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Power Spectral Clustering
Aditya Challa, Student Member, IEEE, Sravan Danda, Student Member, IEEE B. S. Daya Sagar, Senior

Member, IEEE and Laurent Najman, Senior Member, IEEE

Abstract—Clustering is an important part of several data mining tasks. Due to its unsupervised nature it has several applications
ranging from document classification to image segmentation. Recent trend towards large datasets have required faster and scalable
algorithms for clustering tasks. One solution to the clustering problem is offered by the method of spectral clustering, which has
received wide attention due to its ability to detect non convex clusters. In this article, we propose a faster alternative to the spectral
clustering method, which is obtained by considering the Γ−limit of spectral clustering methods. The proposed method, referred to as
PRcut, is analyzed and compared with spectral clustering and MST based clustering methods. We illustrate with experiments that
PRcut is superior to its counterpart in spectral clustering in terms of speed and adaptability.

Index Terms—Clustering, Spectral Clustering, Γ−convergence, MST based clustering, Multi scale combinatorial grouping.

F

1 INTRODUCTION

THE problem of clustering can be stated as - given a data
set {xi}, partition the set into groups such that elements

in the same group are ‘similar’ and elements in different sets
are ‘dissimilar’. This has been a problem of interest since
the early 20th century and is widely applicable in several
domains such as text categorization [1], anomaly detection
[2], market research [3] and image segmentation [4], [5]
etc. The vast literature available on the topic of clustering
shows the extent of importance in real-world applications.
A detailed analysis of various aspects of clustering and
its history can be found in [4], [6], [7]. A solution to the
clustering problem is given by the use of spectral methods,
referred to as spectral clustering [8]. Contrasting with the
popular k-means algorithm [7], spectral clustering meth-
ods have the ability to detect non-convex clusters. These
methods proceed by constructing an edge-weighted graph
from the data and use the eigenvectors of the Laplacian of
the graph. However, the calculation of the eigenvectors is
computationally expensive and is prone to errors. Several
efforts were made to increase the speed and accuracy of
the spectral clustering methods [9], [10], [11], [12], including
parallelizing [13]. In [14], the authors propose to reduce the
size of the similarity matrix to speed up the normalized cuts
procedure for image segmentation [5].

Another clustering method which allows to detect non-
convex clusters is that of Maximum Spanning Tree (MST)
based clustering [15]. These methods proceed by constructing
an MST on the edge weighted graph and removing the
edges with least similarity. The main advantage of this
method is that it is fast and scales well for big data. How-
ever, these methods also have some ambiguity in clusters
and results in degenerate solutions. (MST based clustering
is discussed in detail in section 2.)

In this article, the aim is to develop an algorithm which
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uses efficient MST based clustering within a cluster and
more computationally expensive spectral clustering near
the borders of the clusters. This is achieved by limit of
minimizers (a.k.a Γ−limit) of spectral clustering to obtain
the faster version of spectral clustering while preserving the
properties of spectral clustering. This is referred to as power
spectral clustering or Power Ratio cut or more simply PRcut.
The study of Γ−limits is referred to as the Γ−convergence.
Γ−convergence is widely used in the areas of computer
vision and in the field of calculus of variations (See chapter
5 of [16]). In [17], the authors proposed Power Watershed - the
Γ−limit of the energy function in [18] and demonstrated its
similarity with watershed transformation [19], [20]. It turns
out the Power Watershed performs better in several cases
compared to the usual seeded segmentations. In [21], the
power watershed framework was extended and a simple
generic algorithm was proposed to calculate the limit of
minimizers under some conditions. In this article, we pro-
pose to use the extended power watershed framework to
calculate the Γ−limit of spectral clustering.

Our main contributions are-

1) We provide an efficient implementable algorithm to
calculate the Γ−limit of the spectral clustering, PRcut.

2) PRcut is compared with two closest clustering methods
- MST based clustering and Spectral Clustering. It is
shown that PRcut outperforms MST based clustering.
Compared to spectral clustering, PRcut is shown to
preserve the properties of the spectral clustering while
being a faster alternative.

3) PRcut is used in the method multiscale combinatorial
grouping [14] in place of the normalized cuts and
shown to outperform normalized cuts with respect to
speed while preserving accuracy.

4) Clustering algorithms are extremely domain dependent
[4]. Hence, versatility would be an added advantage of
a clustering algorithm. We show that PRcut algorithm is
versatile enough to be adapted without compromising
performance by applying it on hyperspectral datasets.

The outline of the article is as follows - In section 2, we
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introduce various concepts required for the rest of the article
- spectral clustering, MST clustering and Γ−convergence. In
section 3, we start with a generic algorithm to calculate the
Γ−limit and characterize different parts of the algorithm
to obtain an implementable version. In section 4 we fur-
ther increase the efficiency by identifying the commonality
between eigenvectors and connected components of the
Laplacian. In section 5, we explore the PRcut in detail.
We compare PRcut with MST based clustering and spectral
clustering. PRcut is used in the context of multiscale com-
binatorial grouping (MCG) [14] in place of normalized cuts,
and time and accuracy analysis is considered. Applications
of PRcut for hyperspectral data and high dimensional data
is also demonstrated.

2 BACKGROUND

Let X = {xi} represents the dataset, where xi denotes each
data entry. Let xi ∈ Rf , where f is the number of features.
One can construct a similarity graph G = (V,E,W ). The
vertex set, V , is taken to be the set of all data points, each
point xi is represented by a vertex. The edge set E is a
subset of V ×V . W : E → R+ denotes weights (similarities)
assigned to each edge, where R+ denotes the set of positive
real numbers. wij denotes the similarity between xi and xj .
There are several methods to construct the graph from the
dataset depending on the domain of application [8].

D is a diagonal matrix, diag(d1, d2, · · · , dn), such that

di =
∑
j

wij (1)

The Laplacian of a graph is defined by

L = D −W (2)

We know that the Laplacian is a symmetric positive-semi
definite matrix, and hence has non-negative real eigenval-
ues. The eigenvalues are represented by 0 = λ0 ≤ λ1 ≤
· · · ≤ λn−1. The corresponding eigenvectors are denoted by
{e0, e1, · · · , en−1}. Let A ⊆ V . Denote

1A(x) =

{
1 if x ∈ A
0 otherwise

G≥w denotes the thresholded graph, with vertex set V and
edge set, E≥w, consisting of only those edges whose weight
is greater than or equal to w.

2.1 Spectral Clustering

Spectral clustering methods work by projecting the data
onto a subspace, so that similar points are close by and
dissimilar points are far apart in the projected subspace.
There are 3 steps which form the core of spectral clustering
methods-

1) Given a set of points {xi} (dataset), construct a graph,
G, with each data point as a vertex.

2) Construct the Laplacian for the obtained graph and
calculate the first k eigenvectors of the Laplacian. The
value of k is fixed based on the number of clusters
required. Let H be the matrix such that the ith column
of H is the ith eigenvector ei−1.

3) Using rows of the matrix H as new representation of
the points xi, use classical clustering methods such as
k-means to obtain the final clusters.

The Laplacian in (2) is known as an unnormalized Lapla-
cian. Some works also consider the normalized Laplacians,
L1, L2 as well [5], [22], where,

L1 = I −D−1W L2 = I −D−1/2WD−1/2 (3)

Why spectral clustering works? The idea behind work-
ing of spectral clustering methods can be intuitively un-
derstood using two results - (i) Suppose the graph G has
k connected components, {A1, A2, · · · , Ak}. Then the basis
of the vector space spanned by the first k eigenvectors is
{1A1

,1A2
, · · · ,1Ak

} and (ii) The eigenspaces of a matrix
and its perturbation are ‘close’ [8]. Assume that the simi-
larity between points from two different clusters is small
and similarity between points from same cluster is high.
Then, from the above results, the first few eigenvectors of
the Laplacian are close to the indicator of the clusters. Hence
simple clustering methods work well on this projected data.

Different formulations of spectral clustering
The spectral clustering can also be analyzed in an optimiza-
tion framework. Given a similarity graph G = (V,E,W ),
consider the graph cut measure

cut(A1, A2, · · · , Ak) =
1

2

k∑
i=1

W (Ai, Ai) (4)

where
W (A,B) =

∑
i∈A;j∈B

wij (5)

A denotes the complement of A in the vertex set V . k
denotes the size of the partition required. Note that cut(., .)
measures how similar the clusters are by taking the sum
of the weights of the edges connecting distinct clusters,
and hence can be used to partition a graph. In practice,
however, minimizing the cut(., .) does not give good results,
since it generally separates one vertex, and gives degenerate
solutions. Also, minimizing cut(., .) for k ≥ 3 is NP-hard
[23]. Thus, it was proposed to use a variation of the above
cost function. Ratio cut [8] is given by

Rcut(A1, A2, · · · , Ak) =
1

2

k∑
i=1

W (Ai, Ai)

|Ai|
(6)

known as Ratio cut. Here |Ai| is the cardinality of set Ai.
Note that ratio cut penalizes small clusters and hence avoids
degenerate solutions. Let G be a graph constructed from
the data set, and let L denote its corresponding Laplacian.
It is shown that minimizing the Rcut(., .) for k clusters
is approximately equivalent to solving the optimization
problem in (7) [8].

minimize
H∈Rn×k

Tr(HtLH)

subject to HtH = I
(7)

where, I is the identity matrix. From the Rayleigh-Ritz the-
orem it is known that the solution to optimization problem
in (7) is obtained by considering the first k eigenvectors of
L as columns of H [24].
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Another variation of the cut(., .) cost function, proposed
in [5] is the Normalized cut (Ncut) cost function given by

Ncut(A1, A2, · · · , Ak) =
1

2

k∑
i=1

W (Ai, Ai)

vol(Ai)
(8)

where vol(Ai) =
∑

i di. It can be shown that for k clusters,
Ncut(., .) is approximately equivalent to [8]

minimize
H

Tr(HtLH)

subject to HtDH = 1
(9)

It is known that the solution to this optimization problem is
obtained by taking the first k eigenvectors of I −D−1W as
columns of H [24].

2.2 Maximum Spanning Tree Clustering
Another method of clustering which can detect non globular
clusters in the data is maximum spanning tree based cluster-
ing. Let G = (V,E,W ) be a connected similarity graph.
A spanning tree, T , is a connected acyclic subgraph of G
whose vertex set is V . Each spanning tree can be assigned
a numerical value by taking the sum of the weights of the
edges in the tree,

w(T ) =
∑

e∈E(T )

w(e) (10)

A spanning tree with the maximum weight is known as
the maximum spanning tree (MST). There are several clus-
tering methods based on MST [15]. Although MST based
clustering is not so prevalent in clustering general data, in
the context of image segmentation, slight variations of MST
based clustering was shown to be very useful, thanks to its
equivalence to watersheds [19], [20]. A generic MST based
clustering algorithm is
1. Given a similarity graph G = (V,E,W ), construct a MST,
T , and sort the edges of T according to the weights.

2. If the required number of clusters is equal to m, add
edges starting from highest weight until the number of
components m are reached. The ties are broken arbitrar-
ily.

MST based clustering is categorized under graph based
clustering and is related to the hierarchical approaches. In
fact, MST based clustering as described above is equivalent
to single link hierarchical clustering.

The main problems with MST based clustering are - (i)
It is prone to noise and outliers (ii) In practice, it gives
small clusters or degenerate solutions which are not so
meaningful (iii) Arbitrariness in breaking of ties results in
non uniform solutions. In the later sections it will be seen
that the proposed method, PRcut, is similar to MST based
clustering and does not suffer from these problems.

2.3 Γ-convergence
Let min{Fm(x) : x ∈ X} be a family of minimum problems.
A question of interest is the limiting behavior of the mini-
mizers of this family as m→∞. Ideally this would be sub-
stituted by a single minimum problem min{F (x) : x ∈ X}
which captures the limiting behavior. Few of the advantages
of such a substitution are - 1) This gives an approximate

solution to the family of minimizers which are much harder
to calculate than the limit 2) Dependence on a parameter
is nullified 3) This results in a new method which would
present a different model which was previously modeled
with Fm. The theory of Γ−convergence focusses on under-
standing the conditions under which such a substitution is
possible [16].

In this article, however, we are interested in calculating a
Γ−limit of the spectral clustering discussed above. Recently
the authors in [17] calculated Γ−limit of the seeded random
walker cost function [18], and proposed Power watershed
seeded segmentation. This Γ−limit involves an MST, and
hence links the random walk segmentation with MST clus-
tering. In [21], a generic algorithm was proposed to calculate
a Γ−limit, which we review here.

Let 0 < λ1 < λ2 < · · · < λk ≤ 1 andQi(x) is continuous
for all i. Consider the cost function

Qp(x) =
k∑

i=0

λpiQi(x) (11)

The problem is to calculate the limit of minimizers of
Q(p)(x) as p → ∞. Observe that the function itself con-
verges to 0 at every point if λk < 1, and hence minimizers
of the limit would be the whole space. Let C be a compact
set. For sake of simplicity, assume that we are interested in
finding the solutions in C . Define

Mk = arg min
x∈C

Qk(x) (12)

i.e, Mk is the set of minimizers for Qk. Now recursively
define,

Mi = arg min
x∈Mi+1

Qi(x) (13)

Theorem 1 ( [21]). Let X∗ be the union of the sets of minimizers
of Q(p) (as defined in (11)) for all p. Then every limit point of X∗

belongs to the set M1.

The above theorem can be interpreted in terms of scale. If
one interprets each λi as a scale, then theorem 1 states - the
Γ−limit (limit of minimizers) belongs to the set of solutions
which minimizes all the cost functions at different scales
λi starting from the largest λi. The main consequence of
theorem 1 is that one can now have algorithm 1 to calculate
a Γ−limit [21].

Algorithm 1 Generic Algorithm to Compute Γ−limit.

Input: Function Q(p)(x) =
∑k

i=1 λ
p
iQi(x), where 0 ≤ λ1 <

λ2 < · · · < λk ≤ 1.
Output: M1

1: Mk = arg minQk(x) where x ∈ C
2: for i from k to 1 do
3: Compute Mi = arg minQi(x) where x ∈Mi+1

4: end for

Theorem 1 ensures that a Γ−limit belongs to the output
of algorithm 1. The converse is not true in general, i.e, all
solutions obtained from algorithm 1 need not be a Γ−limit.
However, it can be shown that they are equivalent. (Remark:
‘equivalent’ in the sense that the value of the cost function
is same for all p, and hence in the limit as well.)
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Proposition 1. Let x∗ be a Γ−limit for Qp. Let x̂ be a solution
obtained from algorithm 1. Then we have that, for all p

Qp(x∗) = Qp(x̂) (14)

The proof of the proposition 1 is straightforward. Al-
though algorithm 1 might not calculate a Γ−limit, we have
that it calculates equivalent solution as far as the cost
function is concerned.

3 Γ−LIMIT OF SPECTRAL CLUSTERING

In several cases discrete models are used for modeling the
data, while the data might be continous. This is especially
true in the case of graph-based models [17]. Thus a discretiza-
tion scheme is required to be able to use to discrete models
for real data. We introduce the definition of a discretization
scheme which is then used for calculating the Γ−limit.

Let G = (V,E, Ŵ ) be a graph. Recall that Ŵ : E → R+.

Definition 1 (Discretization Scheme). A discretization scheme
is a decomposition of Ŵ ,

Ŵ = W × ω (15)

where W : E → Z+ and ω : E → R+, with a condition that if
Ŵ (e1) < Ŵ (e2), then W (e1) < W (e2).

An example of a discretization scheme is given by taking
the least integer function.

Ŵ (e) = bŴ (e)c × Ŵ (e)

bŴ (e)c
= W (e)× ω(e) (16)

Here W (e) = bŴ (e)c and ω(e) = Ŵ (e)/bŴ (e)c. Intu-
itively, W is the discrete version of Ŵ and ω is error with
respect to the discretization. It is also clear that there are
several discretization schemes possible.

An exponentiated graph is denoted by G(p) = (V,E, Ŵ (p)),
where Ŵ (p)(e) = (W (e))pω(e). Accordingly we can define
D(p), a diagonal matrix,

[D(p)]ii =
∑
j

Ŵ
(p)
ij (17)

and a Laplacian L(p) = D(p) − Ŵ (p).
We define the Γ−limit of spectral clustering by the limit

of minimizers of the optimization problem (18) as p→∞.

minimize
H∈Rn×m

Tr(HtL(p)H)

subject to HtH = I
(18)

Since the datasets are finite, W takes only finite number
of values. Let these values be denoted by 0 < w1 < w2 <
· · · < wk < 1 indicating the k distinct weights W (e) can
take. Denote by Gi the graph with the vertex set, V , and the
edge set consisting of only those edges e such that W (e) =
wi. The weight of an edge e in Gi is given by the function
ω(e). The Laplacian for the graph Gi is denoted by Li. Then
it is easy to see that

L =
k∑

i=1

wiLi (19)

and hence,

Tr(HtLH) =
k∑

i=1

wiTr(H
tLiH) (20)

Accordingly, for the exponentiated graphs we have

Tr(HtL(p)H) =
k∑

i=1

wp
i Tr(H

tLiH) (21)

Note that the above equation is in the form of (11) and hence
we can use the generic algorithm 1 to calculate the Γ−limit.

Let M denote the set of all possible m dimensional
subspaces of Rn. Each subspace in M can be associated
with a n×m matrix H , such that the column space of H is
the subspace. Note that this matrix is not unique. Also, let
H(M) denote the set of all matrices whose column space is
equivalent to any of the subspaces in the set M . LetM(H)
denote the set of all column spaces of matrices in a set of
matrices H . It is easy to see that the following relations hold
true.

M(H(M ′)) = M ′

H(M(H ′)) ⊇ H ′

Algorithm 2 Generic Algorithm to Compute Γ−limit.
Input: A weighted graph, G, with distinct weights w1 <

w2 < · · · < wk. Number of clusters to calculate m.
Output: M1

1: Set i = k, Mi = M
2: Construct the graph Gi at level i, and Laplacian Li.
3: Solve the optimization problem

minimize
H∈Rn×m

Tr(HtLiH)

subject to HtH = I

H ∈ H(Mi)

(22)

4: Let Hi be the set of possible minimizers of the above
optimization problem. Set Mi−1 =M(Hi).

5: Set i = i - 1
6: if i = 0 then
7: Stop.
8: return M1

9: else
10: Goto Step (2)
11: end if

whereM ′ is a set of subspaces andH ′ is a set of matrices.
With this notation, the generic algorithm 1 in the case of
ratio cut optimization would be the one in algorithm 2.

However, this algorithm is not implementable. One
needs to characterize all the solutions to the optimization
problem in (7) to obtain an implementable version. This will
in turn characterize the Mi and H(Mi) at every stage i of
the algorithm 2.

Solutions to ratio cut optimization problem

Given a Laplacian L of dimensions n × n, let λ1 < λ2 <
· · ·λn denote the eigenvalues and {e1, e2, · · · , en} denote
the corresponding eigenvectors. Let λ(m) denote the mth
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smallest eigenvalue. Let A be the matrix obtained by stack-
ing all the eigenvectors whose eigenvalue is less than or
equal to λ(m). Assuming that there are l such eigenvectors,
the dimension of A would be n × l. Here m is the number
of clusters required. Let l2 be the number of eigenvectors
whose eigenvalue is exactly equal to λ(m), and l1 be the
number of remaining vectors. We then have l1 + l2 = l. Let
K be the matrix

K =

[
Il1×l1 0

0 Xl2×m−l1

]
(23)

where KtK = I . Let Y be any orthogonal matrix. Theorem
2 characterizes the sets H(Mi) and Mi at every stage.

Theorem 2. The set of all solutions to the optimization problem
(7) is the set of all solutions of the form AKY .

Now, starting at highest level k (edge set consisting only
of edges with weight wk) we have Mk = M . From theorem
2 we know that all the solutions to the optimization problem
(22) for i = k is of the form AkKY , where Ak is the matrix
of eigenvectors for Lk constructed as before. At level k − 1,
we have Mk−1 =M(AkKY ). Now, we have the following
lemma.

Lemma 1. Given the notation as above, we have

H(M(AkKY )) = { matrices of the form AkKY } (24)

Thus at level k − 1 we need to solve the optimization
problem,

minimize
H∈Rn×m

Tr(HtLk−1H)

subject to HtH = I

H ∼ AkKY

(Remark: H ∼ AkKY is read H is of the form AkKY )
which is equivalent to solving the optimization problem

minimize
K

Tr(Y tKtAt
kLk−1AkKY )

subject to KtK = I

Now, since Y is orthogonal, we have

Tr(Y tKtAt
kLk−1AkKY ) = Tr(KtAt

kLk−1AkK)

Noting the special form of K as in (23), solving the above
optimization problem is equivalent to solving the optimiza-
tion problem

minimize
X

Tr(Xt[At
kLk−1Ak]l2×l2X)

subject to XtX = I

where, [At
kLk−1Ak]l2×l2 is the lower-right l2 × l2 block.

Here l2 indicates the number of times the eigenvalue λ(m)

repeats in Lk. Also matrix [At
kLk−1Ak]l2×l2 is symmet-

ric positive semi-definite. Hence theorem 2 applies. Call
Âk−1 the matrix obtained by stacking the eigenvectors of
[At

kLk−1Ak]l2×l2 . Then all the solutions are of the form
Âk−1KY . Let

Ak−1 =

[
Il1×l1 0

0 Âk−1

]
(25)

Then we have that Hk−1 is the set of all matrices which are
of the form AkAk−1KY . This follows from the fact that the

matrices K and Y are arbitrary under the constraint that
KtK = I and Y is some orthogonal matrix. Repeating this
procedure, one can can obtain an algorithm to calculate the
Γ−limit. This is summarized in algorithm 3.

Algorithm 3 Algorithm to Compute Γ−limit for Ratio-cut.
Input: A weighted (similarity) graph, G, with distinct

weights w1 < w2 < · · · < wk. Number of clusters, m.
Output: N1

1: Set i = k, Ni = In, l1 = 0, l2 = n {l2 indicates the
number of eigenvectors at the end whose eigenvalue is
the same.}

2: Construct the graph Gi at level i, and Laplacian Li.
3: Construct matrix C = [N t

iLiNi]l2,l2
4: Calculate the first eigenvectors of the generalized eigen-

value problem
Cx = λx (26)

such that the eigenvalue is less than or equal to λ(m−l1).
Let A be the matrix with the eigenvectors stacked as
columns.

5: Construct Â as
Â =

[
I 0
0 A

]
6: Set Ni−1 = NiÂ. Update values l1 and l2.
7: Set i = i− 1
8: if i = 0 then
9: return N1

10: else
11: Goto Step (3)
12: end if

An heuristic explanation of algorithm 3 is - One starts
with a trivial representation of the points, In and at each
stage, iteratively refines the representation based on the
solutions of the optimization problem at that stage.

4 IMPLEMENTATION

Although algorithm 3 is implementable, note that every
stage of the algorithm involves several matrix manipula-
tions and eigenvector calculations. Since eigenvector calcu-
lations are not so robust, this algorithm does not work well
in practice. Algorithm 4 provides an an efficient alternative
of the algorithm 3.

Recall that a connected component of a graph G is the
maximal subgraph of G which is connected. Note that in
the first iteration of algorithm 3 the eigenvectors in step
4 are the indicators of the connected components. This
property holds true for next iterations until the number
of components are greater than the required number of
clusters. This is formalized in proposition 2.

Proposition 2. Let G be a similarity graph. At a given level j, let
{C1, C2, · · ·Cl} be the connected components of the graph G≥wj .
And l is greater than or equal to the required number of connected
components. Also let C be the matrix obtained by stacking the
vectors 1Ci/|Ci| in columns. Then
(a) Tr(CtLiC) = 0 for all i > j
(b) Any solution to the optimization problem (22) at level j is of

the form CY where Y is any orthogonal matrix.
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Proposition 2 allows us to optimize the first steps of al-
gorithm 3 by considering the connected components instead
of calculating the eigenvectors.

Recall that a discretization scheme (definition 1) was
considered in calculating the Γ−limit. By suitably altering
the discretization scheme, one can assume without loss of
generality that G≥w2

has at least m (required number of
clusters) connected components, and that G≥w1

has exactly
one connected component.

(Remark : In practice, this is assured by taking the union
of all classes below the threshold. For instance, suppose
initial weights considered are 0 ≤ w1 < w2 < · · · < wk ≤ 1.
Assume that if G≥wi has at least m components and G≥wi−1

has less than m components. Then one can reorganize the
weights to be 0 ≤ w1 < wi < · · · < wk ≤ 1. This validates
the above assumption.)

Algorithm 4 Simplified Efficient algorithm to compute
Γ−limit for ratio-cut.
Input: A weighted graph, G, with bucketed weights w1 <

w2 < · · · < wj . Number of clusters required - m.
Output: N - A representation of the subspace spanned by

the Γ−limit of the minimizers.
1: Set i = k.
2: while Number of connected components of G≥wi

is
greater than or equal to m do

3: Set i = i− 1 {We refer to this as an MST-Phase}
4: end while
5: Let {Ci}, i ∈ {1, 2, · · · , nc} be the connected compo-

nents in G≥wi
.

6: Let ICi
be the vector

ICi(x) =

{
1/
√
|Ci| if x ∈ Ci

0 othwerwise
(27)

7: Construct the matrix N with ICi as the column vectors.
8: Let G1 be the graph with the vertex set same as G. Let
L1 be the corresponding Laplacian.

9: Let L1 given by N t × L1 ×N .
10: Calculate the first m eigenvectors of L1 and construct A

using these eigenvectors as columns.
11: return N ×A.

Thus we have the efficient algorithm 4. In algorithm
4, one simply thresholds the graph to obtain connected
components1. The matrix N is constructed, whose columns
are indicator vectors of the connected components. It is then
easy to see that the output of algorithm 4 is a solution to the
optimization problem

minimize
H∈Rn×k

Tr(HtLH)

subject to HtH = I

H = NX for some X

(28)

Thus, another interpretation of the Γ−limit is - It is a solu-
tion to the ratio cut optimization problem with an additional
constraint of belonging to the column space of N . (Remark:
Observe that the matrix NN t is a projection matrix onto this

1. Thresholding a graph to obtain connected components is equiv-
alent to constructing an MST and removing the lower weight edges.
Hence we refer to this as MST phase.

subspace.) We refer to the output of the algorithm 4 as Power
Ratio cut or shortly PRcut.

Time Complexity: Let n be the number of data points.
Assume that |V | ∼ O(n) and |E| ∼ O(n). Observe that
steps 1-4 mimics the construction of minimum spanning tree
[25], and hence is O(n × log(n)). In steps 5-7, observe that
we are constructing a sparse matrix and hence is O(nc).
Since N and L1 are sparse matrices, step 9 is O(n). Step 10,
assuming the worst case scenario of L1 being dense matrix,
is O((nc)

3). Thus the complexity of algorithm 4 is

O(n× log(n)) +O((nc)
3) (29)

Under the additional assumptions that nc ∼ O(m) and
m << n we have that the complexity of algorithm 4 is
O(n× log(n)).

Remark: In the trivial case of considering the discretized
weights as all equal to 1, we have that the PRcut is identical
to Ratio cut.

5 APPLICATIONS AND ANALYSIS

It is clear from above that PRcut is an amalgam of MST
based clustering and spectral clustering. It combines ‘good’
properties of both these methods. In particular it is faster
than spectral clustering and more accurate than MST based
clustering. All the eigenvector computations are carried out
using the SciPy sparse library [26]. The code for generating
the results used in this article is available at [27].

Since PRcut is designed to work on weights which take a
discrete set of value, one needs a discretization scheme. This
discretization scheme is sometimes referred to as bucketing
of weights. In this article we use K-means based bucketing.
Observe that the problem of bucketing weights can be
rephrased as - combine the weights into buckets so that
weights within a bucket are ‘alike’. This is once again a
clustering problem in itself and hence one can use any
clustering method to cluster the weights. K-means is a
simple choice known for its efficiency and simplicity. In this
case each weight is represented by the mean of the cluster
to which the weight belongs to.

5.1 Comparison with MST based clustering
Compared to MST based clustering PRcut does not break
ties arbitrarily. Instead PRcut takes into consideration the
sizes of the clusters. For example consider a simple graph
as in figure 1(a). The solid black lines indicates a choice of
MST constructed. Figure 1(b) indicates a solution obtained
by MST based clustering. Given the MST from figure 1(a),
since MST based clustering picks the edge randomly, there is
1/2 chance that figure 1(b) is obtained as a solution. On the
other hand, since PRcut takes into consideration the sizes of
the clusters, only the solution in figure 1(c) is obtained. Thus
PRcut performs better in such cases.

5.2 Comparison with spectral clustering
Notably, PRcut preserves several good properties of spectral
clustering as well. In particular, it preserves the property of
being able to discover non globular clusters. For instance
consider the data as in figure 2(a). Figure 2(b) indicates the
results obtained using the spectral clustering method. Same
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Fig. 1. Simple example illustrating the difference between PRcut and MST based clustering. (a) An example graph. Solid lines indicates a maximum
spanning tree. (b) A result obtained using MST based clustering. (c) Result obtained using PRcut. Observe that PRcut provides better results
compared to simple MST based clustering.
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Fig. 2. Toy example illustrating the robustness of PRcut when compared
to Ratio cut (Rcut). (a) Two circles dataset [28] with noise=0.07. (b) Re-
sult obtained using Ratio cut on the two circles dataset with noise=0.05
.Same result is obtained with PRcut as well. (c) Result obtained using
PRcut on two circles dataset with noise=0.07. (d) Result obtained using
Ratio cut on two circles dataset with noise=0.07.

result is obtained using Power Ratio cut as well. However, as
the noise increases, spectral clustering breaks down (figure
2(d)) while PRcut is slightly more robust (figure 2(c)). This
is also illustrated in figure 3.

Another important property of spectral clustering meth-
ods is that they penalize dissimilar sized clusters. This effect
is preserved for PRcut as well. To verify this we conduct the
following experiment - Consider the image in figure 4(a).
The image is divided into 3 components - black component
on the left, white component on the right and the boundary
component in between. This is a synthetic example of the
constant gradient at boundaries between classes, referred
to as flatzones. Clustering the above image we expect the
boundary component to be split into two parts - one corre-
sponds to the black component and another corresponds to
the white component. Figure 4(b) and figure 4(c) illustrate
the result obtained with PRcut and Ratio cut.
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Fig. 3. Plot of the adjusted mutual information plotted vs the noise in
the two circles dataset [28]. The values are averaged over 10 iterations.
Note that at higher noise levels, PRcut performs better than Ratio cut.

(a) (b)

(c)

Fig. 4. (a) A synthetic example of the of a ramp image (constant horizon-
tal gradient). (b) Result obtained using PRcut (c) Result obtained using
Rcut. Observe that PRcut and Rcut gives similar partitions.
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Fig. 5. Plot to illustrate that both PRcut and Rcut penalize differently
sized clusters in the same way. We change the size of black component
in figure 4(a) initially before clustering and plot the size of the boundary
allotted to the black component after clustering. X-axis indicates the
size of the black component initially before clustering. Y-axis indicates
the size of the boundary allotted to the black component. Note that, for
both PRcut and Rcut, the size of the boundary component allotted to
the black component reduces as the initial size of the black component
increases. This allows us to conclude that PRcut penalizes dissimilar
clusters as well.

As the initial size of the black component varies, due
to the above property of spectral clustering, we expect the
amount of “boundary component” allotted to the black
component to reduce. This is verified in figure 5 for Rcut.
This is also the case for PRcut as well as shown in figure 5.
Hence, one can conclude that PRcut preserves the property
of penalizing dissimilar sized clusters.

The main difference between spectral clustering methods
and PRcut is in the case of run time. Due to preprocessing
the data using MST, the size of the data is reduced dras-
tically and hence computing time is saved. As discussed
earlier, under some conditions the running time of PRcut
increases asO(n×log(n)) while spectral clustering methods
take O(n3/2) [5]. This is illustrated in figure 6. Note that
for small problems the difference performance of PRcut
and Rcut is negligible. However, as the size of the problem
increases, PRcut performs better than Rcut.

5.3 Multiscale Combinatorial Grouping (Segmentation)
One of the main applications of spectral clustering is in the
domain of image segmentation. Normalized cuts have been
widely used to segment an image into meaningful regions
[5], [14], [31], [32]. Normalized cuts is used to globalize the
local information. In [14], the authors propose a sequence
of steps to obtain segmentation of the images. One of the
most important steps in the pipeline is normalized cut. The
following lines are taken from [14] -

The normalized cuts criterion is a key globalization
mechanism of recent high-performance contour
detectors · · · . Although powerful, such spectral
graph partitioning has a significant computational
cost and memory footprint that limit its scalability.

In this section, we use exactly the same pipeline as that in
[14], but instead of using spectral clustering, we use PRcut.
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Fig. 6. Time complexity of PRcut vs Rcut as a function of data size on
blobs dataset [29] with parameters - n_features = 2, centers = 2.
Time is measured in seconds. Observe that for small data sizes the
difference between PRcut and Rcut is not significant, while for large data
sizes it varies considerably. The variance in the timing of the ratio cuts
is due to the optimizations of the SciPy sparse library [26].

TABLE 1
Table indicating p-values on BSDS dataset under the hypothesis that

the average Fop and Fb scores of Ncut and PRcut are equal.

(p - values) Fop Fb

PRcut vs Ncut 0.2902 0.2819
dPRcut vs dNcut 0.3499 0.6884

The authors then proposed a heuristic method to calculate
the eigenvectors faster, termed as dNcut. This method re-
duces the eigenvalue problem and hence is faster and has
less memory requirements, a technique similar to Nystrom’s
method [12], [33].

Since, heuristically PRcut works by reducing unneces-
sary computation, PRcut is compatible with other reduction
techniques. Hence using the same reduction technique as
in [14], we have another technique called dPRcut. Also, all
these methods have a multiscale version as well.

These methods were experimentally compared using the
BSDS500 dataset [32]. Few selected contour saliency maps
[34] (also referred to as UCM, ultrametric contour maps
in [35]) are shown in figure 7. The precision recall curves
were plotted using the techniques described in [30], shown
in figure 8. From this it can be seen that the results do
not differ by much. Scatterplots in figures 8 (c), (d), (e), (f)
corroborate this observation. Under the null hypothesis that
the methods are equivalent, the p-values calculated using
the t-test are given in table 1. It is clear that there is no
sufficient evidence to claim that one method is superior to
the other in terms of results. Note that dPRcut does not
vary much compared to dNcut, thus establishing that PRcut
is compatible with other reduction techniques as well.

However, PRcut is much faster than the Ncut as shown
in figure 9. In fact, the time of PRcut is comparable to dNcut
as well. Using the extra layer of approximation in dPRcut
and dNcut did not show much of a difference since the size
of the images is limited.
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Fig. 7. Selected Results from BSDS500. First-column: Original Image, Second-Column: Groundtruth, Third-Column: PRcut, Fourth- Column:
Normalized cut, Fifth-Column : Multiscale PRcut, Sixth-Column : Multiscale Ncut
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Fig. 8. (a) Shows the precision-recall curves of the measure Fb as defined in [30]. (b) Shows the precision-recall curves of the measure Fop

as defined in [30]. ‘dPRcut Multi’ and ‘dNcut Multi’ indicate the multiscale versions of PRcut and Ncut respectively. (c) Scatter plot of optimal Fb

measure on individual images between PRcut and Ncut. (c) Scatter plot of optimal Fop measure on individual images between PRcut and Ncut. (e)
Scatter plot of optimal Fb measure on individual images between dPRcut and dNcut. (f) Scatter plot of optimal Fop measure on individual images
between dPRcut and dNcut. Observe from (c)-(f) that there is no major difference in accuracy between PRcut and Ncut measures. All results are
calculated on BSDS500 dataset with the MCG algorithm, using either a NCut or a PRCut step.
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Fig. 9. Box plot of the time taken by various methods. The time is on Y-
axis and is measured in seconds. The time taken is calculated from the
input to the final segmented output obtained by MCG on the BSDS500
dataset.
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Fig. 10. Top row: Groundtruth images of Pavia Center, Pavia University
and Salinas hyperspectral images. Bottom row: Results using PRcut of
Pavia Center, Pavia University and Salinas hyperspectral images

5.4 Hyperspectral Data

Clustering is also referred to as unsupervised learning. So-
lutions to clustering problem, unlike supervised learning,
cannot offer black box solutions [7], [36]. It is usually the
case that several aspects of clustering are dictated by the
domain knowledge. One of the main advantages of PRcut
is that it offers better control over the clustering procedure
than spectral clustering. We now describe the application of
spectral clustering to hyperspectral data. These results are first
reported in [37].

A feature of the hyperspectral data is that most of the
data remains unclassified (class 0). Thus the classes are not
balanced and hence spectral clustering methods cannot be
used directly. Moreover, spectral clustering methods cannot
be easily adapted to such cases as well. However, since
PRcut has two phases - MST phase and spectral clustering,
one can suitably modify the algorithm to requirements. In
the case of hyperspectral data, this is obtained by ignoring
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Fig. 11. (a) Scatter plot of the accuracy of normalized cuts vs power ratio
cuts on hyperspectral data. The red line indicates the line x = y. As one
can see, all the points lie above or on the line x == y. Hence power
ratio cut results are better than normalized cuts (or at least equal). (b)
Plots of executing times vs the number of pixels in the image. It is easy
to observe that PRcut scales much better compared to normalized cuts.

the small clusters after the MST phase in PRcut (explained
in detail in [38]). This allows to obtain higher accuracy with
PRcut compared to Rcut, as observed in case of Salinas
dataset in table 2.

We have considered three hyperspectral datasets - (a)
Salinas (512 × 217) (b) Pavia University (610 × 340) (c)
Pavia Center (1096 × 715). For each of the datasets, we
have considered three ratios - 0.7, 0.8, 0.9, of their sizes.
Each experiment was repeated 10 times and have taken
the average. Also, the datasets were over segmented and
the accuracy is calculated by assuming that each cluster
is labelled with the largest groundtruth label. That is, let
C = {C1, C2, · · · , Cn} be classes obtained by clustering
and let C∗ = {C∗1 , C∗2 , · · · , C∗m} indicate the groundtruth
classes. Let N(Ci, C

∗
j ) be the number of pixels labelled Ci

and C∗j . The accuracy is then given by

accuracy(C,C∗) =

∑
i(maxj N(Ci, C

∗
j ))

Total number of pixels
(30)

The timing is measured in seconds. All experiments are
done on Intel(R) Xeon(R) CPU E5620 at 2.40GHz with RAM
size of 16 GigaBytes.

An example of the results obtained of the PRcut on
subsets of these images and their groundtruth is shown in
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TABLE 2
Table indicating the average times and accuracy of Ratio cut and Power Ratio cut on hyperspectral data. The timing is reported in seconds. The

accuracy is measured by (30).

Data Process
Time

Rcut PRcut
Time Accuracy Time Accuracy

Ratio = 0.7
Pavia University 129.33 95.15 0.70 27.38 0.74

Pavia Center 530.95 435.01 0.76 91.38 0.77
Salinas 142.59 94.27 0.28 24.92 0.71

Ratio = 0.8
Pavia University 194.14 151.00 0.72 34.06 0.78

Pavia Center 623.74 535.79 0.78 104.46 0.78
Salinas 202.98 139.31 0.36 26.88 0.74

Ratio = 0.9
Pavia University 279.42 163.66 0.75 40.71 0.76

Pavia Center 830.18 633.638 0.79 115.09 0.79
Salinas 271.56 170.28 0.43 31.63 0.78

figure 10. Average of accuracy and times for each of the
methods is shown in table 2. Scatter plots of accuracy and
times are also plotted in figure 11. It is easy to see from the
table that PRcut is faster and gives better accuracy than ratio
cuts (or at least equal).

5.5 High dimensional data

Another characteristic of the data is its dimensionality. In
high dimensions, due to the curse of dimensionality [41],
[42], it is difficult to measure the distances accurately and
hence difficult to construct an edge weighted graph. The
distance between points become unreliable in higher dimen-
sions. Thus spectral clustering cannot be directly applied for
clustering high dimensional data. Usually a preprocessing
step is applied to the data to reduce the dimension, such
as principal component analysis (PCA). The reduced data is
then used for further processing.

Here the MNIST dataset [43] is used to experiment with
high dimensions. The number of data points are 42000 and
each data point has a dimension of 784. The dataset if first
processed with PCA to reduce the dimensionality. Figure 12
shows the results on the selected classes. Table 3 shows the
results obtained with PRcut and spectral clustering on ran-
domized samples of the datasets, with varying dimension.
It is clear from these results PRcut is faster than Rcut while
preserving the precision of the results.

6 CONCLUSION

To summarize, we have proposed a faster alternative to
the spectral clustering - Power Ratio cut or PRcut. This
was obtained by considering the Γ−limit of the spectral
clustering. Intuitively PRcut uses maximum spanning tree
to reduce the size of the dataset and then solves the ap-
propriate eigenvalue problem. This results in a much faster
algorithm than spectral clustering. Also, by considering the
Γ−limit several good properties of spectral clustering such
as - penalizing unequal cluster distribution, ability to detect
non-convex clusters is preserved. PRcut is compared with
both MST based clustering and spectral clustering consid-
ering several toy examples. Its efficiency as an alternate to
Ncut is exhibited by suitably replacing Ncut in the MCG
pipeline with PRcut and comparing the results on BSDS.
Results of comparison with Ncut on hyperspectral datasets
and MNIST dataset are also provided. The code to generate
the results in this paper is available at [27].

APPENDIX

PROOF OF THEOREM 2
Proof. We first show that any matrix H of the form AKY is
a solution to (7). We have

Tr((AKY )tL(AKY )) = Tr(Y t(AK)tL(AK)Y )

= Tr((AK)tL(AK))

= Tr(Kt(AtLA)K)

since Y is an orthogonal matrix. Now, AtLA is of the form
λ1 0 · · · 0
0 λ2 · · · 0
0 · · · · · · 0
0 0 · · · λm


So, we have

Tr(Kt(AtLA)K) = λ1 + λ2 + · · ·+ λl1 + λ(m)Tr(X
tIX)

= λ1 + λ2 + · · ·+ λm

= minTr(HtLH)

Since, the minimum value of Tr(HtLH) is equal to λ1 +
λ2 + · · ·+ λm [24]. To show the other side, note that the set
of all the solutions of (7) is

{H ∈ Rn×m | Tr(HtLH) = λ1 + λ2 + · · ·+ λm}
LetA = [e1, e2, · · · en], i.e the matrix obtained by stacking all
the eigenvectors in columns. Then any H can be written as
AZ where ZtZ = I. Now, note that since {λ1, λ2, · · · , λn}
can be arbitrary, we need to have that

Zij = 0 if λi > λ(m).

Thus we can ignore the lower part of matrix Z. If A =
[[e1, e2, · · · el]], then we have thatH is of the formAZ where
Z is a l ×m matrix such that ZtZ = I. Now let,

Z =

[
Zl1,l1 Zl1,m−l1
Zl2,l1 Zl2,m−l1

]
Also, note that AtLA is of the form

λ1 0 · · · 0
0 λ2 · · · 0
0 · · · · · · 0
0 0 · · · λl


Since Z should satisfy Tr(ZtAtLAZ) = Tr(HtLH) = λ1+
λ2 + · · · + λm, we need to have that Zl1,l1 is full rank, and
Zt
l1,l1

Zl1,l1 = I. Hence Z must be of the form KY where K
is a matrix of the form (23) and Y is any orthogonal matrix.
Hence all the solutions to (7) must be of the form AKY .
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(a)
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(c)

Fig. 12. Results obtained on selected classes of the MNIST dataset. (a) Average of the groundtruth classes. (b) Average of clusters obtained by
Rcut (c) Average of clusters obtained by PRcut.

TABLE 3
Table indicating the average times and accuracy of Ratio cut and Power Ratio cut on MNIST dataset. The timing is reported in seconds. The

accuracy is measured by (30). ARI indicates Adjusted Rand Index [39], and AMI indicates Adjusted Mutual Information [40].

Data
Size

Process
Time

Rcut PRcut
Time Accuracy ARI AMI Time Accuracy ARI AMI

Dim = 10
4318 0.56 2.03 0.54 0.40 0.52 1.33 0.54 0.40 0.51
8489 1.29 15.36 0.56 0.42 0.54 7.48 0.56 0.42 0.54
12634 2.17 33.61 0.56 0.43 0.55 26.11 0.56 0.43 0.55

Dim = 15
4318 0.73 2.03 0.56 0.45 0.57 1.38 0.56 0.45 0.57
8489 1.97 12.52 0.57 0.46 0.59 7.90 0.57 0.47 0.59
12634 3.18 36.13 0.58 0.49 0.61 25.49 0.58 0.49 0.61

Dim = 20
4318 0.94 2.86 0.57 0.46 0.58 1.87 0.57 0.46 0.58
8489 2.96 11.96 0.58 0.49 0.61 9.84 0.58 0.49 0.61
12634 4.34 32.66 0.59 0.51 0.63 24.23 0.59 0.51 0.63

PROOF OF LEMMA 1

Proof. One side follows from the relation

H(M(H ′)) ⊇ H ′

For the other side, let H be some matrix which spans
the same subspace as Ĥ = AkKY . Then there exists an
orthogonal matrix Q such that HQ = Ĥ . Hence H =
ĤQt = AkKYQ

t. This is still in the form AkKY where
Y is some orhogonal matrix.

PROOF OF PROPOSITION 2

Proof. To prove (a), note that since Ci is a connected com-
ponent of G≥wj , it is also a union of connected components
of G≥wi for all i >= j. Also, we know that if L denotes a
Laplacian of the graph, then L1Ci = 0 if Ci is a connected
component in the graph. Hence proved.

Since (a) is true, we know that C is a solution to (22)
at level j. Thus all matrices of the form CY are solutions.
Now, since Tr(CtLiC) = 0 for all i >= j, any vector c
belonging to the column space of the solution must satisfy
ctLic = 0 for all i >= j. This implies that c belongs to the
column space of the 0 eigenvectors, which are indicators of
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connected components. Hence c must belong to the column
space of the indicators of connected components for each
Gi, i >= j. This implies that c belongs to the column space
of indicators of connected components of G≥wj

, and hence
belongs to the column space of C . Hence proved.
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