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Splitting formulas for the rational lift of the

Kontsevich integral

Delphine Moussard

Abstract

Kricker defined an invariant of knots in homology 3-spheres which is a rational
lift of the Kontsevich integral, and proved with Garoufalidis that this invariant
satisfies splitting formulas with respect to a surgery move called null-move. We
define a functorial extension of the Kricker invariant and prove splitting formulas
for this functorial invariant with respect to null Lagrangian-preserving surgery, a
generalization of the null-move. We apply these splitting formulas to the Kricker
invariant.
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1 Introduction

1.1 Context

In [Kri00], Kricker constructed a rational lift of the Kontsevich integral of knots in in-
tegral homology 3-spheres (Z-spheres). In [GK04], he proved with Garoufalidis that his
construction provides an invariant of knots in Z-spheres. They also proved that the
Kricker invariant satisfies some splitting formulas with respect to the so-called null-move.
For knots in Z-spheres with trivial Alexander polynomial, these formulas together with
work of Garoufalidis and Rozansky [GR04] imply that the Kricker invariant is a universal
finite type invariant with respect to the null-move.

Kricker’s construction easily generalizes to null-homologous knots in rational homology
3-spheres (Q-spheres); the main goal of this article is to prove splitting formulas for the
Kricker invariant of these knots with respect to null Lagrangian-preserving surgery, a
move which generalizes the null-move. For null-homologous knots in Q-spheres with trivial
Alexander polynomial, these formulas and results from [Mou12a] imply that this extended
Kricker invariant is a universal finite type invariant with respect to null Lagrangian-
preserving surgeries.
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Lescop defined in [Les11] an invariant of null-homologous knots in Q-spheres and
proved in [Les13] splitting formulas for this invariant with respect to null Lagrangian-
preserving surgeries, similar to the ones proved in this paper for the Kricker invariant.
Lescop conjectured in [Les13] that her invariant is equivalent to the Kricker invariant.
The mentioned results of Garoufalidis, Kricker, Lescop and Rozansky give such an equiv-
alence for knots in Z-spheres with trivial Alexander polynomial, and the results of the
present paper generalize this equivalence to null-homologous knots in Q-spheres with
trivial Alexander polynomial.

A similar situation arises in the study of finite type invariant of Q-spheres with respect
to Lagrangian-preserving surgeries. In this case, the Kontsevich-Kuperberg-Thurston in-
variant and the Le-Murakami-Ohtsuki invariant are both universal, up to degree 1 invari-
ants deduced from the cardinality of the first homology group; this implies an equivalence
result for these two invariants, see [Mou12b]. For the KKT invariant, splitting formulas
with respect to Lagrangian-preserving surgeries were proved by Lescop [Les04]; for the
LMO invariant, similar formulas were proved by Massuyeau [Mas15]. Massuyeau’s proof
of his splitting formulas is based on an extension of the LMO invariant of Q-spheres to a
functor defined on a category of Lagrangian cobordisms that he constructed with Cheptea
and Habiro [CHM08].

In this paper, we extend the LMO functorial invariant of Cheptea-Habiro-Massuyeau
to a category of Lagrangian cobordisms with paths, inserting the Kricker’s idea in the
construction. We obtain a functorial invariant from which the Kricker invariant of null-
homologous knots in Q-spheres is recovered. Following Massuyeau, we use the functori-
ality to obtain splitting formulas for our invariant and, as a consequence, for the Kricker
invariant.

Notations and conventions. For K = Z,Q, a K-sphere, (resp. a K-cube) is a 3-
manifold, compact and oriented, which has the same homology with coefficients in K
as the standard 3-sphere (resp. 3-cube). The boundary of an oriented manifold with
boundary is oriented with the “outward normal first” convention.

Acknowledgments. I am supported by a Postdoctoral Fellowship of the Japan Society
for the Promotion of Science. I am grateful to Tomotada Ohtsuki and the Research
Institute for Mathematical Sciences for their support. I also wish to thank Gwénaël
Massuyeau for interesting exchanges.
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1.2 Statement of the main result

We first give the definitions we need to state our main result.

Null LP-surgeries. For g ∈ N, a genus g rational homology handlebody (Q-handlebody)
is a 3-manifold which is compact, oriented, and which has the same homology with rational
coefficients as the standard genus g handlebody. Such a Q-handlebody is connected, and
its boundary is necessarily homeomorphic to the standard genus g surface.

The Lagrangian LC of a Q-handlebody C is the kernel of the map i∗ : H1(∂C;Q) →
H1(C;Q) induced by the inclusion. The Lagrangian of a Q-handlebody C is indeed a
Lagrangian subspace of H1(∂C;Q) with respect to the intersection form. A Lagrangian-
preserving pair, or LP-pair, is a pair C =

(
C′

C

)
of Q-handlebodies equipped with a home-

omorphism h : ∂C
∼=
−−→ ∂C ′ such that h∗(LC) = LC′.

Given a 3-manifold M , a Lagrangian-preserving surgery, or LP-surgery, on M is a
family C = (C1, . . . ,Cn) of LP-pairs such that the Ci are embedded in M and disjoint.
The manifold obtained from M by LP-surgery on C is defined as

M(C) = (M \ (⊔1≤i≤nCi)) ∪∂ (⊔1≤i≤nC
′
i).

Let M be a 3-manifold and let K be a disjoint union of knots or paths properly
embedded in M . A Q-handlebody null in M \K is a Q-handlebody C ⊂M \K such that
the map i∗ : H1(C;Q) → H1(M \K;Q) induced by the inclusion has a trivial image. A
null LP-surgery on (M,K) is an LP-surgery C = (C1, . . . ,Cn) on M \K such that each
Ci is null in M \K. The pair obtained by surgery is denoted (M,K)(C).

The tensor µ(C). Given an LP-pair C =
(
C′

C

)
, define the associated total manifold

C = (−C) ∪ C ′ and define

µ(C) ∈ hom(Λ3H1(C;Q),Q) ∼= Λ3H1(C;Q)

by associating with a triple of cohomology classes the evaluation of their triple cup prod-
ucts on the fondamental form of C. For a family C = (C1, . . . ,Cn) of LP-pairs, let
C = C1 ⊔ · · · ⊔ Cn and set:

µ(C) = µ(C1)⊗ · · · ⊗ µ(Cn) ∈ ⊗
n
i=1Λ

3H1(Ci;Q) ⊂ SnΛ3H1(C;Q),

where we use the natural identification H1(C;Q) ∼= ⊕n
i=1H1(Ci;Q).
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The bilinear form ℓ(S,κ)(C). Let (S, κ) be a QSK-pair, i.e. a pair made of a Q-sphere
S and a null-homologous knot κ ∈ S. Let E be the exterior of κ in S, i.e. the complement
of an open tubular neighborhood of κ. Let Ẽ be the maximal free abelian covering of E.
The automorphism group of the covering is isomorphic to Z; let τ be a generator. It is
well-known that the Alexander module H1(Ẽ;Q) of (S, κ) is a finitely generated torsion
Q[t±1]-module. Let δ ∈ Q[t±1] be its annihilator. Let ζ, ξ be two knots in Ẽ whose
projections in E are disjoint. There is a rational 2-chain Σ in Ẽ such that ∂Σ = δ(τ)(ζ).
Define the equivariant linking number of ζ and ξ as:

lke(ζ, ξ) =
1

δ(t)

∑

j∈Z

〈Σ, τ j(ξ)〉 tj ∈ Q(t).

The equivariant linking number is well-defined and satisfies lke(τ(ζ), ξ) = t lke(ζ, ξ) and
lke(ξ, ζ)(t) = lke(ζ, ξ)(t

−1).
Let C = (C1, . . . ,Cn) be a null LP-surgery on (S, κ). Let C = C1 ⊔ · · · ⊔ Cn be the

disjoint union of the associated total manifolds. Fix a lift C̃i of each Ci in Ẽ. We will
define a hermitian form:

ℓ(S,κ)(C) : H1(C;Q)×H1(C;Q)→ Q(t),

i.e. a Q-bilinear form such that reversing the order of the arguments changes t to t−1. Let
a ∈ H1(Ci;Q) and b ∈ H1(Cj ;Q) be homology classes that can be represented by simple
closed curves α ⊂ ∂Ci and β ⊂ ∂Cj , disjoint if i = j. Note that such homology classes
generate H1(C;Q) over Q. Let α̃ and β̃ be the copies of α and β in C̃i and C̃j. Set:

ℓ(S,κ)(C)(a, b) = lke(α̃, β̃).

We get a well-defined hermitian form ℓ(S,κ)(C) associated with a choice of lifts of the
Ci’s. We will keep this choice implicit; the statement of Theorem 1.1 is valid for any such
choice.

Diagrammatic representations. Let V be a rational vector space. A V -colored Jacobi
diagram is a unitrivalent graph whose trivalent vertices are oriented and whose univalent
vertices are labelled by V , where an orientation of a trivalent vertex is a cyclic order of
the three edges that meet at this vertex – fixed as in the pictures. Set:

AQ(V ) =
Q〈V -colored Jacobi diagrams〉

Q〈AS, IHX, LV〉
,
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+ = 0

AS

− + = 0

IHX

v

+

w

=

v + w

LV

Figure 1: Relations AS, IHX and LV on Jacobi diagrams.

where the relations are depicted in Figure 1. A symmetric tensor in SnΛ3V can be
represented by Jacobi diagram via the following embedding.

SnΛ3V → AQ(V )

(u1 ∧ v1 ∧ w1) . . . (un ∧ vn ∧ wn) 7→
w1 v1 u1

⊔ · · · ⊔
wn vn un

Now define a Q(t)-beaded Jacobi diagram as a trivalent graph whose vertices are oriented
and whose edges are oriented and labelled by Q(t). Set:

ÃQ(t)(∅) =
Q〈Q(t)-beaded Jacobi diagrams〉

Q〈AS, IHX, LE, Hol, OR〉
,

where the relations are depicted in Figures 1 and 2, with the IHX relation defined with the

x P + y Q
=

xP + yQ

LE

ti
tj tℓ =

ti+1

tj+1 tℓ+1

Hol

t
= t−1

OR

Figure 2: Relations LE, Hol and OR on Jacobi diagrams.

central edge labelled by 1. Define the i-degree, or internal degree, of any Jacobi diagram
as its number of trivalent vertices. Given a hermitian form ℓ : V × V → Q(t), one can
glue with ℓ some legs of a V -colored Jacobi diagram as depicted in Figure 3. If n is even,
one can pairwise glue all legs of an i-degree n V -colored Jacobi diagram in order to get
an element of ÃQ(t)(∅). This latter space is the target space of the Kricker invariant of
QSK-pairs.

We can now state our main result, about the Kricker invariant Z̃, proved in Section 6.
Note that null LP-surgeries define a move on the set of QSK-pairs.
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v w

 

ℓ(v, w)

Figure 3: Gluing some legs of a Jacobi diagram with ℓ.

Theorem 1.1. Let (S, κ) be a QSK-pair. Let C = (C1, . . . ,Cn) be a null LP-surgery on
(S, κ). Then:

∑

I⊂{1,...,n}

(−1)|I|Z̃ ((S, κ)(CI)) ≡n

(
sum of all ways of gluing all legs

of µ(C) with ℓ(S,κ)(C)/2

)
,

where ≡n means “equal up to i-degree at least n+ 1 terms”.

1.3 Strategy

In this Subsection, we give a rough overview of the strategy developed to prove Theo-
rem 1.1.

The main object of this article is the construction of a functorial LMO invariant defined
on a category of Lagrangian cobordisms with paths. The morphisms of this category
are cobordisms between compact surfaces with one boundary component, satisfying a
Lagrangian-preserving condition, with finitely many disjoint paths with fixed extremities
which we think of as knots with a fixed part on the boundary. This category is equivalent
to a category of bottom-top tangles in Q-cubes, whose top part has a trivial linking matrix,
with paths with fixed extremities. These bottom-top tangles can be viewed as morphisms
in a category of (general) tangles with paths in Q-cubes, with an important difference
in the composition law. Now a tangle with paths in a Q-cube can be expressed as the
result of a surgery on a link in a tangle with trivial paths – segment lines – in [−1, 1]3.
To resume, with a Lagrangian cobordism with paths, we associate a tangle with disks –
whose boundaries define the paths – in [−1, 1]3 with a surgery link. This is represented
in the first line of the scheme in Figure 4. We initiate the construction of the invariant at
the “tangle with disks” level.

On the above mentioned categories, we define functorial invariants valued in categories
of Jacobi diagrams with beads, i.e. unitrivalent graphs whose univalent vertices are
labelled by some finite set or embedded in some 1-manifold – the squeleton –, and whose
edges are labelled (beaded) by powers of t, polynomials in Q[t±1] or rational functions

7



cobordisms with paths

∼
bottom-top tangles

with paths

tangles with paths
in Q-cubes

tangles with disks
in [−1, 1]3

Z̃ Z Z•

Q(t)-beaded
top-substantial
Jacobi diagrams

Q(t)-winding
Jacobi diagrams

Q[t±1]-winding
Jacobi diagrams

normalization Formal Gaussian
Integration

Figure 4: Scheme of construction for the invariant Z̃.

in Q(t). At the first step, we define a functor Z• on the category of tangles with disks
by applying the Kontsevich integral and adding a bead t±1 on the squeleton when the
corresponding component meets a disk of the tangle. At a second step, we apply the
invariant Z• to surgery presentations of tangles with paths in Q-cubes. We use the
formal Gaussian integration methods introduced by Bar-Natan, Garoufalidis, Rozansky
and Thurston in [ÅI02, ÅII02] and adapted to the beaded setting in [Kri00, GK04]. We
get a functor Z on the category of tangles with paths in Q-cubes. At the last step, given
a Lagrangian cobordism with paths, we apply Z to the associated bottom-top tangles
with paths and normalize it following [CHM08] to obtain a functor Z̃ on the category of
Lagrangian cobordisms with paths. Functoriality allows to prove splitting formulas for
this invariant with respect to null Lagrangian-preserving surgeries.

Given a Lagrangian cobordism with one path between genus 0 surfaces, i.e. a Q-cube
with one path, one can glue a 3-ball to the boundary to get a Q-sphere with a knot.
In this way, the functor Z̃ provides an invariant of QSK-pairs which coincides with the
Kricker invariant for knots in Z-spheres. Splitting formulas for this invariant are deduced
from the splitting formulas for the functor Z̃.

Plan of the paper We define the domain categories of cobordisms and tangles in
Section 2. In Section 3, we define the target categories of Jacobi diagrams and gives the
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tools of formal Gaussian integration. Section 4 is devoted to the introduction of winding
matrices, that will play the role of the linking matrices in the Cheptea-Habiro-Massuyeau
construction of a functorial LMO invariant. The functors Z•, Z and Z̃ are constructed
in Section 5. At the end of this section, from the functor Z̃, we deduce our version of the
Kricker invariant for QSK-pairs; the behaviour of this invariant with respect to connected
sum is stated. Finally, the splitting formulas are given in Section 6.

2 Domain categories: cobordisms and tangles

2.1 Cobordisms with paths

Given g ∈ N, we fix a model surface Fg, compact, connected, oriented, of genus g, with
one boundary component represented in Figure 5. It is equipped with a fixed base point

∗

α1

β1

. . . αg

βg

Figure 5: The model surface Fg.

∗ and a fixed basis (α1, . . . , αg, β1, . . . , βg) of π1(Fg, ∗). Denote by Cg+

g−
the cube [−1, 1]3

with g+ handles on the top boundary and g− tunnels in the bottom boundary. We have
canonical embeddings Fg+ →֒ ∂Cg+

g−
and Fg− →֒ ∂Cg+

g−
. A cobordism with paths from Fg+

to Fg− is an equivalence class of triples (M,K,m) where:

• M is a compact, connected, oriented 3-manifold,

• m : ∂Cg+

g−

∼=
−−→ ∂M is an orientation-preserving homeomorphism,

• K = ⊔ki=1Ki ⊂M is a union of oriented paths Ki from m(0,−1, i
k+1

) to m(0, 1, i
k+1

),
with k ≥ 0,

• K̂ = ⊔ki=1K̂i is an oriented boundary link, i.e. the K̂i bound disjoint compact
surfaces in M , where K̂i is the knot defined as the union of Ki with the line segments
[(0,−1, i

k+1
), (1,−1, i

k+1
)], [(1,−1, i

k+1
), (1, 1, i

k+1
)], and [(1, 1, i

k+1
), (0, 1, i

k+1
)].
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Two such triples are equivalent if they are related by an orientation-preserving homeo-
morphism which respects the boundary parametrizations and identifies the paths. We get
embeddings m+ : Fg+ →֒ ∂M and m− : Fg− →֒ ∂M .

Define a category C̃ob of cobordisms with paths whose objects are non-negative integers
and whose set of morphisms C̃ob(g+, g−) is the set of cobordisms with paths from Fg+ to
Fg−. The composition of a cobordism (M,K,m) from Fg to Ff with a cobordism (N, J, n)
from Fh to Fg is given by gluing N on the top of M , identifying m+(M) with n−(N), and
reparametrizing the new manifold. The identity of g ∈ N is the cobordism Fg × [−1, 1]
with natural boundary parametrization and no path.

Forgetting the datum of the paths in the cobordisms, one gets the category Cob de-
scribed in [CHM08], which we view as the subcategory of C̃ob of cobordisms with no path.
For a cobordism (M,m) and a cobordism with paths (N, J, n), define the tensor product
(M,m)⊗ (N, J, n) by horizontal juxtaposition in the x direction.

We now define the subcategory of C̃ob of Lagrangian cobordisms with paths. Set Ag =
ker(incl∗ : H1(Fg;Q)→ H1(C

g
0 ;Q)) and Bg = ker(incl∗ : H1(Fg;Q)→ H1(C

0
g ;Q)). These

are Lagrangian subspaces of H1(Fg;Q) with respect to the intersection form, and Ag (resp.
Bg) is generated by the homology classes of the curves αi (resp. βi). A cobordism with
paths (M,K,m) from Fg+ to Fg− is Lagrangian(-preserving) if the following conditions
are satisfied:

• H1(M ;Q) = (m−)∗(Ag−)⊕ (m+)∗(Bg+),

• (m+)∗(Ag+) ⊂ (m−)∗(Ag−) as subspaces of H1(M ;Q).

The Lagrangian property is preserved by composition, and we denote by L̃Cob the sub-
category of C̃ob of Lagrangian cobordisms with paths. The subcategory of Lagrangian
cobordisms with no path is the category LCob – denoted QLCob in [Mas15].

Define categories Cobq, C̃obq, LCobq and L̃Cobq of q-cobordisms with objects the non-
commutative words in the single letter •, and with set of morphisms from a word on g+

letters to a word on g− letters the set of morphisms from g+ to g− in Cob, C̃ob, LCob and
L̃Cob respectively.

2.2 Bottom-top tangles with paths

Let us define the category of bottom-top tangles with paths. For a positive integer g ≥
0, let (p1, q1), . . . , (pg, qg) be g pairs of points uniformly distributed on [−1, 1] × {0} ⊂
[−1, 1]2 ∼= F0 as represented Figure 6. A bottom-top tangle with paths of type (g+, g−) is
an equivalence class of triples (B,K, γ) where

10



•
p1

•
q1

. . . •
pg

•
qg

Figure 6: The pairs of points (pi, qi) on [−1, 1]2.

• (B,K) = (B,K, b) is a cobordism with paths form F0 to F0,

• γ = (γ+, γ−) is a framed oriented tangle in B with g+ components γ+
i from b({pi}×

{1}) to b({qi}×{1}) and g− components γ−
i from b({qi}×{−1}) to b({pi}×{−1}),

• K̂ is a boundary link in B \ γ.

Two such triples (B,K, γ) and (B′, K ′, γ′) are equivalent if (B,K) and (B′, K ′) are related
by an equivalence which identifies γ and γ′.

In order to define the composition, we need the bottom-top tangle ([−1, 1]3,∅, Tg)
represented in Figure 7. The composition of a bottom-top tangle (B,K, γ) of type (g, f)

. . .

. . .

1 g
•

•

•

•

•

•

•

•

Figure 7: The bottom-top tangle Tg in [−1, 1]3.

with a bottom-top tangle (C, J, υ) of type (h, g) is given by first making the composition
(B,K) ◦ ([−1, 1]3,∅) ◦ (C, J) in the category C̃ob and then perfoming the surgery on the
2g components link γ+ ∪ Tg ∪ υ−. We get a category t

bT̃ whose objects are non-negative
integers and whose set of morphisms t

bT̃ (g
+, g−) is the set of bottom-top tangles with

paths of type (g+, g−). The identity of g ∈ N is the bottom-top tangle in [−1, 1]3 with no
path represented in Figure 8.

Forgetting the datum of the paths, one gets the category t
bT of bottom-top tangles

introduced in [CHM08], that we view as the subcategory of t
bT̃ of bottom-top tangles with

11



. . .

. . .

1 g
•

•

•

•

•

•

•

•

Figure 8: The bottom-top tangle Idg.

no path. For a bottom-top tangle (B, γ) and a bottom-top tangle with paths (C, J, υ),
define the tensor product (B, γ)⊗ (C, J, υ) by horizontal juxtaposition in the x direction.
Define categories t

bTq and t
bT̃q of bottom-top q-tangles with objects the non-commutative

words in the single letter •.
The following result is a direct adaptation of [CHM08, Theorem 2.10] which gives

an isomorphism D : t
bT → Cob. The map D is defined by digging tunnels around the

components of the tangle.

Proposition 2.1. There is an isomorphism D : t
bT̃ → C̃ob which identifies t

bT with Cob

and preserves the tensor product on t
bT ⊗

t
bT̃ .

Let (B,K, γ) be a bottom-top tangle with paths in a Q-cube. Let γ̂ be the link ob-
tained by closing the components of γ with the line segments [(pi,±1), (qi,±1)]. Define
the linking matrix Lk(γ) of γ in B with the linkings of the components of γ̂. The char-
acterization of the bottom-top tangles sent onto Lagrangian cobordisms by D given in
[CHM08, Lemma 2.12] directly generalizes into:

Lemma 2.2. Given a bottom-top tangle with paths (B,K, γ), the cobordism with paths
D(B,K, γ) is Lagrangian if and only if B is a Q-cube and Lk(γ+) is trivial.

2.3 Tangles with paths and tangles with disks

Given a cobordism (B, b) from F0 to F0, a tangle γ in B is an isotopy (rel. ∂B) class of
framed oriented tangles whose boundary points lie on the top and bottom surfaces and are
uniformly distributed along the line segments [−1, 1]×{0}×{1} and [−1, 1]×{0}×{−1}
in ∂B = b(∂[−1, 1]3). Associate with each boundary point of γ the sign + if γ is oriented

12



downwards at that point and the sign − otherwise. This provides two words in the letters
+ and −, one for the top surface and the other for the bottom surface. Lifting these
two words into non-associative words wt(γ) and wb(γ) in the letters (+,−), one gets a
q-tangle. A q-tangle γ in a cobordism with paths (B,K, b) defines a q-tangle with paths
(B,K, γ) if K̂ is a boundary link in B \ γ.

Define two categories TqCub and T̃qCub with objects the non-associative words in the
letters (+,−) and morphisms the q-tangles in Q-cubes for TqCub and the q-tangles with
paths in Q-cubes for T̃qCub, up to orientation-preserving homeomorphism respecting the
boundary parametrization. Composition is given by vertical juxtaposition. Given a mor-
phism (C, υ) in TqCub and a morphism (B,K, γ) in T̃qCub, define the tensor product
(C, υ)⊗ (B,K, γ) by horizontal juxtaposition in the x direction.

Lemma 2.3. Let (B,K, γ) be a q-tangle with paths in a Q-cube. There exist a q-tangle
with paths ([−1, 1]3,Ξ, η) and a framed link L ⊂ [−1, 1]3 \ (Ξ ∪ η), with Ξ a union of
line segments and L null-homotopic in [−1, 1]3 \ Ξ, such that (B,K, γ) is obtained from
([−1, 1]3,Ξ, η) by surgery on L. Moreover, two such surgery links are related by the follow-
ing Kirby moves: the blow-up/blow-down move KI which adds or removes a split trivial
component with framing ±1 unknotted with η, and the handleslide move KII which adds a
surgery component to another surgery component or to a component of the tangle η (see
Figure 9).

Li Lj or ηj

Figure 9: KII move.

Proof. Let Σ be a Seifert surface of K̂ which is the disjoint union of Seifert surfaces of
the K̂i. Choose Σ disjoint from γ. Take a link J ⊂ B such that surgery on J gives
[−1, 1]3. Performing isotopies on J if necessary, we can assume that J does not meet Σ.
The handles of (the copy in [−1, 1]3 of) Σ can be unlinked by adding surgery components
as shown in Figure 10. In this way, K̂ can be turned into a trivial link. This provides a
surgery link in B\(K∪γ), disjoint from Σ, such that surgery on this link changes (B,K, γ)
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+1 ∼

Figure 10: Surgery changing a crossing.

into a q-tangle with paths ([−1, 1]3,Ξ, η) as required. Let L be the inverse surgery link.
It is null-homotopic, as well as η, since they are disjoint from Σ.

For the last assertion, apply [HW14, Theorem 3.1] in [−1, 1]3 \ Ξ. Note that a split
trivial component with framing ±1 can always be unknotted from η using the KII move
before being removed.

A family (([−1, 1]3,Ξ, η), L) satisfying the conditions of the lemma with L oriented
is a surgery presentation of (B,K, γ). When γ (and thus η) is a bottom-top tangle, the
components of η can be closed by line segments in the top and bottom surfaces. The
obtained curves are null-homotopic in [−1, 1]3 \ Ξ since Ξ̂ is boundary in [−1, 1]3 \ η by
definition.

The notion of q-tangle in [−1, 1]3 with trivial paths, i.e. line segments, is equivalent
to the following one. A q-tangle with disks is an equivalence class of pairs (γ, k), where γ
is a q-tangle in [−1, 1]3, k is a non-negative integer understood as the datum of k disks
di = [0, 1]× [−1, 1]× { i

k+1
}, and each component of γ has a trivial algebraic intersection

number with each disk di. Equivalence of such pairs is defined as isotopy relative to
(∂[−1, 1]3) ∪ (∪ki=1∂di). Define two categories Tq and T̃q with objects the non-associative
words in the letters (+,−) and morphisms the q-tangles for Tq and the q-tangles with disks
for T̃q. Composition is given by vertical juxtaposition. Given a q-tangle γ and a q-tangle
with disks (υ, k), define the tensor product γ⊗(υ, k) in T̃q((wt(γ))(wt(υ)), (wb(γ))(wb(υ)))

by horizontal juxtaposition in the x direction. Define similarly two categories T and T̃ of
tangles and tangles with disks in [−1, 1]3 with objects the associative words in the letters
(+,−).

3 Target categories: Jacobi diagrams with beads

3.1 Diagram spaces

For a compact oriented 1-manifold X and a finite set C, a Jacobi diagram on (X,C) is a
unitrivalent graph whose trivalent vertices are oriented and whose univalent vertices are
embedded in X or labelled by C, where an orientation of a trivalent vertex is a cyclic
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•

•

•

Figure 11: Diagram of a tangle with disks.

order of the three edges that meet at this vertex – fixed as in the pictures. The

manifold X is the squeleton of the diagram. Next, let R be the ring Q[t±1] or Q(t). An
R-beaded Jacobi diagram on (X,C) is a Jacobi diagram on (X,C) whose graph edges are
oriented and labelled by R. Last, an R-winding Jacobi diagram on (X,C) is an R-beaded
Jacobi diagram on (X,C) whose squeleton is viewed as a union of edges – defined by the
embedded vertices – that are labelled by powers of t, with the condition that the product
of the labels on each component of X is 1. As defined in the introduction, the i-degree of
a trivalent diagram is its number of trivalent vertices. Set:

A(X, ∗C) =
Q〈Jacobi diagrams on (X,C)〉

Q〈AS, IHX, STU〉
,

ÃR(X, ∗C) =
Q〈R-beaded Jacobi diagrams on (X,C)〉

Q〈AS, IHX, STU, LE, OR, Hol〉
,

Ãw

R(X, ∗C) =
Q〈R-winding Jacobi diagrams on (X,C)〉

Q〈AS, IHX, STU, LE, OR, Hol, Hol
w
〉

,

with the relations in Figures 1, 2 and 12, where the IHX relation for beaded and winding
diagrams is defined with the central edge labelled by 1. In the pictures, the squeleton

1
= −

STU

ti •

tj •

tℓ
= ti+1 •

tj−1 •

tℓ+1

Hol
w

Figure 12: Relations STU and Hol
w

on Jacobi diagrams.
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is represented with full lines and the graph with dashed lines. We indeed consider the
i-degree completion of these vector spaces, keeping the same notation.

Remark. For diagrams in Ãw

R(X, ∗C), the condition on the labels on the squeleton implies
that all labels can be pushed off each component of the squeleton using the Hol

w
relation,

in a unique way when the component is an interval. In particular, when X contains only
intervals, ÃR(X, ∗C) is isomorphic to Ãw

R(X, ∗C).

For a finite set S, denote by S (resp. S) the manifold made of |S| intervals (resp.
circles) indexed by the elements of S. In the following, Ā stands for A, ÃR or Ãw

R. In
[BN95, Theorem 8], Bar-Natan defines a formal PBW isomorphism:

χS : Ā(X, ∗C∪S)
∼=
−−→ Ā(X ∪ S, ∗C).

For a Jacobi diagram D, the image χS(D) is the average of all possible ways to attach
the s-colored vertices of D on the corresponding s-indexed interval in S for each s ∈ S.
The setting of [BN95] is not exactly the same, but the argument adapts directly. When
|S| = 1, closing the S-labelled component gives an isomorphism from Ā(X ∪ S, ∗C) to
Ā(X∪ S, ∗C) [BN95, Lemma 3.1]. However, this isomorphism does not hold for |S| > 1.
To recover an isomorphism onto A(X ∪ S, ∗C), some “link relations” were introduced
in [ÅII02, Section 5.2]. We recall these relations and introduce supplementary “winding
relations”.

Given a (beaded, winding) Jacobi diagram D on (X,C ∪ S), and a univalent vertex
∗ of D labelled by s ∈ S, define the associated link relation as the vanishing of the
sum of all diagrams obtained from D by gluing the vertex ∗ on the edges adjacent to

a univalent s-labelled vertex, as follows: •

•

∗
s

, see Figure 13. Given a winding Jacobi

t s

s′

∗s

s′ s
t2

 

t
s

s′

s′ s
t2

+
t s

s′

s′ s
t2

= 0

Figure 13: A link relation.

diagram D on (X,C ∪ S), a label s ∈ S and an integer k, the associated winding relation
identifies D with the diagram obtained from D by pushing tk at each s-labelled vertex,
i.e. by multiplying the label of each edge adjacent to a univalent s-labelled vertex by tk
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t−1

s

s

t3 s

s′

t2
s

= t−1

s

s

t4 s

s′

t
s

Figure 14: A winding relation.

if the orientation of the edge goes backward the vertex and by t−k otherwise, see Figure
14. Denote Ā(X, ∗C , *©S) (resp. Ā(X, ∗C , *©©S)) the quotient of Ā(X, ∗C∪S) by all link
relations (resp. all link and winding relations) on S-labelled vertices. Note that if X

contains no closed component, then the spaces Ãw

R(X, ∗C , *©©S) and ÃR(X, ∗C , *©©S) are
isomorphic. When some of the sets X, C, S are empty, we simply drop the corresponding
notation, mentionning ∅ only when they are all empty.

Proposition 3.1. The isomorphisms χS : Ā(X, ∗C∪S)
∼=
−−→ Ā(X ∪ S, ∗C) descend to

isomorphisms:
χS : A(X, ∗C , *©S)

∼=
−−→ A(X ∪ S, ∗C),

χS : ÃR(X, ∗C , *©S)
∼=
−−→ ÃR(X ∪ S, ∗C),

χS : Ãw

R(X, ∗C , *©©S)
∼=
−−→ Ãw

R(X ∪ S, ∗C).

Proof. In the case Ā = A or ÃR, it is [ÅII02, Theorem 3]. We recall briefly their argument
in order to add the consideration of the winding relations when Ā = Ãw

R.
The fact that the images by χS of the link relations map to 0 in Ā(X∪ S, ∗C) follows

from the STU relation. For the winding relations, it follows from the Hol
w

relation applied
at each univalent vertex glued on the s-labelled component, where s is the label involved
in the relation. Now, take two diagrams in Ā(X ∪ S, ∗C) that are identified when closing
an S-labelled component. We have to consider the two situations depicted in Figures 15
and 16, where the gray zone represents a hidden part of the diagram. Equalities are

− = + +

Figure 15: Recovering the link relation.
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obtained by applying STU relations in the first case and Hol
w

relations in the second case.
Application of χ−1 to the right members provides linear combinations of the same sum

•

•

•

tj

tℓ

tm

−

•

•

•

tj

tℓ

tm

= tj

tj+ℓ

−
tm

tj+m

Figure 16: Recovering the winding relation (with j + ℓ+m = 0).

with the squeleton component dropped and possibly trees glued. Using the IHX relation
in the first case (resp. the Hol relation in the second case), we obtain link relations (resp.
winding relations).

3.2 Product and coproduct

We first define a coproduct on our diagram spaces. Given an R-beaded Jacobi diagram
D on (X,C), denote by

...
D its graph part, and by

...
Di, i ∈ I, the connected components of...

D. Set DJ = D \ (⊔i∈I\J
...
Di). Define the coproduct of a diagram D by

∆(D) =
∑

J⊂I

DJ ⊗DI\J .

Note that the different relations on Jacobi diagrams respect the coproduct. This provides
a notion of group-like elements, i.e. elements G such that ∆(G) = G⊗G, on our diagram
spaces.

Now set Ā = A or ÃR. In these cases, we have a Hopf algebra structure on Ā(X, ∗C).
Define the product of two diagrams D and E as the average of all diagrams obtained by
attaching

...
D and

...
E on the same squeleton. When X is empty, it is just the disjoint union.

The unit ǫ : Q → Ā(X, ∗C) is defined by
....
ǫ(1) = ∅ and the counit ε : Ā(X, ∗C) → Q is

given by ε(D) = 1 if
...
D = ∅ and 0 otherwise. The antipode is given by D 7→ (−1)|I|D.

We finally have a structure of a graded Hopf algebra on Ā(X, ∗C), where the grading is
given by the i-degree. It is known that an element in a graded Hopf algebra is group-like
if and only if it is the exponential of a primitive element, i.e. an element G such that
∆(G) = 1 ⊗ G + G ⊗ 1. Here, the primitive elements are the series of diagrams with
connected graph part.

18



The isomorphisms χ of the previous subsection are not algebra morphisms, but they
preserve the coproduct. For the spaces Ā(X, ∗C) with Ā = A or ÃR, we have an expo-
nential map associated with the product. For winding Jacobi diagrams, we will use the
notation exp⊔, namely exponential with respect to the disjoint union, for linear combina-
tion of diagrams with no univalent vertex embedded in the squeleton, where the disjoint
union applies only to the graph part.

3.3 Formal Gaussian integration

This part aims at defining a formal Gaussian integration along S on Ãw

R(X, ∗C∪S).

Definition 3.2. A (beaded, winding) Jacobi diagram on (X,C ∪ S) is substantial if it
has no strut, i.e. no isolated dashed edge. It is S-substantial if it has no S-strut, i.e. no
strut with both vertices labelled in S.

Given two (beaded, winding) Jacobi diagrams D and E on (X,C ∪S), one of whose is
S-substantial, define 〈D,E〉S as the sum of all diagrams obtained by gluing all s-colored
vertices of D with all s-colored vertices of E for all s ∈ S – if the numbers of s-colored
vertices in D and E do not match for some s ∈ S, then 〈D,E〉S = 0. In the beaded
and winding cases, we must precise the orientation and label of the created edges. Such
an edge is the gluing of two or three edges in the initial diagrams. Fix arbitrarily the
orientation of the new edge. Let P (t) (resp. Q(t)) be the product of the labels of the
initial edges whose orientation coincides (resp. does not coincide). Define the label of the
new edge as P (t)Q(t−1), see Figure 17. We have the following immediate lemma.

〈

t2

s′

t

t

s

s

,

s′

st4

t

t2
s 〉

{s,s′}

=

t3

t
t +

t

t
t

Figure 17: Bracketting diagrams.

Lemma 3.3. If D′ and E ′ are obtained from D and E by applying the same winding
relation on s-labelled vertices for some s ∈ S, then 〈D,E〉S = 〈D′, E ′〉S.

This bracketting defines a Q-bilinear operator on our diagram spaces. Set Ā =
A, ÃR, or Ãw

R.
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Theorem 3.4 (Jackson, Moffatt, Morales [JMM06]). If G and H are group-like in
Ā(X, ∗C∪S), then 〈G,H〉 is also group-like.

Notation. If W = (Wij(t))i,j∈S is an (S, S)-matrix with coefficients in Q(t), we also denote

W =
∑

i,j∈S
i

j

Wij (t) .

Definition 3.5. An element G ∈ Ãw

Q[t±1](X, ∗C∪S) is Gaussian if G = exp⊔(
1
2
W (t)) ⊔H

where W (t) is an (S, S)-matrix with coefficients in Q[t±1] and H is S-substantial. If
det(W (t)) 6= 0, G is non degenerate and we set:

∫

S

G = 〈 exp⊔(−
1

2
W−1(t)), H 〉S ∈ Ã

w

Q(t)(X, ∗C).

Lemma 3.6. Let G = exp⊔(
1
2
W (t))⊔H be a non-degenerate Gaussian in Ãw

Q[t±1](X, ∗C∪S).

• If a non-degenerate Gaussian exp⊔(
1
2
W (t))⊔H ′ is equal to G in Ãw

Q[t±1](X, ∗C , *©S),

then
∫
S
(exp⊔(

1
2
W (t)) ⊔H ′) =

∫
S
G.

• If G′ = exp⊔(
1
2
W ′(t)) ⊔ H ′ is obtained from G = exp⊔(

1
2
W (t)) ⊔ H by applying a

winding relation, then
∫
S
G′ =

∫
S
G.

Proof. The first point is essentially given by the proof of Bar-Natan and Lawrence [BNL04,

Proposition 2.2] in the non-beaded case. Here, multiplication by
s

s

Wss(t) does not pre-

serve the link relations, but the supplementary terms vanish thanks to the AS relation

when applying 〈 · , exp⊔(−
1
2

s

s

(W−1)ss(t) 〉.

The second point follows from Lemma 3.3.

3.4 Categories of diagrams

For Ā = A, ÃR, or Ãw

R, define a category Ā whose objects are associative words in the
letters (+,−) and whose set of morphisms are Ā(v, u) = ⊕XĀ(X), where X runs over all
compact oriented 1-manifolds with boundary identified with the set of letters of u and v,
with the following sign convention: for u, a + when the orientation of X goes towards the
boundary point and a − when it goes backward, and the converse for v. Composition is
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given by vertical juxtaposition, where the label of the created edges in the case of beaded
or winding diagrams is defined with the same rule as in the definition of 〈D,E〉. The
tensor product given by disjoint union defines a strict monoidal structure on Ā.

We finally define the target category of our extended Kricker invariant.

Notation. Given a positive integer g and a symbol ♮, set ⌊g⌉♮ = {1♮, . . . , g♮}. Set ⌊0⌉♮ = ∅.

Definition 3.7. Fix non-negative integers f and g. An R-beaded Jacobi diagram on
(∗⌊g⌉+∪⌊f⌉−) is top-substantial if it is ⌊g⌉+-substantial.

Given two such diagrams D and E, define their composition D ◦ E as the sum of all
ways of gluing all i+-labelled vertices of D with all i−-labelled vertices of E, fixing the
orientations and labels of the created edges as in the definition of 〈D,E〉S. We get a cate-
gory tsÃ whose objects are non-negative integers, with set of morphisms ÃQ(t)(∗⌊g⌉+∪⌊f⌉−)

from g to f . The identity of g is exp⊔(
∑g

i=1
i−

i+

). The tensor product defined by disjoint

union of diagrams provides tsÃ a strict monoidal structure.

4 Winding matrices

In this section, we define winding matrices associated with tangles with disks and bottom-
top tangles with paths and interpret them as equivariant linking matrices in the case of
bottom-top tangles. They will be useful in expressions of our invariant and splitting
formulas.

4.1 First definition

We first define winding matrices in tangles with disks. Let (γ, k) be a tangle with disks
dℓ. Write γ as the disjoint union of components γi for i = 1, . . . , n. Fix a diagram of
(γ, k) and a base point ⋆i for each closed component γi far from the crossings and the
disks. Define the associated winding w(γi, γj) ∈ Z[t±1] of γi and γj in the following way.
For a crossing c between γi and γj, denote εij(c) the algebraic intersection number of the
union of the disks dell with the path that goes from ⋆i, or the origin of γi, to c along γi
and then from c to ⋆j, or the end-point of γj, along γj. If i = j, change component at the
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first occurence of c.

w(γi, γj) =





1

2

∑

c

sg(c)tεij(c) if i 6= j

1

2

∑

c

sg(c)(tεii(c) + t−εii(c)) if i = j

where the sums are over all crossings between γi and γj. Note that w(γj, γi)(t) =
w(γi, γj)(t

−1). Now let I and J be two subsets of {1, . . . , n} and denote by γI and γJ
the corresponding subtangles of γ. The winding matrix WγIγJ associated with the fixed
diagram and base points is the matrix whose coefficients are the windings w(γi, γj) for
i ∈ I and j ∈ J – denote it WγI when I = J . In this latter case, note that WγI is
hermitian.

Lemma 4.1. The winding matrix is invariant by isotopies which do not allow the base
points to pass through the disks of the tangle. In particular, when γ contains no closed
components, it is an isotopy invariant.

Proof. First note that the winding matrix is preserved when a crossing passes through
a disk dℓ. It is also preserved when a base point of a closed component passes through
a crossing since the algebraic intersection number of this component with the union of
the disks dℓ is trivial. Hence it only remains to check invariance with respect to framed
Reidemeister moves performed far from the base points and the disks, which is direct.

To completely understand the effect of an isotopy on the winding matrix WγI ,γJ , we
shall describe its modification when a base point passes through a disk of the tangle. Fix
a closed component γi. Fix a diagram of (γ, k) with the base point of γi located “just
before” a disk dℓ of the tangle, as shown in the first part of Figure 18. Consider another

dℓ

γi

⋆i
 dℓ

γi
⋆i

Figure 18: Base point passing through a disk.

diagram of (γ, k) which differs from the previous one only by the position of the base
point ⋆i, which is as shown on the second part of Figure 18. Let ε = ±1 give the sign of
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the intersection of dℓ and γi which the base point passes through. It is easily seen that the
winding matrix of the latter diagram is obtained from the winding matrix of the previous
one by multiplication on the left by Ti(t

−ε) if i ∈ I and on the right by Ti(t
ε) if i ∈ J ,

where Ti is the diagonal matrix whose diagonal coefficients are all 1 except a t at the ith

position.
We now define winding matrices for bottom-top tangles in Q-cubes. Let (B,K, γ)

be a bottom-top tangle with paths in a Q-cube. Let (([−1, 1]3,Ξ, η), L) be a surgery
presentation of (B,K, γ). Denote (η, k) the associated tangle with disks. Fix a diagram
of ([−1, 1]3,Ξ, η) and a base point ⋆i for each component Li of L. Define the winding
matrix of (B,K, γ), with coefficients in Q(t), as:

Wγ = Wη −WηLW
−1
L WLη.

Note that WL is invertible since WL(1) is the linking matrix of L, thus WL(1) 6= 0 since
B is a homology cube.

Lemma 4.2. The winding matrix Wγ is an isotopy invariant of (B,K, γ).

Proof. First, when the surgery presentation is fixed, the discussion of the previous sub-
section implies that the winding matrix does not depend on the choice of diagram and
base points. Then independance with respect to Kirby moves is easily checked. We detail
the less direct, which is the case when a surgery link component is added to a tangle
component. Denote η′ the tangle obtained from η by adding the surgery component Lj

to ηi. We have:

Wη′ = Wη +
tPWLη +WηLP + tPWLP and WLη′ = WLη +WLP,

where P is the |L|×|η| matrix whose only non-trivial term is a 1 at the (j, i) position.

4.2 Topological interpretation

Given a bottom-top tangle with paths in a Q-cube, or a tangle with disks defined from
a bottom-top tangle with paths in [−1, 1]3 with a surgery link, close the components of
the tangle by line segments on the top and bottom surfaces. This provides well-defined
linking numbers for the tangle components. If there is no path or disk, the winding
matrix is the linking matrix. It is clear when working in [−1, 1]3. For bottom-top tangles
in Q-cubes, apply the following easy fact, which can be proved by adapting the proof of
Proposition 4.5.
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Fact 4.3. Let L be an oriented framed link in [−1, 1]3 whose linking matrix Lk(L) is non
degenerate. Let ξ and ζ be disjoint oriented knots in [−1, 1]3 \ L and denote ξ′, ζ ′ the
copies of ξ, ζ in the Q-cube obtained from [−1, 1]3 by surgery on L. Then:

lk(ξ′, ζ ′) = lk(ξ, ζ)− Lk(ξ, L).Lk(L)−1.Lk(L, ζ).

More generally, when there are paths or disks, the winding matrix evaluated at t = 1
is the linking matrix. We shall give a similar interpretation for the winding matrix at a
generic t.

Let (B,K, γ) be a bottom-top tangle in a Q-cube. Let E be the exterior of K in B
and let Ẽ be its covering associated with the kernel of the map π1(E) → Z = 〈t〉 which
sends the positive meridians of the components of K to t. The automorphism group of
the covering is isomorphic to Z; let τ be the generator associated with the action of the
positive meridians. Let ζ be a knot in Ẽ such that there are a rational 2-chain Σ in Ẽ
and P ∈ Q[t±1] which satisfy ∂Σ = P (τ)(ζ). Let ξ be another knot in Ẽ such that the
projections of ζ and ξ in E are disjoint. Define the equivariant linking number of ζ and ξ
as:

lke(ζ, ξ) =
1

P (t)

∑

j∈Z

〈Σ, τ j(ξ)〉 tj ∈ Q(t).

The equivariant linking number is well-defined since H2(Ẽ,Q) = 0 (see for instance
[Mou14, Lemma 2.1]) and satisfies lke(τ(ζ), ξ) = t lke(ζ, ξ).

First consider a tangle (γ, k) with disks dℓ defined from a surgery presentation of a
bottom-top tangle with paths in a Q-cube, so that the closure γ̂i of each component γi is
well-defined. Fix a diagram of (γ, k) and base points ⋆i of its components. For an interval
component, choose the base point to be its origin. Set d = ∪kℓ=1dℓ. Let E be the exterior
of ∂d in [−1, 1]3 and let Ẽ be the infinite cyclic covering defined above. Let Ẽ0 ⊂ Ẽ be a
copy of the exterior of d in [−1, 1]3. Define the lift γ̃i of γ̂i in Ẽ by lifting ⋆i in Ẽ0. Given
two subtangles γI and γJ of γ, define the equivariant linking matrix Lke(γ̃I , γ̃J) of their
lifts with the equivariant linking numbers of the γ̃i.

Lemma 4.4. WγIγJ = Lke(γ̃I , γ̃J)

Proof. Set Ẽℓ = τ(Ẽ0), where τ is the generator of the automorphism group of the covering
Ẽ which corresponds to the action of the positive meridians of the ∂dℓ. Fix i ∈ I and
j ∈ J . Since γ̂i is null-homotopic in [−1, 1]3 \ ∂d, it bounds a disk D immersed in
[−1, 1]3 \ ∂d. Let D̃ be the lift of D obtained by lifting ⋆i in Ẽ0. Set D̃ℓ = D̃ ∩ Ẽℓ and let
Dℓ be the image of D̃ℓ in E. Set cℓ = ∂Dℓ and c̃ℓ = ∂D̃ℓ. Similarly, define the c′ℓ and c̃′ℓ
from γ̂j. Assume the c′ℓ do not meet the Dℓ along the disks of the tangle.
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Thanks to Lemma 4.1, we have w(γi, γj) =
∑

ℓ,ℓ′∈Z w(cℓ, c
′
ℓ′)t

ℓ−ℓ′ for any choice of base
points of the cℓ and c′ℓ′. Since these latter curves do not cross the disks of the tangle, we
have w(cℓ, c

′
ℓ′) = lk(cℓ, c′ℓ′) = 〈Dℓ, c

′
ℓ′〉, thus w(γi, γj) =

∑
ℓ,ℓ′∈Z〈Dℓ, c

′
ℓ′〉t

ℓ−ℓ′. Lifting both
Dℓ and c′ℓ′ in Ẽℓ does not change their algebraic intersection number, hence

w(γi, γj) =
∑

ℓ,ℓ′∈Z

〈D̃ℓ, τ
ℓ−ℓ′(c̃′ℓ′)〉t

ℓ−ℓ′

=
∑

ℓ,ℓ′∈Z

〈D̃ℓ, τ
ℓ′(c̃′ℓ−ℓ′)〉t

ℓ′

=
∑

ℓ′∈Z

〈D̃, τ ℓ
′

(γ̃j)〉t
ℓ′

= lke(γ̃i, γ̃j)

where the third equality holds since τ ℓ
′

(c̃′ℓ−ℓ′) = τ ℓ
′

(γ̃j) ∩ Ẽℓ.

Now consider a bottom-top tangle with paths in a Q-cube (B,K, γ). Since γ is null-
homotopic in B \K, we have a well-defined equivariant linking matrix Lke(γ̃). Here, all
components are intervals, so we have a canonical choice of base points.

Proposition 4.5. Let (B,K, γ) be a bottom-top tangle with paths in a Q-cube. Then
Wγ = Lke(γ̃).

Proof. Let (([−1, 1]3,Ξ, η), L) be a surgery presentation of (B,K, γ). Fix a diagram of
([−1, 1]3,Ξ, η ∪ L) and base points for the components of L = ∪1≤i≤nLi. Let Ẽ be the
infinite cyclic covering of the exterior of Ξ in [−1, 1]3. Let d be the disjoint union of disks
in [−1, 1]3 bounded by Ξ̂. Let L̃ = ∪1≤i≤nL̃i, γ̃ and η̃ be the lifts of L, γ and η in Ẽ with
all base points in the same copy in Ẽ of the exterior of d in [−1, 1]3. We have to prove
that:

Lke(γ̃) = Lke(η̃)− Lke(η̃, L̃)Lke(L̃)
−1Lke(L̃, η̃).

The infinite cyclic covering Ẽ ′ of the exterior of K in B is obtained from Ẽ by surgery
on ∪ℓ∈Zτ ℓ(L̃). Let η̃x and η̃y be components of η̃, and let γ̃x and γ̃y be the corresponding
components of γ̃. For any knot λ in Ẽ or Ẽ ′, denote m(λ) an oriented meridian. For
1 ≤ i ≤ n, let ci be the parallel of L̃i which bounds a disk after surgery. In the group
H1

(
Ẽ \ ∪ℓ∈Z

(
τ ℓ(L̃) ∪ τ ℓ(η̃y)

)
;Z
)
, we have

η̃x = lke(η̃x, η̃y)m(η̃y) +
n∑

i=1

lke(η̃x, L̃i)m(L̃i)
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and

ci = lke(L̃i, η̃y)m(η̃y) +
n∑

j=1

lke(L̃i, L̃j)m(L̃j),

where multiplication by t is given by the action of τ in homology. In H1(Ẽ
′\∪ℓ∈Zτ

ℓ(γ̃y);Z),
this gives γ̃x = lke(η̃x, η̃y)m(γ̃y)− Lke(η̃x, L̃)Lke(L̃)

−1Lke(L̃, η̃y)m(γ̃y).

It is easily checked that the null LP-surgeries defined in the introduction define a move
on the set of bottom-top tangles with paths in Q-cubes. Moreover:

Corollary 4.6. The winding matrix of a bottom-top tangle with paths in a Q-cube is
invariant under null-LP surgeries.

Proof. Let (B,K, γ) be a bottom-top tangle with paths in a Q-cube associated with a
Lagrangian cobordism with paths (M,K). Let C be a null LP-surgery on (M,K) made
of a single QSK-pair. Let (M ′, K ′) be the Lagrangian cobordism with paths obtained by
surgery, and let (B′, K ′, γ′) be the associated bottom-top tangle with paths in a Q-cube.
Let Ẽ be the infinite cyclic covering of the exterior of K in B. The nullity condition
implies that the preimage of the Q-handlebody C is the disjoint union of Q-handlebodies
Cℓ isomorphic to C. The infinite cyclic covering Ẽ ′ of the exterior of K ′ in B′ is obtained
from Ẽ by null LP-surgeries on all the Cℓ. This concludes since LP-surgeries preserve the
linking number (see for instance [Mou15, Lemma 2.1]).

5 Construction of an LMO invariant on L̃Cob

5.1 The functor Z• : T̃q → Ã
w

Q[t±1]

The definition of the functor Z• : T̃q → Ã
w

Q[t±1] is based on the functor Z : Tq → A

of [CHM08], which is a renormalization of the Le-Murakami functor [LM95, LM96]. We
recall in Figure 19 the definition of Z on the elementary q-tangles, where ν ∈ A( ) ∼= A( )
is the value of the Kontsevich integral on the zero framed unknot, Φ ∈ A( ) is a Drinfeld
associator with rational coefficients, and ∆+++

u1,u2,u3
: A( ) → A( u1u2u3) is obtained by

applying (|ui| − 1) times ∆ on the i-th factor.
Let (γ, k) be a q-tangle with disks. Assume γ is transverse to [−1, 1]2 × { i

k+1
} for all

i ∈ {1, . . . , k}, and write γ as a composition of q-tangles γi by cutting along these levels,
see Figure 20. Write the bottom word of γi as wb(γi) = (vi)(wi), where wi corresponds to
the part of the tangle which meets the disk di. Set:

Z•(γ, k) = Z(γ0) ◦ (Iv1 ⊗Gw1) ◦ Z(γ1) ◦ · · · ◦ (Ivk ⊗Gwk
) ◦ Z(γk) ∈ Ã

w

Q[t±1](γ),
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Figure 19: The functor Z : Tq → A.

(v1)(w1)

(v2)(w2)

(v3)(w3)

γ0

γ1

γ2

γ3

Figure 20: Cutting a q-tangle with disks (γ, 3).

where Iv is the identity on the word v and Gv is obtained from Iv by adding a label t (resp.
t−1) on squeleton components associated with a − sign (resp. a + sign), see Figure 21.
At the level of objects, Z• forgets the parentheses. Invariance with respect to isotopy and
to the cutting of γ is due to invariance of the functor Z and the following observation of
Kricker [Kri00, Lemma 3.2.4].

Lemma 5.1. For a winding Jacobi diagram D ∈ Ãw

Q[t±1](w, v), we have Gv ◦D = D ◦Gw.

Proof. Apply the relations Hol and Hol
w

at all vertices of the diagram.

Furthermore, Z• is a clearly a functor, and it preserves the tensor product on Tq ⊗ T̃q
since Z is tensor-preserving.
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I−−+− = G−−+− = • • • •t t tt−1

Figure 21: The diagrams Iv and Gv.

Lemma 5.2. For any q-tangle with disks (γ, k), Z•(γ, k) is group-like.

Proof. The fact that Z(γ) is group-like for a q-tangle γ follows from [LM97, Theorem 5.1].
This concludes since the Gv are obviously group-like, and the coproduct commutes with
the composition.

5.2 The functor Z : T̃qCub→ Ã
w

Q(t)

The next step is to evaluate Z• on the surgery presentation of a q-tangle with paths in
a Q-cube. Let (B,K, γ) ∈ T̃qCub(w, v). Let (([−1, 1]3,Ξ, η), L) be a surgery presentation
of (B,K, γ). Up to isotopy, one can assume that the trivial link Ξ is the union of the
boundaries of the disks di = [0, 1]× [−1, 1]×{ i

k+1
}, where k is the number of components

of Ξ. Hence we have a q-tangle with disks (η ∪ L, k), and Z•(η ∪ L, k) ∈ Ãw

Q[t±1](η ∪ L).
Set:

Z◦((Ξ, η), L) = χ−1
π0(L)

(ν⊗π0(L)♯π0(L)Z
•(η ∪ L, k)) ∈ Ãw

Q[t±1](η, *©©π0(L))

where the connected sum means that a copy of ν is summed to each component of L.
Note that Z◦((Ξ, η), L) is group-like since Z•(η ∪ L, k) and ν are group-like and χπ0(L)

preserves the coproduct.
We want to apply formal Gaussian integration to Z◦((Ξ, η), L). We work with a

lift Z◦((Ξ, η), L) ∈ Ãw

Q[t±1](η, ∗π0(L)). Fix a diagram of the q-tangle with disks (η ∪ L, k)

transverse to the levels { i
k+1
}, and fix base points ⋆i on each component Li of L. Construct

Z◦((Ξ, η), L) following the construction from the beginning of Section 5 for this diagram,
with the squeleton components corresponding to the components of L defined as intervals
by cutting each component Li at the base point ⋆i.

Lemma 5.3. The lift Z◦((Ξ, η), L) is group-like, and we have:

Z◦((Ξ, η), L) = exp⊔

(
1

2
WL

)
⊔H,

where WL is the winding matrix associated with our choice of diagram and base points
and H is π0(L)-substantial.
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Proof. Check as in Lemma 5.2 that Z◦((Ξ, η), L) is group-like. We have to compute the
part of Z◦((Ξ, η), L) made of π0(L)-struts. We work with χ−1

π0(η)
(Z◦((Ξ, η), L)), which

is also group-like, in order to have a Hopf algebra structure on our diagram space. In
particular, the group-like property implies that χ−1

π0(η)
(Z◦((Ξ, η), L)) is the exponential of a

series of connected diagrams. Since ν and the associator Φ have no terms with exactly two
vertices, the only contributions to the π0(L)-struts part come from the crossings between
components of L. For i 6= j, the definition of Z and the Hol

w
relation show that the

contribution of a crossing c between Li and Lj is χ−1
π0(η)( 1

2
sg(c)

Li Lj

t
εij (c) ). Hence the

contribution of all crossings between Li and Lj is

Li

Lj

(WL)ij =

Lj

Li

(WL)ji . For i = j, the

contribution of a self-crossing of Li is:

χ−1
π0(η)



1

2
sg(c)

Li

tεii(c)


 = sg(c)




Li

Li

tεii(c) +
1

2
Li

tεii(c)

 .

Summed over all self-crossings of Li, we get as strut part:

∑

c

1

2
sg(c)

Li

Li

tεii(c) =
1

2
Li

Li

(WL)ii .

Hence χ−1
π0(η)

(Z◦((Ξ, η), L)) = exp⊔

(
1
2
WL

)
⊔H ′ where H ′ ∈ Ãw

Q[t±1](∗π0(η)∪π0(L)) is π0(L)-
substantial. Set H = χπ0(η)(H

′).

The matrix WL(1) is the linking matrix of the link L, hence it is the presentation
matrix of the first homology group of a Q-cube. Thus det(WL(1)) 6= 0 and Z◦((Ξ, η), L)
is a non-degenerate Gaussian. Lemma 3.6 implies:

Lemma 5.4. The formal Gaussian integral
∫
π0(L)

Z◦((Ξ, η), L) does not depend on the lift

Z◦((Ξ, η), L) ∈ Ãw

Q[t±1](η, ∗π0(L)) of Z◦((Ξ, η), L) ∈ Ãw

Q[t±1](η, *©©π0(L)).

This allows to set:∫

π0(L)

Z◦((Ξ, η), L) =

∫

π0(L)

Z◦((Ξ, η), L) ∈ Ãw

Q(t)(γ).
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Proposition 5.5. Let (B,K, γ) be a q-tangle with paths in a Q-cube. Fix a surgery
presentation (([−1, 1]3,Ξ, η), L) of (B,K, γ). Then:

Z(B,K, γ) = U
−σ+(L)
+ ⊔ U

−σ−(L)
− ⊔

∫

π0(L)

Z◦((Ξ, η), L) ∈ Ãw

Q(t)(γ),

where U± = Z◦((∅,∅), ±1 ), defines a functor Z : T̃qCub→ Ã
w

Q(t) which preserves the

tensor product on TqCub⊗ T̃qCub.

Proof. We have to check that Z(B,K, γ) does not depend on the surgery presentation.
Independance with respect to the orientation of the components of L follows from the
argument of [ÅII02, Proposition 3.1]. The normalization term U

−σ+(L)
+ ⊔ U

−σ−(L)
− ensures

independance with respect to the KI move as usual. Independance with respect to the
KII move mainly follows from [GK04, Section 5.4]. More precisely, the argument of
[GK04, Theorem 4] adapts [LMMO99, Proposition 1] to relate the values of Z◦((Ξ, η), L)
for surgery links that differ from each other by a KII move. Then [GK04, Lemma 5.6]
shows that this implies the invariance of the formal Gaussian integral. As noted in [ÅII02,
Section 5.1], the argument remains valid when a surgery component is added to a tangle
component since [GK04, Lemma 5.6] uses integration along the surgery component.

Restricting the functor Z : T̃qCub → Ã
w

Q(t) to q-tangles in Q-cubes with no path,
one recovers the functor Z : TqCub → A of [CHM08, Definition 3.16]. When γ is a
bottom-top tangle and K = ∅, χ−1

π0(γ)
(Z(B,∅, γ)) is group-like and χ−1

π0(γ)
(Z(B,∅, γ)) =

exp⊔(Lk(γ)) ⊔ H for some substantial and group-like H [CHM08, Lemma 3.17]. We
generalize this in the next result.

Lemma 5.6. For any bottom-top q-tangle with paths (B,K, γ) where B is a Q-cube,
χ−1
π0(γ)

(Z(B,K, γ)) is group-like and:

χ−1
π0(γ)

(Z(B,K, γ)) = exp⊔(Wγ) ⊔H ∈ Ãw

Q(t)(∗π0(γ)),

for some substantial and group-like H.

Proof. The fact that Z(B,K, γ) is group-like follows from the same property for U+, U−

and Z◦((Ξ, η), L), and Theorem 3.4. It implies that χ−1
π0(γ)

(Z(B,K, γ)) is group-like since
χπ0(γ)

preserves the coproduct. The same computation as in the proof of Lemma 5.3 gives:

χ−1
π0(η)

(
Z◦((Ξ, η), L)

)
= exp⊔

(
1

2
WL +

1

2
Wη +WLη

)
⊔H ′,
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where H ′ is substantial. Integrate along π0(L):

χ−1
π0(γ)

(∫

π0(L)

Z◦((Ξ, η), L)

)

=

〈
exp⊔

(
−
1

2
W−1

L

)
, exp⊔

(
1

2
Wη +WLη

)
⊔H ′

〉

π0(L)

= exp⊔

(
1

2
Wη −

1

2
tWLη(t

−1)W−1
L WLη

)
⊔H

= exp⊔

(
1

2
Wγ

)
⊔H.

5.3 The functor Z̃ : L̃Cobq →
tsÃ

In this section, we define a functor on Lagrangian q-cobordisms with paths by applying the
invariant Z on bottom-top q-tangles with paths in Q-cubes. The invariant Z is functorial
on q-tangles but not on bottom-top q-tangles, due to the different composition laws. To
deal with this, we introduce some specific elements ⊤g ∈

tsÃ(∗⌊g⌉+∪⌊g⌉−) following [CHM08,
Sec. 4]. Set:

λ(x, y; r) = χ−1
{r}(exp(

r

x ) ◦ exp(
r

y )) ∈ ÃQ(t)(∗{x,y,r}),

⊤(x+, x−) = U−1
+ ⊔ U−1

− ⊔

∫

{r+,r−}

〈λ(x+, 1+; r+) ⊔ λ(x−, 1−; r−), χ−1(T1)〉{1+,1−},

⊤g = ⊤(1+, 1−) ⊔ · · · ⊔⊤(g+, g−) ∈ ÃQ(t)(∗⌊g⌉+∪⌊g⌉−),

where the bottom-top tangle T1 is drawn in Figure 7. As proven in [CHM08, Lemma 4.9]:

Lemma 5.7. ⊤g is a group-like element of ÃQ(t)(∗⌊g⌉+∪⌊g⌉−) and ⊤g = Idg ⊔H for some
substantial and group-like H. In particular, ⊤g is top-substantial and ⌊g⌉−-substantial.

Let (M,K) be a Lagrangian q-cobordism with paths and denote (B,K, γ) the asso-
ciated bottom-top q-tangle with paths, of type (g, f). We have Z(B,K, γ) ∈ Ãw

Q(t)(γ)
∼=

ÃQ(t)(γ) and we consider χ−1(Z(B,K, γ)) ∈ ÃQ(t)(∗⌊g⌉+∪⌊f⌉−). It may not be top-substan-
tial, but since ⊤g is ⌊g⌉−-substantial, we can set:

Z̃(M,K) = χ−1(Z(B,K, γ)) ◦⊤g.
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At the level of objects, Z̃ sends a word on its number of letters. Direct adaptation of the
proof of [CHM08, Lemma 4.10] implies that Z̃ preserves the composition, and the next
result follows, see [CHM08, Theorem 4.13].

Proposition 5.8. Z̃ : L̃Cobq →
tsÃ is a functor which preserves the tensor product on

LCobq ⊗ L̃Cobq.

Restricting the functor Z̃ : L̃Cobq →
tsÃ to Lagrangian q-cobordisms with no path,

one recovers the functor Z̃ defined on LCobq in [CHM08, Theorem 4.13].
Lemmas 5.6 and 5.7 imply:

Lemma 5.9. Let (M,K) be a Lagrangian q-cobordism with paths and let (B,K, γ) be the
associated bottom-top q-tangle with paths. Then Z̃(M,K) is group-like and Z̃(M,K) =
exp⊔(Wγ) ⊔H for some substantial and group-like H.

5.4 Application to QSK-pairs

Let (S, κ) be a QSK-pair. Let M be the Q-cube obtained from S by removing the interior
of a ball B3 disjoint from κ. Isotoping κ in M and fixing a boundary parametrization m
of M , we can view κ as the knot K̂ associated with a Lagrangian cobordism with one path
(M,K). Since the top and bottom words are empty, we get a Lagrangian q-cobordism
with one path.

Proposition 5.10. Let (S, κ) be a QSK-pair. Define as above an associated Lagrangian
q-cobordism with one path (M,K). Then Z̃(S, κ) = Z̃(M,K) defines an invariant of
QSK-pairs, which coincides with the Kricker invariant Zrat for knots in Z-spheres.

Proof. When associating a cobordism with one path with a QSK-pair, we make a choice
in the way we isotope the knot to the closure of a path. Once we work with a surgery pre-
sentation of our cobordism, this choice corresponds to the move represented in Figure 22.
But the right hand side diagram of this figure shows this move is trivial – as noted in
[GK04, Lemma 3.26].

Coincidence with Zrat is direct by construction.

Remark. The above proof does not work for a cobordism with more than one path, so we
do not get an invariant of boundary links in Q-spheres. One may obtain such an invariant
by quotienting out the target space by suitable relations, see [GK04] for a construction of
this kind.
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Figure 22: A sweeping move.

Proposition 5.11. Let (S1, κ1) and (S2, κ2) be QSK-pairs. The invariant Z̃ is given on
their connected sum by:

Z̃((S1, κ1)♯(S2, κ2)) = Z̃(S1, κ1) ⊔ Z̃(S2, κ2).

Proof. As previously, associate Lagrangian q-cobordisms with one path (M1, K1) and
(M2, K2) with (S1, κ1) and (S2, κ2) respectively. Construct a Lagrangian q-cobordism
with one path (M,K) associated with (S, κ) = (S1, κ1)♯(S2, κ2) by stacking (M1, K1)
and (M2, K2) together in the y direction. Now (M1, K1) and (M2, K2) are obtained from
the cube [−1, 1]3 with one disk by surgery on links L1 and L2 respectively. We obtain
a surgery diagram for (M,K) by drawing L1 “in front” of L2, or equivalently “around”
L2, see Figure 23. The result follows from this latter diagram since there is no crossing
between L1 and L2.

•

L1

L2

∼ •

L1

L2

Figure 23: Stacking diagrams.

33



6 Splitting formulas

We first mention useful lemmas from [Mas15, Lemmas 4.3 & 4.4]. Recall the tensor µ(C)
was defined in the introduction.

Lemma 6.1. For a Q-handlebody C of genus g, there exists a boundary parametrization
c : ∂Cg

0 → C such that (C, c) ∈ LCob(g, 0).

Lemma 6.2. Let C =
(
C′

C

)
be an LP-pair of genus g. Take boundary parametrizations

c : ∂Cg
0 → C and c′ : ∂Cg

0 → C ′ compatible with the fixed identification ∂C ∼= ∂C ′ such
that (C, c) ∈ LCob(g, 0) and (C ′, c′) ∈ LCob(g, 0). Then:

µ(C) = Z̃1(C, c)− Z̃1(C
′, c′),

where Z̃1 is the i-degree 1 part of Z̃ and µ(C) is considered as an element of ÃQ(t)(∗⌊g⌉+)

via the inclusion Λ3H1(C;Q) →֒ ÃQ(t)(∗⌊g⌉+) defined by:

[c+(βi)] ∧ [c+(βj)] ∧ [c+(βk)] 7→
k+ j+ i+

.

Let (M,K) ∈ L̃Cobq(w, v). Let C = (C1, . . . ,Cn) be a null LP-surgery on (M,K).
Let ei be the genus of Ci. For 1 ≤ i ≤ n, take boundary parametrizations ci : ∂C

ei
0 → Ci

and c′i : ∂C
ei
0 → C ′

i compatible with the fixed identification ∂Ci
∼= ∂C ′

i such that (Ci, ci) ∈
LCob(ei, 0) and (C ′

i, c
′
i) ∈ LCob(ei, 0). Set e =

∑n
i=1 ei. Take a collar neighborhood

m−(Ff ) × [−1, ε − 1] of the bottom surface m−(Ff ). Take pairwise disjoint solid tubes
Ti, i = 1, . . . , n, such that Ti connects (ci)−(F0) to a disk in m−(Ff) × {ε − 1} in the
complement of the Cj, the collar neighborhood and K. This provides a decomposition of
the cobordism (M,K) as:

(M,K) = ((C1,∅)⊗ · · · ⊗ (Cn,∅)⊗ Idf) ◦ (N, J),

where f is the number of letters of v. It is proved in [Mas15, Section 4.4] that N is a
Lagrangian cobordism. The nullity condition on the surgery ensures that Ĵ is a boundary
link. Thus (N, J) is a Lagrangian cobordism with paths.

With the surgery C is associated the tensor µ(C) ∈ AQ(H1(C;Q)). Let W be a square
matrix of size e with coefficients in Q(t). Interpret W as a hermitian form on H1(C;Q)
written in the basis (([(ci)+(βj)])1≤j≤ei)1≤i≤n. Given an H1(C;Q)-colored Jacobi diagram,
one can glue some legs of the diagram with W , see Figure 3. Changing the labels of the
univalent vertices via

[(ci)+(βj)] 7→
i−1∑

ℓ=1

eℓ + j,
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this provides a diagram in ÃQ(t)(∗⌊e⌉+).
The following result is a direct adaptation of [Mas15, Section 4.4], with the winding

matrices playing the role of the linking matrices.

Proposition 6.3. Let (M,K) be a Lagrangian q-cobordism with paths and let (B,K, γ)
be the associated bottom-top q-tangle with paths. Let C = (C1, . . . ,Cn) be a null LP-
surgery on (M,K). Define as above a decomposition of the cobordism (M,K). Choose
top and bottom words for (N, J) and the (Ci,∅) in order to get a decomposition of the
Lagrangian q-cobordism (M,K) as (M,K) = ((C1,∅) ⊗ · · · ⊗ (Cn,∅) ⊗ Idv) ◦ (N, J).
Let (D, J, ς) be the bottom-top q-tangle with paths associated with (N, J). Let ςc be the
subtangle of ς− corresponding to the Ci’s. Let e be the number of components of ςc. Let
ρ̃c : ÃQ(t)(∗⌊e⌉+) → ÃQ(t)(∗⌊g⌉+∪⌊f⌉−) be the linear form which changes the labels of the
univalent vertices as follows:

ρ̃c(ℓ
+) =

g∑

j=1

Wςc(ς
+
j , ςℓ) · j

+ +

f∑

i=1

Wςc(ς
−
e+i, ςℓ) · i

−.

Then:

∑

I⊂{1,...,n}

(−1)|I|Z̃ ((M,K)(CI)) ≡n exp⊔

(
1

2
Wγ

)
⊔ ρ̃c




sum of all ways of gluing
some legs of µ(C) with

Wςc/2


 ,

where CI = ((Ci)i∈I) and ≡n means “equal up to i-degree at least n + 1 terms”.

Note that Wγ = Wς\ςc by Proposition 4.6.
For a cobordism with one path, the next result gives a more intrisic version of these

formulas, which does not refer to a decomposition of the cobordism. A similar result is
given by in [Mas15, Lemma 4.1] for a cobordism with no path.

Given a null LP-surgery C = (C1, . . . ,Cn) on a Lagrangian cobordism (M,K), define
a hermitian form ℓ(M,K)(C) : H1(C;Q) × H1(C;Q) → Q(t) in the same way as ℓ(S,κ)(C)

was defined in the introduction. Also define a map ρc : AQ(H1(C;Q))→ ÃQ(t)(∗⌊g⌉+∪⌊f⌉−)
which changes the labels of the univalent vertices by first sending them in H1(M ;Q) via
H1(C;Q) ∼= ⊗n

i=1H1(Ci;Q)→ H1(M ;Q), and then writing them in terms of the [m+(βi)]
and [m−(αi)].

A direct adaptation of (the end of) [Mas15, Section 4.4] gives:

Proposition 6.4. Let (M,K) ∈ L̃Cobq(w, v) be a Lagrangian q-cobordism with one path.
Let C = (C1, . . . ,Cn) be a null LP-surgery on (M,K). Then:

∑

I⊂{1,...,n}

(−1)|I|Z̃ ((M,K)(CI)) ≡n exp⊔

(
1

2
Wγ

)
⊔ ρc




sum of all ways of gluing
some legs of µ(C) with

ℓ(M,K)(C)/2


 .
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Proof of Theorem 1.1. Use Propositions 5.10 and 6.4. The strut part disappears since
we deal with a cobordism from F0 to F0. The map ρc kills all terms with at least one
univalent vertex since a Lagrangian cobordism from F0 to F0 has trivial first homology
group over Q.
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