
HAL Id: hal-01516649
https://hal.science/hal-01516649v1

Preprint submitted on 6 May 2017 (v1), last revised 25 Jun 2020 (v4)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Power Spectral Clustering
Aditya Challa, Sravan Danda, B S Daya Sagar, Laurent Najman

To cite this version:
Aditya Challa, Sravan Danda, B S Daya Sagar, Laurent Najman. Power Spectral Clustering. 2017.
�hal-01516649v1�

https://hal.science/hal-01516649v1
https://hal.archives-ouvertes.fr


1

Power Spectral Clustering
Aditya Challa, Student Member, IEEE, Sravan Danda, Student Member, IEEE B. S. Daya Sagar, Senior

Member, IEEE and Laurent Najman

Abstract—
The problem of clustering has been an important problem

since the early 20th century and several possible solutions were
proposed. With the rise of computing machines clustering has
become an important part of many data mining tasks, focussed
on fast implementations. An important task related to clustering
is image segmentation. In the set of solutions to the clustering
problem, the method of spectral clustering has obtained wide
interest due to its ability to detect non-convex clusters in the
data. In this article, we propose a fast alternative to the spectral
clustering, obtained by taking the Γ−limit. We explore the links
between the new method and MST based clustering. We then
show that the proposed method is as good as the spectral
clustering with the help of experiments on several datasets. We
also show that the new method is scalable to large data unlike
the classical spectral clustering methods.

Index Terms—Image Interpolation, Mathematical Morphology,
Morphological Interpolation.

I. INTRODUCTION

The problem of clustering can be stated as - given a set
of data {xi}, partition the set into groups such that elements
in the same set are ‘similar’ and elements belonging to the
different sets are ‘dissimilar’. This has been a problem of
interest since the early 20th century and is widely used in
several areas of application. The vast literature available on
the topic of clustering shows the extent of applications for a
solution to the clustering problem. An important problem in
computer vision - Image segmentation can be formulated as a
clustering problem [1], [2]. Clustering documents is also used
in searching for similar documents of interest [3], anomaly
detection [4], and market research [5]. A comprehensive
monograph of various aspects of clustering can be found in
[6], [7], [1].

A specific solution to the clustering problem is given by
the use of spectral methods, referred to as spectral clustering
[8]. Contrasting with the popular K-means algorithm, spectral
clustering methods are able to detect the non-convex clusters
and work well in high dimensions. These methods construct a
graph from the data and use the eigenvectors of the laplacian of
the graph constructed from the data. However the calculation
of the eigenvectors, which is computationally hard and prone
to errors. Several efforts were made to increase the speed
and accuracy of the spectral clustering methods, including
parallelizing [9]. In [10] the authors propose to reduce the
size of the similarity matrix to speed up the normalized cuts
procedure for image segmentation [2].
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In [11] the authors proposed to take the limit of the minimiz-
ers of the energy function in [12] called power watershed. This
is referred to as the Γ−limit. The study of Γ−limits is referred
to as the Γ−convergence. Γ−convergence is widely used in
the areas of computer vision and in the field of calculus of
variations (See chapter 5 of [13]). In [14] the power watershed
framework was extended and a simple generic algorithm was
proposed to calculate the limit of minimizers under some
conditions. In this article we calculate the gamma limit of the
spectral clustering starting from the generic algorithm given in
[14]. We refer to this Γ−limit as the power spectral clustering
or Power Ratio cut or more simply PRcut.

In section II we introduce the background of various con-
cepts used in the rest of the article - spectral clustering,
MST clustering and Γ−convergence. In section III we start
with an generic algorithm 1 to calculate the gamma limit,
and progressively simplify and characterize different parts
of the algorithm to calculate the gamma limit, ending with
an implementable version in algorithm 4. In section IV we
further increase the efficiency by identifying the commonal-
ity between eigenvectors and connected components of the
laplacian. In section V we cover various issues which arise
in practice due to finite precision and numerical errors of
calculating the eigenvalues. In particular, we make few simple
and reasonable assumptions so that the algorithm can be
implemented robustly in practice.

The main contributions of the article are:

(1) An algorithm to calculate the ‘equivalent’ Γ−limit of
spectral clustering is proposed.

(2) The algorithm is analyzed and tested on various datasets
to show empirically that it gives competing results to other
comparable algorithms.

(3) The main problem with spectral clustering is that, specral
clustering methods lacks speed (base algorithm being
O(n3)) and scalability. Several attempts were made in
improving the speed and scalability [15], [16], [17], [9].
In [15] the authors state -

While it is useful to define such preprocessors, simply
possessing a knob that can adjust computational
complexity does not constitute a solution to the
problem of fast spectral cluster- ing. What is needed
is an explicit connection between the amount of data
reduction that is achieved by a preprocessor and the
sub- sequent effect on the clustering.

In this article, as a by product of calculating the Γ−limit
for spectral clustering, we have a preprocessor which can
be shown to be consistent with the results of spectral
clustering.

(4) We propose an alternate method to handle the ‘small
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clusters’ problem with the MST based clustering.
(A summary of the results - both speed and accuracy for

image segmentation will be shown in the introduction.)

II. BACKGROUND

In this section we provide the background for various
concepts from spectral clustering, MST based clustering and
Γ−limit, required for the rest of the article. In the later sections
we show that the Γ−limit of spectral clustering is infact
closely related to MST based clustering.

Let X = {xi} represents the dataset, where xi denotes
each data entry. Let xi ∈ Rn, where n is the number of
features. One can construct a similarity graph G = (V,E,W ).
The vertex set, V , is taken to be the set of all data entries,
each entry xi is represented by a vertex. The edge set E is a
subset of V × V . W : E → R+ denotes weights (similarities)
assigned to each edge, where R+ denotes the set of positive
real numbers. wij denotes the similarity between xi and xj .
There are several choices for constructing the edge set and
the similarity depending on the domain of application [8]. The
choices made will be made explicit when required.

Let D be a diagonal matrix, diag(d1, d2, · · · , dn) such that

di =
∑
j

wij (1)

The Laplacian of a graph is then defined by

L = D −W (2)

We know that the Laplacian is a symmetric positive-semi
definite matrix, and hence has real eigenvalues greater
than or equal to 0, represented by 0 = λ0 ≤ λ1 ≤
· · · ≤ λn−1. The corresponding eigenvectors are denoted by
{e0, e1, · · · , en−1}. Let A ⊆ V . Denote

1A(x) =

{
1 if x ∈ A
0 otherwise

In this article we also work with exponentiated graphs -
weighted graphs whose weights are raised to a power p. W (p)

denotes the weight matrix of the exponentiated graph, i.e
W

(p)
ij = wp

ij . Let D(p) denote the matrix as constructed in
equation (1) with weights wp

ij . Let L(p) = D(p) −W (p).
G≥w denotes the thresholded graph, with vertex set V and

edge set consisting of only those edges whose weight is greater
than or equal to w.

A. Spectral Clustering

Spectral clustering methods work by projecting the data
onto a subspace, such that the traditional methods for clus-
tering work well on this projected dataset. There are 3 steps
which form the spectral clustering methods:

1) Given a set of points {xi} (dataset), construct a graph
with each point as a vertex. The edge set and the weights
can be taken in a number of ways, as we shall discuss
shortly. Let G denote the graph obtained.

2) Construct the Laplacian for the obtained graph and calcu-
late the first k eigenvectors of the laplacian. The value of

k is fixed based on the number of clusters one would like
to obtain. let K be the matrix such that the ith column
of K is the ith eigenvector ei−1.

3) Using rows of the matrix K as new representation of
the points xi, use traditional clustering methods such as
k-means to obtain the final clusters.

The laplacian in (2) is known as an unnormalized laplacian.
Some consider the normalized laplacians, L1, L2 as well [2],
[18].

L1 = I −D−1W L2 = I −D−1/2WD−1/2 (3)

It is not completely understood why spectral clustering
methods work. However, there exists several results which
provide insight into why these methods work.

Proposition 1. Suppose the graph G has k connected compo-
nents, {A1, A2, · · · , Ak}. Then the basis of the vector space
spanned by the first k eigenvectors is {1A1

,1A2
, · · · ,1Ak

}.

The proposition 1 states that, if indeed the graph has k
connected components, considering the first k eigenvectors
would result in identifying the right subspace to project the
data on, such that step 3 of the spectral clustering method
above would work. Also, one can also show rigorously that,
the eigenspaces of a matrix and its perturbation are ‘close’
by. These two observations allow us to infer that the spectral
clustering methods would work in most cases [8].

1) Different formulations of spectral clustering: The spec-
tral clustering can also be analyzed in an optimization frame-
work. Given a similarity graph G = (V,E,W ), consider the
graph cut measure

cut(A1, A2, · · · , Ak) =
1

2

k∑
i=1

W (Ai, Ai) (4)

where
W (A,B) =

∑
i∈A;j∈B

wij (5)

A denotes the complement of A in the vertex set V . k
denotes the size of the partition required. Note that cut(., .)
measures how dissimilar the clusters are by taking the sum
of the weights of the edges connecting distinct clusters, and
hence can be used to partition a graph. In practice, however,
minimizing the cut(., .) does not give good results, since it
generally separates one vertex, and gives degenerate solutions.
To solve this, it was proposed to use a slight modification of
the above cost function. Ratio cut [8] is given by

ratiocut(A1, A2, · · · , Ak) =
1

2

k∑
i=1

W (Ai, Ai)

|Ai|
(6)

where |Ai| is the cardinality of set Ai. Note that ratio cut
penalizes small clusters and hence avoids degenerate solutions.
Let G be a graph constructed from the data set, and let
L denote its corresponding Laplacian. It can be shown that
minimizing the ratiocut(., .) for k clusters is approximately
equivalent to solving the optimization problem (7) [8].

minimize
H∈Rn×k

Tr(HtLH)

subject to HtH = I
(7)
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where, I is the identity matrix. From the Rayleigh-Ritz theorem
it is known that the solution to this optimization problem
is obtained by considering the first k eigenvectors of L as
columns of H [19].

Another modification of the cut() cost function, proposed
in [2] is the Ncut cost function given by

Ncut(A1, A2, · · · , Ak) =
1

2

k∑
i=1

W (Ai, Ai)

vol(Ai)
(8)

where vol(Ai) =
∑

i di. It can be shown that for k clusters,
Ncut(., .) is approximately equivalent to [8]

minimize
H

Tr(HtLH)

subject to HtDH = 1
(9)

It is known that the solution to this optimization problem is
obtained by taking the first k eigenvectors of I −D−1W as
columns of H [19].

The first k eigenvectors of the respective laplacians only
gives a solution to the optimization problems (7) and (9). In
this article we characterize all the solutions to the optimization
problems (7) and (9) in theorem 2 and is one of the contribu-
tions of this article.

B. Γ-convergence

Let min{Fm(x) : x ∈ X} be a family of minimum
problems. The question of interest is the limiting behaviour of
this family as m→∞. Ideally this would be substituted by a
single minimum problem min{F (x) : x ∈ X} which captures
the limiting behavior. The advantages of such a substitution
are - 1) This gives an approximate solution to the family
of minimizers 2) Dependence on a parameter is nullified 3)
Usually this results in a new method which would present a
different model which was previously modeled with Fm. This
is the problem which the theory of Γ−convergence addresses
[13]. This method was recently used in [11] to calculate the
Γ−limit of the cost function in [12].

Let 1 ≥ λ0 > λ1 > · · · > λk ≥ 0. Consider the cost
function

Qp(x) =

k∑
i=0

λpiQi(x) (10)

Our main interest is in calculating the limit of minimizers of
Qp(x) as p→∞. Observe that the function itself converges to
0 at every point if λk < 1, and hence minimizers of the limit
would be the whole space. In [14] a generic algorithm was
proposed to calculate the limit of minimizers of (10). Assume
that we are interested in finding solutions in a compact set C.
Define

M0 = arg min
x∈C

Q0(x) (11)

i.e, M0 is the set of minimizers for Q0. Now recursively define,

Mi = arg min
x∈Mi−1

Qi(x) (12)

Theorem 1. Let X∗ be the union of the sets of minimizers of
Qp (as defined in (10)) for all p. Then every limit point of X∗

belongs to the set Mk.

Refer [14] for the proof of the theorem 1. Intuitively, one can
interpret the above theorem in terms of scale. If one interprets
each λi as a scale, then theorem 1 states - the Γ−limit (limit of
minimizers) belongs to the set of solutions which minimizes
all the cost functions at different scales λi starting from the
largest λi. The main consequence of theorem 1 is that one can
now have an algorithm to calculate the Γ−limit [14].

Algorithm 1 Generic Algorithm to Compute Γ−limit.

Input: Function Qp(x) =
∑k

i=1 λ
p
iQi(x), where 0 ≤ λ1 <

λ2 < · · · < λk ≤ 1.
Output: M1

1: Mk = arg minQk(x) where x ∈ C
2: for i from k to 1 do
3: Compute Mi = arg minQi(x) where x ∈Mi+1

4: end for

Theorem 1 ensures that the Γ−limit belongs to the output
of algorithm 1. However, the converse is not true in general
- all the solutions obtained from algorithm 1 need not be a
Γ−limit. However, it can be shown that they are equivalent.
(Remark : ‘equivalent’ in the sense that the value of the cost
function is same for all p.)

Proposition 2. Let x∗ be a Γ−limit for Qp. Let x be a solution
obtained from algorithm 1. Then we have that, for all p

Qp(x∗) = Qp(x) (13)

The proof of the proposition 2 is straightforward. Thus,
although algorithm 1 does not calculate the strict Γ−limit,
we have that it calculates equivalent solutions as far as the
cost function is concerned.

In this article, our main focus is to calculate the Γ−limit of
the spectral clustering problem, In particular we are interested
in calculating the limit of the minimizers of (7) for exponen-
tiated graphs, Gp = (V,E,W (p)) as p→∞.

C. Maximum Spanning Tree Clustering

Let G = (V,E,W ) be a connected similarity graph. A
spanning tree is a connected acyclic subgraph of G whose
vertex set is V . Each spanning tree can be assigned a numerical
value by taking the sum of the weighs of the edges in the tree.
A spanning tree with the maximum weight is known as the
maximum spanning tree (MST). There are several clustering
methods based on MST [20]. Although MST based clusters
is not so prevalent in clustering general data, for the image
segmentation slight variations of MST based clustering was
shown to be very useful, thanks to its equivalence to water-
sheds [21], [22]. A generic MST based clustering algorithm
is
1. Given a similarity graph G = (V,E,W ), construct a MST,
T , and order the edges of T according to the weights.

2. If the required number of clusters is equal to nc, add edges
starting from highest weight until we reach the number of
components nc. The ties are broken arbitrarily.
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MST based clustering is categorized under graph based cluster-
ing and is related to the hierarchical approaches. In fact MST
based clustering as described above is equivalent to single link
hierarchical clustering. MST based clustering is prone to noise
and outliers.

In practice, MST clustering gives small clusters and hence
is not used widely. Also, the arbitrariness in breaking the ties
gives non uniform results. Here we propose a different method
in algorithm 2 to handle the small clusters problem. To our
knowledge this has not been used before.

Algorithm 2 Minimum Spanning Tree Clustering
Input: A similarity graph, G = (V,E,W ). Assume there are

k distinct weights 0 < w1 < w2 < · · · < wk < 1. Number
of clusters, m. The edge set E is ordered, with ties
breaking arbitrarily. threshComp parameter indicating
the minimum required size of the component.

Output: Cluster labels
1: set i = k
2: while number of components in G≥wi

whose size is
greater than threshComp is greater than m do

3: i = i− 1
4: end while
5: Let Ĝ = G≥wi

6: for each edge e in E whose weight is wi do
7: Add edge e to Ĝ.
8: if Number of connected components in Ĝ is equal to m

then
9: Break.

10: end if
11: end for
12: Give a unique label to each of the m components.
13: Add all the points which are unlabelled to a queue Q
14: while Q is not empty do
15: Take a point q ∈ Q.
16: if no neighbor of q is labelled then
17: continue
18: else
19: assign the most dominant label in the neighborhood

of q to q
20: end if
21: end while

Heuristically, algorithm 2 makes sure that the major com-
ponents are not merged and initially ignores the small clusters.
Then each point of the small cluster is then assigned a label
according to the neighborhood. Figure 1 shows the results
obtained with algorithm 2.

III. GAMMA LIMIT OF SPECTRAL CLUSTERING

Consider the optimization problem in (7). In the case of
exponentiated graphs, the optimization problem is restated as

minimize
H∈Rn×k

Tr(HtL(p)H)

subject to HtH = I
(14)

In this section, we calculate the Γ−limit (limit of minimizers)
of the optimization problem in (14) as p → ∞. The starting
point of calculation is the generic algorithm 1.

(a) (b) (c)

Fig. 1. MST based clustering. (a) Original Image. (b) and (c) 2 clusters
obtained using algorithm 2.

We need some more notation. Assume 0 < w1 < w2 <
· · · < wk < 1 indicate the k distinct weights any edge
can take. Denote by Gi the graph with the vertex set same
as before, but the edge set consisting of only those edges
whose weights are equal to wi. Accordingly, one can define
the laplacian for this graph Lk. Then we have,

Tr(HtLH) =

k∑
i=1

wiTr(H
tLiH) (15)

For the exponentiated graphs,

Tr(HtL(p)H) =

k∑
i=1

wp
i Tr(H

tLiH) (16)

Note that the above equation is in the form of (10) and hence
we can use the generic algorithm 1 to calculate the gamma
limit.

Let M denote the set of all possible m dimensional sub-
spaces of Rn. Note that each subspace in M can be associated
with a n×m matrix H , such that the column space of H is the
subspace. This matrix is not unique. Also, let H(M) denote
the set of all matrices whose column space is equivalent to
some subspace in a set of subspaces, M . Let M(H) denote
the set of all column spaces of matrices in a set of matrices
H . The following relations hold true.

M(H(M ′)) = M ′

H(M(H ′)) ⊇ H ′

where M ′ and H ′ are some sets of subspaces and matrices
respectively. With this notation, the generic algorithm 1 in the
case of ratio cut optimization would be the one in algorithm
3. However, this algorithm is not implementable. One needs
to characterize all the solutions to the optimization problem
in (7) to obtain an implementable version. This will inturn
characterize the Mi and H(Mi) at every stage i of the
algorithm 3.

A. Solutions to ratio cut optimization problem

Given a laplacian L of dimensions n × n, let λ1 < λ2 <
· · ·λn denote the eigenvalues and {e1, e2, · · · , en} denote the
corresponding eigenvectors. Let λ(m) denote the mth smallest
eigenvalue. Let A be the matrix obtained by stacking all the
eigenvectors whose eigenvalue is less than or equal to λ(m).
Here m is the number of clusters required. Let l be the total
number of eigenvectors thus obtained. Let l2 be the number
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Algorithm 3 Generic Algorithm to Compute Γ−limit.
Input: A weighted graph, G, with distinct weights w1 <

w2 < · · · < wk. Number of clusters to calculate m.
Output: M1

1: Set i = k, Mi = M
2: Construct the graph Gi at level i, and laplacian Li.
3: Solve the optimization problem

minimize
H∈Rn×m

Tr(HtLiH)

subject to HtH = I

H ∈ H(Mi)

(17)

4: Let Hi be the set of possible minimizers of the above
optimization problem. Set Mi−1 =M(Hi).

5: Set i = i - 1
6: if i = 0 then
7: Stop.
8: return M1

9: else
10: Goto Step (2)
11: end if

of eigenvectors whose eigenvalue is equal to λ(m), and l1 be
the number of remaining vectors. Let K be the matrix

K =

[
Il1×l1 0

0 Xl2×m−l1

]
(18)

where KtK = I . Also note that l1 + l2 = l. Let Y be an
orthogonal matrix.

Theorem 2. The set of all solutions to the optimization
problem (7) is the set of all solutions of the form AKY .

Proof. We first show that any matrix H of the form AKY is
a solution to (7). We have

Tr((AKY )tL(AKY )) = Tr(Y t(AK)tL(AK)Y )

= Tr((AK)tL(AK))

= Tr(Kt(AtLA)K)

since Y is an orthogonal matrix. Now, AtLA is of the form
λ1 0 · · · 0
0 λ2 · · · 0
0 · · · · · · 0
0 0 · · · λm


So, we have

Tr(Kt(AtLA)K) = λ1 + λ2 + · · ·+ λl1 + λ(m)Tr(X
tIX)

= λ1 + λ2 + · · ·+ λm

= minTr(HtLH)

Since, the minimum value of Tr(HtLH) is equal to λ1 +
λ2 + · · ·+ λm [19]. To show the other side, note that the set
of all the solutions of (7) is

{H ∈ Rn×m | Tr(HtLH) = λ1 + λ2 + · · ·+ λm}

Let A = [e1, e2, · · · en], i.e the matrix obtained by stacking all
the eigenvectors in columns. Then any H can be written as

AZ where ZtZ = I. Now, note that since {λ1, λ2, · · · , λn}
can be arbitrary, we need to have that

Zij = 0 if λi > λ(m).

Thus we can ignore the lower part of matrix Z. If A =
[[e1, e2, · · · el]], then we have that H is of the form AZ where
Z is a l ×m matrix such that ZtZ = I. Now let,

Z =

[
Zl1,l1 Zl1,m−l1
Zl2,l1 Zl2,m−l1

]
Also, note that AtLA is of the form

λ1 0 · · · 0
0 λ2 · · · 0
0 · · · · · · 0
0 0 · · · λl


Since Z should satisfy Tr(ZtAtLAZ) = Tr(HtLH) = λ1 +
λ2 + · · · + λm, we need to have that Zl1,l1 is full rank, and
Zt
l1,l1

Zl1,l1 = I. Hence Z must be of the form KY where K
is a matrix of the form (18) and Y is any orthogonal matrix.
Hence all the solutions to (7) must be of the form AKY .

Theorem 2 characterizes the sets H(Mi) and Mi at every
stage. At level k (edge set consisting only of edges with weight
wk) we have Mk = M . From theorem 2 we know that all the
solutions to the optimization problem 17 for i = k is of the
form AkKY , where Ak is the matrix of eigenvectors for Lk

constructed as before.
At level k − 1, we have Mk−1 = M(AkKY ). Now, we

have the following lemma.

Lemma 1. Given the notation as above, we have

H(M(AkKY )) = { matrices of the form AkKY } (19)

Proof. One side follows from the relation

H(M(H ′)) ⊇ H ′

For the other side, let H be some matrix which spans the same
subspace as Ĥ = AkKY . Then there exists an orthogonal
matrix Q such that HQ = Ĥ . Hence H = ĤQt = AkKYQ

t.
This is still in the form AkKY where Y is some orhogonal
matrix.

Thus at level k − 1 we need to solve the optimization
problem,

minimize
H∈Rn×m

Tr(HtLk−1H)

subject to HtH = I

H ∼ AkKY

which is equivalent to solving the optimization problem

minimize
K

Tr(Y tKtAt
kLk−1AkKY )

subject to KtK = I

Now, since Y is orthogonal, we have
Tr(Y tKtAt

kLk−1AkKY ) = Tr(KtAt
kLk−1AkK). And,

noting the special form of K, solving the above optimization
problem is equivalent to solving the optimization problem

minimize
X

Tr(XtAt
kLk−1AkX)

subject to XtX = I
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Observe that the matrix At
kLk−1Ak is symmetric positive

semi-definite. And hence theorem 2 applies. Call Âk−1 the
matrix obtained by stacking the eigenvectors of At

kLk−1Ak

whose eigenvalue is less than or equal to λm−l1 . Then all the
solutions are of the form Âk−1KY . Let

Ak−1 =

[
Il1×l1 0

0 Âk−1

]
(20)

Then we have that Hk−1 is the set of all matrices which
are of the form AkAk−1KY . This follows from the fact that
the matrices K and Y are arbitrary under the constraint that
KtK = I and Y is some orthogonal matrix. Proceeding as
before, we get algorithm 4 to calculate the gamma limit.

Algorithm 4 Algorithm to Compute Γ−limit for Ratio-cut.
Input: A weighted (similarity) graph, G, with distinct weights

w1 < w2 < · · · < wk. Number of clusters, m.
Output: N1

1: Set i = k, Ni = In, l1 = 0, l2 = n
2: {l2 indicates the number of eigenvectors at the end whose

eigenvalue is the same.}
3: Construct the scale graph Gi at level i, and laplacian Li.
4: Construct matrix C = [N t

iLiNi]l2,l2 where Zp,p denotes
the bottom right block of matrix Z whose dimension is
p× p.

5: Calculate the first eigenvectors of the generalized eigen-
value problem

Cx = λx (21)

such that the eigenvalue is less than or equal to λ(m). Let
{a1, a2, · · · , al} be the eigenvectors calculated.

6: Let A be the matrix with the vectors {a1, a2, · · · , al}
stacked as columns.

7: Construct Â as
Â =

[
I 0
0 A

]
8: Set Ni−1 = NiÂ. Update values l1 and l2.
9: Set i = i− 1

10: if k = 0 then
11: return N1

12: else
13: Goto Step (3)
14: end if

Intuitively, algorithm 4 stars with a trivial representation of
the points In. At each level of the algorithm, the representation
is updated by considering the solutions of the optimization
problem. One is iteratively reducing the column space to
which the data can belong given that they have to solve the
optimization problem 17.

Although algorithm 4 is implementable, note that at every
stage one does a lot of matrix manipulations and calculates the
eigenvectors. Calculation of eigenvectors is both error prone
and computationally expensive.

IV. EFFICIENT IMPLEMENTATION

In this section, we provide an efficient alternative of the
algorithm 4. Recall that a connected component of a graph

G is the maximal subgraph of G which is connected. This is
obtained using the following proposition.

Proposition 3. Let G be a similarity graph. At a given level
j, let {C1, C2, · · ·Cm} be the connected components of the
graph G≥wj . Also let C be the matrix obtained by stacking
the vectors 1Ci

/|Ci| in columns. Then
(a) Tr(CtLiC) = 0 for all i > j
(b) Any solution to the optimization problem (17) at level j

is of the form CY where Y is any orthogonal matrix.

Proof. To prove (a), note that since Ci is a connected com-
ponent of G≥wj

, it is also a union of connected components
of G≥wi

for all i >= j. Also, we know that if L denotes a
laplacian of the graph, then L1Ci = 0 if Ci is a connected
component in the graph. Hence proved.

Since (a) is true, we know that C is a solution to (17) at
level j. Thus all matrices of the form CY are solutions. Now,
since Tr(CtLiC) = 0 for all i >= j, any vector c belonging
to the column space of the solution must satisfy ctLic = 0
for all i >= j. This implies that c belongs to the column
space of the 0 eigenvectors, which are indicators of connected
components. Hence c must belong to the column space of
the indicators of connected components for each Gi, i >= j.
This implies that c belongs to the column space of indicators
of connected components of G≥wj , and hence belongs to the
column space of C. Hence proved.

Proposition 3 allows us to optimize the first steps of the
algorithm 4 by considering the connected components instead
of the eigenvectors. Intuitively this is due to proposition 1. We
thus have algorithm 5. We refer to the solution of the algorithm
5 as the Power Rcut.

An interesting remark is that - the first stage of the algorithm
simply involves computing the threshold of the graph and
calculating the connected components. This is equivalent to
the MST clustering as described in II-C. Thus, intuitively
the gamma limit of spectral clustering is MST clustering,
with one important difference - Power Rcut does not break
ties arbitrarily like the MST based clustering. Rigorously,
of course, the difference between MST based clustering and
Power Rcut are slightly more involved. We shall analyze and
compare the Power Rcut and MST based clustering in the next
section.

Note that the first phase of the algorithm 5 (MST phase)
takes time of the order O(|V | + |E|). The second phase
of the algorithm calculates the eigenvectors and is of the
order O(n3) where n is the size of the matrix. But in many
practical situations n ∼ O(m) << |V |, where m denotes
the number of clusters. Hence the overall complexity for all
practical purposes is O(|V | + |E|). Thus, intuitively, Power
Rcut algorithm scales well for big data compared to the
spectral clustering procedures.

V. IMPLEMENTATION DETAILS

To summarize, we have shown that algorithm 5 calculates
the gamma limit of spectral clustering. Note that we have
assumed that there are only k distinct weights an edge can
take where k << |E|. However, in reality, due to floating
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Algorithm 5 Efficient algorithm to compute Γ−limit for ratio-
cut.
Input: A weighted graph, G, with distinct weights w1 <

w2 < · · · < wk. Number of clusters, m.
Output: N - A representation of the subspace spanned by the

Γ−limit of the minimizers.
1: Set i = k.
2: while Number of connected components of G≥wi is

greater than or equal to m do
3: Set i = i− 1 {We refer to this as an MST-Phase}
4: end while
5: Construct N by stacking the vectors 1Aj/

√
|Aj | in

columns, where Aj is a connected component of G≥wi .
6: Set l1 = 0 and l2 = number of connected components in
G≥wi

7: Consider the graph Gi and let Li be the corresponding
laplacian.

8: Set C = [N tLkN ]l2,l2
9: Calculate the first eigenvectors of eigenvalue problem

whose eigenvalue is less than or equal to λ(m).

Cx = λx

10: Let A be the matrix obtained by stacking the eigenvectors
as columns.

11: Construct Â as
Â =

[
I 0
0 A

]
12: Update l1 and l2.
13: N = N × Â
14: Set i = i− 1
15: if i = 0 or number of columns of N is equal to m then
16: return N
17: else
18: Goto Step (7)
19: end if

point precision and other numerical errors identifying the k
distinct weights is a challenge. Thus we resort to ‘bucketing’
of weights to identify the distinct weights. In this section we
discuss two methods to bucket the edge weights and their
theoretical justification.
ε bucketing : Note that a result of bucketing of weights

should club the weights which are ‘close’ by. Assume that the
reason one obtains a lot of distinct weights is precision error.
Then, change the weights according to

wij −→ ε× round(wij/ε) (22)

Here ε is the precision controlling parameter. Observe that for
ε = 0.01, (22) takes the first two precision digits after the
decimal point.

K-means bucketing : The problem of bucketing the
weights can be rephrased as - Combine the weights into
buckets so that weights within a bucket are ‘alike’. This is
equivalent to clustering problem and hence one can use any
clustering method to cluster the weights. In this article we
chose K − means for its efficiency and simplicity. In this

case each weight is represented by the mean of the cluster to
which the weight belongs to.

So, how does bucketing the weights change the algorithm?
Let the bucketed weight of wij be denoted by ŵij . Then,

wij =
wij

ŵij
× ŵij (23)

Recall that we have calculated the limit of minimizers as p→
∞ in (14). We instead, define W (p) by

W (p) = Ŵ (p) �W (24)

where � indicates the Hadamard product (entry wise product),
and Ŵ (p) = [ŵp

ij ]. It is easy to the see that the rest of
the arguments follow accordingly, with one key difference
- the laplacian Li is no longer a 0 − 1 matrix in step 7
of algorithm 5. This is identical to the extension of Power-
watershed framework proposed in [14].

Another place where algorithm 5 suffers in practice is
in steps 9-12. As observed before, solutions to eigenvalue
problems are error prone and cascading the solutions to the
eigenvalue problems is not numerically optimal. In practice it
has been observed that non-zero eigenvalues rarely repeat for
the eigenvalue problem in solutions to (17). Apart from that,
the number of components after adding the edges from the
penultimate bucket is usually found to be >> m (required
number of clusters). Hence taking these assumptions into
account, one can replace algorithm 5 with algorithm 6.

Algorithm 6 Simplified Efficient algorithm to compute
Γ−limit for ratio-cut.
Input: A weighted graph, G, with bucketed weights w1 <

w2 < · · · < wj . Number of clusters required - m.
Output: N - A representation of the subspace spanned by the

Γ−limit of the minimizers.
1: {according to the assumption we have number of con-

nected components in graph G≥w2
is greater than m.}

2: Let {Ci}, i ∈ {1, 2, · · · , nc} be the connected components
in G≥w2

.
3: Let ICi be the vector

ICi(x) =

{
1/
√
|Ci| if x ∈ Ci

0 othwerwise
(25)

4: Construct the matrix N with ICi as the column vectors.
5: Let G1 be the graph with the vertex set same as G. Let
L1 be the corresponding laplacian.

6: Let L1 given by N t × L1 ×N .
7: Calculate the first m eigenvectors of L1 and construct A

using these eigenvectors as columns.
8: return N ×A.

Observe that algorithm 6 has a simple interpretation. We
preprocess the graph with MST based clustering to reduce
the number of vertices. And then use spectral methods on the
resulting contracted graph to get the clusters.
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