spectral
clustering method. Same result is obtained using Power
Ratio cut as well. However, as the noise increases, spec-
tral clustering breaks down (figure 3(d)) while PRcut is
slightly more robust (figure 3(c)). This is also illustrated
in figure 4.

Another important property of spectral clustering
methods is that they penalize dissimilar sized clusters.
This effect is preserved for PRcut as well. To verify
this we conduct the following experiment - Consider the
image in figure 5(a). The image is divided into 3 compo-
nents - black component on the left, white component
on the right and the boundary component in between.

This is a synthetic example of the constant gradient
at boundaries between classes, referred to as flatzones.
Clustering the above image we expect the boundary
component to be split into two parts - one corresponds
to the black component and another corresponds to the
white component. Figure 5(b) and figure 5(c) illustrate
the result obtained with PRcut and Ratio cut.

As the initial size of the black component varies, due
to the above property of spectral clustering, we expect
the amount of ‘boundary component’ allotted to the
black component to reduce. This is verified in figure 6 for
Rcut. This is also the case for PRcut as well as shown in
figure 6. Hence, one can conclude that PRcut preserves
the property of penalizing dissimilar sized clusters.

The main difference between spectral clustering meth-
ods and PRcut is the run time. Due to preprocessing
the data using MST, the size of the data is reduced
drastically and hence computing time is saved. As dis-
cussed earlier, under some conditions the running time
of PRcut increases as O(nlog(n)) while spectral clus-
tering methods take O(n3/2) [32]. This is illustrated in
figure 7. Note that for small problems, the performance
difference of PRcut and Rcut is negligible. However, as
the size of the problem increases, PRcut performs better
than Rcut.

5.3 Multiscale Combinatorial Grouping (Segmentation)

One of the main applications of spectral clustering is
in the domain of image segmentation. Normalized cuts
have been widely used to segment an image into mean-
ingful regions [32,30,41,4]. Normalized cuts is used to
globalize the local information. In [30], the authors pro-
pose a sequence of steps to obtain segmentation of the
images. One of the most important steps in the pipeline
is normalized cut. The following lines are taken from
[30] -

The normalized cuts criterion is a key global-
ization mechanism of recent high-performance
contour detectors · · · . Although powerful, such
spectral graph partitioning has a significant com-
putational cost and memory footprint that limit
its scalability.

In this section, we use exactly the same pipeline as that
in [30], but instead of using spectral clustering, we use
PRcut. The authors then proposed a heuristic method
to calculate the eigenvectors faster, termed as dNcut.
This method reduces the eigenvalue problem and hence
is faster and has less memory requirements, a technique
similar to Nystrom’s method [18,39].

Since, heuristically PRcut works by reducing unnec-
essary computation, PRcut is compatible with other



Power Spectral Clustering 11

a

b

2

c

2

d1

g

1

2 e

2

f

2

1

2

(a)

a

b

2

d1

c2 e

2

f2

g

(b)

a

b

2

g

1

c2

d

e

2

f2

(c)

Fig. 2 Simple example illustrating the difference between PRcut and MST-based clustering. (a) An example graph. Solid lines
indicate a maximum spanning tree. (b) A result obtained by using MST-based clustering. (c) Result obtained by using PRcut.
Observe that PRcut provides better results compared to simple MST-based clustering.

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

(a)

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

(b)

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

(c)

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

(d)

Fig. 3 Toy example illustrating the robustness of PRcut when
compared to Ratio cut (Rcut). (a) Two circles dataset [1] with
noise=0.07. (b) Result obtained using Ratio cut on the two
circles dataset with noise=0.05. Same result is obtained with
PRcut as well. (c) Result obtained by using PRcut on two
circles dataset with noise=0.07. (d) Result obtained using
Ratio cut on two circles dataset with noise=0.07.

reduction techniques. Hence, using the same reduction
technique as in [30] along with PRcut, we have another
technique called dPRcut. Also, all these methods have a
multiscale version as well.

These methods were experimentally compared by
using the BSDS500 dataset [4]. Few selected contour
saliency maps [28] (also referred to as UCM, ultrametric
contour maps in [3]) are shown in figure 8. The precision
recall curves were plotted using the techniques described
in [31], shown in figure 9. From this, it can be seen
that the results are similar. Scatterplots in figures 9
(c), (d), (e), (f) corroborate this observation. Under
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Fig. 4 Plot of the adjusted mutual information plotted vs the
noise in the two circles dataset [1]. The values are averaged
over 10 iterations. Note that at higher noise levels, PRcut
performs better than Ratio cut.

Table 1 Table indicating p-values on BSDS dataset under
the hypothesis that the average Fop and Fb scores of Ncut and
PRcut are equal. The sample size is taken to be 200. Empirical
verifications of the normality assumptions are added in the
appendix.

(p - values) Fop Fb

PRcut vs Ncut 0.2902 0.2819
dPRcut vs dNcut 0.3499 0.6884

the null hypothesis that the methods are equivalent,
the p-values calculated by using the t-test are given in
table 1. It is clear that there is no sufficient evidence
to claim that one method is superior to the other in
terms of accuracies. Note that dPRcut does not vary
much compared to dNcut, thus establishing that PRcut
is compatible with other reduction techniques as well.

However, PRcut is twice as fast as the Ncut, as shown
in figure 10. In fact, the time of PRcut is comparable to
dNcut as well. Using the extra layer of approximation
in dPRcut and dNcut did not show much of a difference
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Fig. 5 (a) A synthetic example of the of a ramp image (con-
stant horizontal gradient). The image consists of 3 components
- A black component for x < tb, a white component x > tw
and a smooth transition between tb and tw. Here x refers to
the horizontal axis. Further details can be found in [7]. (b)
Result obtained using PRcut (c) Result obtained using Rcut.
Observe that PRcut and Rcut gives similar partitions.
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Fig. 6 Plot to illustrate that both PRcut and Rcut penalize
differently sized clusters in the same way. We change the size
of black component in figure 5(a) initially before clustering
and plot the size of the boundary allotted to the black com-
ponent after clustering. X-axis indicates the size of the black
component initially before clustering. Y-axis indicates the size
of the boundary allotted to the black component. Note that,
for both PRcut and Rcut, the size of the boundary component
allotted to the black component reduces as the initial size of
the black component increases. This allows us to conclude
that PRcut penalizes dissimilar clusters as well.
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Fig. 7 Time complexity of PRcut vs Rcut as a function of
data size on blobs dataset [2] with parameters - n_features =
2, centers = 2. Time is measured in seconds. Observe that
for small data sizes the difference between PRcut and Rcut is
not significant, while for large data sizes it varies considerably.
The variance in the timing of the ratio cuts is due to the
optimizations of the SciPy sparse library [22].

since the size of the images is limited. However, depend-
ing on the size of the image, dPRcut can be twice as
fast as dNcut.

5.4 Hyperspectral Image Data

Clustering is also referred to as unsupervised learning.
Solutions to clustering problem, unlike supervised learn-
ing, cannot offer black box solutions [23,21]. It is usually
the case that several aspects of clustering are dictated by
the domain knowledge. One of the main advantages of
PRcut is that it offers better control over the clustering
procedure than spectral clustering. We now describe the
application of spectral clustering to hyperspectral image
data. These results are first reported in [9].

A feature of the hyperspectral image data is that
most of the data remains unclassified (class 0). Thus the
classes are not balanced and hence spectral clustering
methods cannot be used directly. Moreover, spectral
clustering methods cannot be easily adapted to such
cases as well. However, since PRcut has two phases -
MST phase and spectral clustering, one can suitably
modify the algorithm to requirements. In the case of hy-
perspectral image data, this is obtained by ignoring the
small clusters after the MST phase in PRcut (explained
in detail in [8]). This allows to obtain higher accuracy
with PRcut compared to Rcut, as observed in case of
Salinas dataset in table 2.

We have considered three hyperspectral image datasets
- (a) Salinas (512×217) (b) Pavia University (610×340)

(c) Pavia Center (1096× 715). For each of the datasets,
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Fig. 8 Selected Results from BSDS500. First-column: Original Image, Second-Column: Groundtruth, Third-Column: PRcut,
Fourth- Column: Normalized cut, Fifth-Column : Multiscale PRcut, Sixth-Column : Multiscale Ncut
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Fig. 9 (a) Shows the precision-recall curves of the measure Fb as defined in [31]. (b) Shows the precision-recall curves of
the measure Fop as defined in [31]. ‘dPRcut Multi’ and ‘dNcut Multi’ indicate the multiscale versions of PRcut and Ncut
respectively. (c) Scatter plot of optimal Fb measure on individual images between PRcut and Ncut. (c) Scatter plot of optimal
Fop measure on individual images between PRcut and Ncut. (e) Scatter plot of optimal Fb measure on individual images
between dPRcut and dNcut. (f) Scatter plot of optimal Fop measure on individual images between dPRcut and dNcut. Observe
from (c)-(f) that there is no major difference in accuracy between PRcut and Ncut measures. All results are calculated on
BSDS500 dataset with the MCG algorithm, using either a NCut or a PRCut step.
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Table 2 Table indicating the average times and accuracy of Ratio cut and Power Ratio cut on hyperspectral image data. The
timing is reported in seconds. The accuracy is measured by (37).

Data Process
Time

Rcut PRcut
Time Accuracy Time Accuracy

Ratio = 0.7
Pavia University 129.33 95.15 0.70 27.38 0.74
Pavia Center 530.95 435.01 0.76 91.38 0.77

Salinas 142.59 94.27 0.28 24.92 0.71

Ratio = 0.8
Pavia University 194.14 151.00 0.72 34.06 0.78
Pavia Center 623.74 535.79 0.78 104.46 0.78

Salinas 202.98 139.31 0.36 26.88 0.74

Ratio = 0.9
Pavia University 279.42 163.66 0.75 40.71 0.76
Pavia Center 830.18 633.638 0.79 115.09 0.79

Salinas 271.56 170.28 0.43 31.63 0.78
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Fig. 10 Box plot of the total time taken by various meth-
ods. The time is on Y-axis and is measured in seconds. The
time taken is calculated from the input to the final segmented
output obtained by MCG on the BSDS500 dataset. Based
on average values, observe that MCG using PRcut is 2.23
times faster than MCG using Ncut and MCG using dPRcut
is 1.07 times faster than MCG using dNcut. However, consid-
ering just the spectral clustering step, dPRcut is 1.5-2 times
faster depending on the size of the image. Since the images in
BSDS500 are small the difference between MCG using dPRcut
and MCG using dNcut is not visible.

we have considered three ratios - 0.7, 0.8, 0.9, of their
sizes. Each experiment was repeated 10 times and have
taken the average. Also, the datasets were over seg-
mented and the accuracy is calculated by assuming that
each cluster is labelled with the largest groundtruth
label. That is, let C = {Ci} be classes obtained by
clustering and let C∗ = {C∗i } indicate the groundtruth
classes. Let N(Ci, C∗j ) be the number of pixels labelled
Ci and C∗j . The accuracy is then given by

accuracy(C, C∗) =
∑
i(maxj N(Ci, C∗j ))

Total number of pixels
(37)

The timing is measured in seconds. All experiments are
done on Intel(R) Xeon(R) CPU E5620 at 2.40GHz with
RAM size of 16 GigaBytes.

(a) (b) (c)

(d) (e) (f)

Fig. 11 Top row: Groundtruth images of Pavia Center, Pavia
University and Salinas hyperspectral images. Bottom row:
Results using PRcut of Pavia Center, Pavia University and
Salinas hyperspectral images

An example of the results obtained of the PRcut on
subsets of these images and their groundtruth is shown
in figure 11. Average of accuracy and times for each
of the methods is shown in table 2. Scatter plots of
accuracy and times are also plotted in figure 12. It is
easy to see from the table that PRcut is faster and gives
better accuracy than ratio cuts (or at least equal).

5.5 High dimensional data

Another characteristic of the data is its dimensionality.
In high dimensions, due to the curse of dimensionality
[5,19], it is difficult to measure the distances accurately
and hence difficult to construct an edge weighted graph.
The distance between points become unreliable in higher
dimensions. Thus spectral clustering cannot be directly
applied for clustering high dimensional data. Usually a
preprocessing step is applied to the data to reduce the
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Table 3 Table indicating the average times and accuracy of Ratio cut and Power Ratio cut on MNIST dataset. The timing is
reported in seconds. The accuracy is measured by (37). ARI indicates Adjusted Rand Index [20], and AMI indicates Adjusted
Mutual Information [37].

Data
Size

Process
Time

Rcut PRcut
Time Accuracy ARI AMI Time Accuracy ARI AMI

Dim = 10
4318 0.56 2.03 0.54 0.40 0.52 1.33 0.54 0.40 0.51
8489 1.29 15.36 0.56 0.42 0.54 7.48 0.56 0.42 0.54
12634 2.17 33.61 0.56 0.43 0.55 26.11 0.56 0.43 0.55

Dim = 15
4318 0.73 2.03 0.56 0.45 0.57 1.38 0.56 0.45 0.57
8489 1.97 12.52 0.57 0.46 0.59 7.90 0.57 0.47 0.59
12634 3.18 36.13 0.58 0.49 0.61 25.49 0.58 0.49 0.61

Dim = 20
4318 0.94 2.86 0.57 0.46 0.58 1.87 0.57 0.46 0.58
8489 2.96 11.96 0.58 0.49 0.61 9.84 0.58 0.49 0.61
12634 4.34 32.66 0.59 0.51 0.63 24.23 0.59 0.51 0.63
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Fig. 12 (a) Scatter plot of the accuracy of normalized cuts
vs power ratio cuts on hyperspectral image data. The red line
indicates the line x = y. As one can see, all the points lie
above or on the line x == y. Hence power ratio cut results
are better than normalized cuts (or at least equal). (b) Plots
of executing times vs the number of pixels in the image. It is
easy to observe that PRcut scales much better compared to
normalized cuts.

dimension, such as principal component analysis (PCA).
The reduced data is then used for further processing.

Here the MNIST dataset [24] is used to experiment
with high dimensions. The number of data points are
42000 and each data point has a dimension of 784. The

dataset if first processed with PCA to reduce the dimen-
sionality. Figure 13 shows the results on the selected
classes. Table 3 shows the results obtained with PRcut
and spectral clustering on randomized samples of the
datasets, with varying dimension. It is clear from these
results that PRcut is faster than Rcut while preserving
the precision of the results.

6 Conclusion

To summarize, we have proposed a faster alternative to
the spectral clustering - Power Ratio cut or PRcut. This
was obtained by considering a Γ−limit of the spectral
clustering. Intuitively PRcut uses maximum spanning
tree to reduce the size of the dataset and then solves
the appropriate eigenvalue problem. This results in a
much faster algorithm than spectral clustering. Also,
by considering a Γ−limit several good properties of
spectral clustering such as - penalizing unequal cluster
distribution, ability to detect non-convex clusters is
preserved. PRcut is compared with both MST-based
clustering and spectral clustering considering several
toy examples. Its efficiency as an alternate to Ncut
is exhibited by suitably replacing Ncut in the MCG
pipeline with PRcut and comparing the results on BSDS.
Results of comparison with Ncut on hyperspectral image
datasets are also provided. The code to generate the
results in this paper is available at [7].

Note that, in this article we have considered a Γ−limit
of the ratio cut. One can similarly probe the question
of - "Γ−limit of normalized cut". It is relatively easy to
extend the algorithm 4 replacing ratio-cut with normal-
ized cut. However, the solutions to the normalized cut
problem need not belong to a bounded set as p → ∞.
Hence the theory developed here must extended to in-
corporate normalized cuts. This is a direction of future
research.
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(a)

(b)

(c)

Fig. 13 Results obtained on selected classes of the MNIST dataset. (a) Average of the groundtruth classes. (b) Average of
clusters obtained by Rcut (c) Average of clusters obtained by PRcut.This figure provides a visual confirmation that the results
obtained by both PRcut and Rcut are the same.

7 Appendix

Proof of Theorem 3

Proof We first show that any matrix H of the form
AKY is a solution to (7). We have

Tr((AKY )tL(AKY )) = Tr(Y t(AK)tL(AK)Y )

= Tr((AK)tL(AK))

= Tr(Kt(AtLA)K)

since Y is an orthogonal matrix. Now, AtLA is of the
form
λ1 0 · · · 0

0 λ2 · · · 0

0 · · · · · · 0

0 0 · · · λm


So, we have

Tr(Kt(AtLA)K) = λ1 + λ2 + · · ·+ λl1 + λ(m)Tr(X
tIX)

= λ1 + λ2 + · · ·+ λm

= minTr(HtLH)

Since, the minimum value of Tr(HtLH) is equal to
λ1 + λ2 + · · · + λm [25]. To show the other side, note
that the set of all the solutions of (7) is

{H ∈ Rn×m | Tr(HtLH) = λ1 + λ2 + · · ·+ λm}

Let A = [e1, e2, · · · en], i.e the matrix obtained by stack-
ing all the eigenvectors of L in columns. Then any H
can be written as AZ where ZtZ = I. Now, note that
since {λ1, λ2, · · · , λn} can be arbitrary, we need to have
that

Zij = 0 if λi > λ(m).

Thus we can ignore the lower part of matrix Z. If A =

[[e1, e2, · · · el]], then we have that H is of the form AZ

where Z is a l ×m matrix such that ZtZ = I. Now let,

Z =

[
Zl1,l1 Zl1,m−l1
Zl2,l1 Zl2,m−l1

]
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Also, note that AtLA is of the form
λ1 0 · · · 0
0 λ2 · · · 0
0 · · · · · · 0
0 0 · · · λl


Since Z should satisfy Tr(ZtAtLAZ) = Tr(HtLH) =

λ1 + λ2 + · · · + λm, we need to have that Zl1,l1 is full
rank, and Ztl1,l1Zl1,l1 = I. Hence Z must be of the form
KY where K is a matrix of the form (26) and Y is any
orthogonal matrix. Hence all the solutions to (7) must
be of the form AKY .

Proof of lemma 1

Proof One side follows from the relation

H(M(H ′)) ⊇ H ′

For the other side, let H be some matrix which spans
the same subspace as Ĥ = AkKY . Then there exists
an orthogonal matrix Q such that HQ = Ĥ. Hence
H = ĤQt = AkKYQ

t. This is still in the form AkKY

where Y is some orthogonal matrix.

Proof of Proposition 2

Proof To prove (a), note that since Ci is a connected
component of G≥wj

, it is also a union of connected
components of G≥wi

for all i >= j. Also, we know that
if L denotes a Laplacian of the graph, then L1Ci = 0

if Ci is a connected component in the graph. Hence
proved.

Since (a) is true, we know that C is a solution to
(25) at level j. Thus all matrices of the form CY are
solutions. Now, since Tr(CtLiC) = 0 for all i >= j, any
vector c belonging to the column space of the solution
must satisfy ctLic = 0 for all i >= j. This implies that
c belongs to the column space of the 0 eigenvectors,
which are indicators of connected components. Hence
c must belong to the column space of the indicators
of connected components for each Gi, i >= j. This
implies that c belongs to the column space of indicators
of connected components of G≥wj , and hence belongs to
the column space of C. Hence proved.

Proof of theorem 2

Proof For the sake of simplicity, we consider x to be a
1d vector. Recall that

Q(p)(x) = Tr(xtL(p)x) (38)

such that xtx = 1 and xt1 = 0. We refer to this domain
as d.

Now, assume that x̂ is a point belonging to M1. We
now show that x̂ is also a limit point. From [25],

‖Q(p)(x̂)−min
x∈d

Q(p)(x)‖ → 0 as p→∞ (39)

On the other hand, consider a ball around x̂, B(x̂, ε).
Then,

min
y∈B(0,ε)

Q(p)(x̂+y) = x̂tL(p)x̂+2x̂tL(p)y+ytL(p)y (40)

Taking y = −εx̂,

min
y∈B(0,ε)

Q(p)(x̂+ y) ≤ x̂tL(p)x̂(1− 2ε+ ε2) (41)

From (39) and (41), for p large enough,

min
y∈B(0,ε)

Q(p)(x̂+ y) ≤ min
x∈d

Q(p)(x) (42)

In other words, for every ε ball around x̂, there exists a
minimizer of Q(p)(x). Hence, x̂ is a limit point.

Checking normality for t-test in Table 1

To obtain p-values in table 1 we have assumed (a) nor-
mality of samples means and (b) χ2 for sample variances.
Note that these assumptions are sufficient to perform
the t-test. Here, we verify these assumptions empirically.

To verify these assumptions, using bootstrap tech-
nique, we generate several samples of size 30. On these
subsamples, sample means and variances are computed.
Then using probability plots we empirically verify the
distribution to be normal and χ2 respectively. Figure 14
show the probability plots and the R2 values for various
quantitites.
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