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Abstract — This work deals with explicit a posteriori error estimates for elastic wave propagation in 

heterogeneous media. Based on some previous works on acoustic problems, the proposed explicit 

error estimator is derived in a non-natural L
∞ 

norm by using several reconstructions of numerically 

calculated fields. The effectivity of the estimator on uniform meshes and adaptive meshes is studied 

numerically. The results indicate that the error estimator gives an upper bound to the true error. 

Improvements for the reconstruction in time and in space are proposed. 

Keywords — A posteriori error estimate, wave equation, L
∞
 norm, effectivity 

1. A posteriori error estimate for wave equation 

1.1. Elastic wave propagation model problem 

For  𝑡 ∈ (0, T) and 𝑥 ∈ Ω , we consider the elastic wave propagation problem in an elastic solid Ω : 

finding (𝑢(x, 𝑡) × 𝑣(x, 𝑡)) ∈ X2 × N2 with (𝑢0, 𝑣0) ∈ 𝐻0
1(Ω) × 𝐿2(Ω) and 𝑓 ∈ N2 such that  

{
 
 

 
 
𝜌𝜕𝑡𝑣(x, 𝑡) − ∇ ∙ 𝜎(𝑢) = 𝑓                   ∀(x, 𝑡) ∈ Ω × (0, T)      

Div (σ(𝜕𝑡𝑢(x, 𝑡) − 𝑣(x, 𝑡))) = 0       ∀(x, 𝑡) ∈ Ω × (0, T)      

 𝑢 = 0                                                         ∀(x, 𝑡) ∈ ∂Ω × (0, T)     
𝑢(x, 0) = 𝑢0(x)                                       ∀x ∈ Ω                              
𝑣(x, 0) = 𝑣0(x)                                       ∀x ∈ Ω                             

  

(1) 

We define the space of functions  𝐹(0, 𝑇; 𝐸) =  {𝑢 ∈ 𝐸;  for  ∀𝑡 ∈ (0, T) and 𝑡 → 𝑢(x,∙) is in 𝐹}. 

For example, here we denote:  N2 = 𝐿2(0, 𝑇; 𝐿2(Ω)), X2 = 𝐿2(0, T; V(Ω)) . Notice that the second-

order elastodynamic equation is transformed here to a first-order hyperbolic system (1) and the 

equivalence of 𝜕𝑡𝑢 and 𝑣 is imposed through the equilibrium of internal forces.  

1.2. Space and time reconstructions 

To be solved, the system (1) is discretized in space by the finite element method and in time by a 

finite difference scheme. The so-obtained numerical solutions are denoted by (𝑢ℎ𝜏 , 𝑣ℎ𝜏). With respect 

to different regularities required by corresponding ingredients of the estimator, we take a time-

continuous reconstruction (𝑢̅ℎ𝜏 , 𝑣̅ℎ𝜏) with Hermitian interpolation: 

{
  
 

  
 𝑢̅ℎ𝜏(x, 𝑡):=

(𝑡 − 𝑡𝑛+1)(2𝑡 + 𝑡𝑛+1 − 3𝑡𝑛)

𝜏𝑛
𝑢ℎ𝜏
𝑛 (x) +

(𝑡 − 𝑡𝑛)(−2𝑡 − 𝑡𝑛+1 + 3𝑡𝑛)

𝜏𝑛
𝑢ℎ𝜏
𝑛+1(x)     

+
(𝑡 − 𝑡𝑛)(𝑡𝑛+1 − 𝑡)2

𝜏𝑛
𝑣ℎ𝜏
𝑛 (x) +

(𝑡 − 𝑡𝑛+1)(𝑡𝑛 − 𝑡)2

𝜏𝑛
𝑣ℎ𝜏
𝑛+1(x)                   

𝑣̅ℎ𝜏(x, 𝑡): =
𝑡𝑛+1 − 𝑡

𝜏𝑛
𝑣ℎ𝜏
𝑛 (x) +

𝑡 − 𝑡𝑛

𝜏𝑛
𝑣ℎ𝜏
𝑛+1(x) −

(𝑡 − 𝑡𝑛)(𝑡𝑛+1 − 𝑡)2

𝜏𝑛
𝑣ℎ𝜏
𝑛+2 − 2𝑣ℎ𝜏

𝑛+1 + 𝑣ℎ𝜏
𝑛

(𝜏𝑛)2
(x) 

 

(2) 
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and two field reconstructions in space (𝜎̃ℎ𝜏 , 𝛿ℎ𝜏): 

𝜎̃ℎ𝜏(∙, 𝑡) ∈ 𝐻(𝑑𝑖𝑣, Ω),

 (𝜕𝑡𝑣̅ℎ𝜏 − ∇ ∙ 𝜎̃ℎ𝜏
𝑛 , 1)𝐾 =  (𝑓 ,1)𝐾      in   𝐼𝑛

      ∀𝑡 ∈ 𝐼𝑛, ∀1 ≤ 𝑛 ≤ 𝑁  (3) 

𝛿ℎ𝜏(∙, 𝑡) ∈ 𝐻(𝑑𝑖𝑣, Ω),

 (𝜕𝑡𝑡𝑣̅ℎ𝜏 − ∇ ∙ 𝛿ℎ𝜏, 1)𝐾 =  (𝜕𝑡𝑓 ,1)𝐾    in   𝐼𝑛
    ∀𝑡 ∈ 𝐼𝑛 , ∀1 ≤ 𝑛 ≤ 𝑁  

(4) 

1.3. Explicit error bound 

The residual method of a posteriori error estimates is exploited with all these reconstructions 

mentioned. We define the indicator as follows: 

- the residual and flux indicator: 

‖𝜂𝑅 + 𝜂𝐷𝐹‖N2 = {∑∫ ∑(𝜂𝑅,𝐾
𝑛 + 𝜂𝐷𝐹,𝐾

𝑛 )
2
𝑑𝑡

𝐾∈𝒯ℎ
𝐼𝑛

𝑁

n=1

}

1
2

 

(5) 

with 𝜂𝑅,𝐾
𝑛 =

𝐶𝑃ℎ𝐾𝐶𝐾

√𝜆𝑚𝑖𝑛
‖𝑓 − 𝜕𝑡𝑣̅ℎ𝜏 + ∇ ∙ 𝜎̃ℎ𝜏

𝑛 ‖0,𝐾  in 𝐼𝑛 (which represents dynamic volume 

residues in the interior of each element), 𝜂𝐷𝐹,𝐾
𝑛 =

1

√𝜆𝑚𝑖𝑛
‖𝜎̃ℎ𝜏

𝑛 − σ(𝑢̅ℎ𝜏)‖0,𝐾   in 𝐼𝑛 (which 

represents constraints vectors’ jumps of solutions before reconstruction); where   𝐼𝑛 =
(𝑡𝑛, 𝑡𝑛+1] , 𝜆𝑚𝑖𝑛 is the smallest eigenvalue of the fourth order tensor  ℂ , 𝐶𝑃 is the Poincaré 

constant and 𝐶𝐾 is the Korn constant; 

- the derived residual and flux indicator: 

‖𝜂𝐷𝐸 + 𝜂𝐺𝑉‖N2 = {∑∫ ∑(𝜂𝐷𝐸,𝐾
𝑛 + 𝜂𝐺𝑉,𝐾

𝑛 )
2
𝑑𝑡

𝐾∈𝒯ℎ
𝐼𝑛

𝑁

n=1

}

1
2

 

(6) 

with  𝜂𝐷𝐸,𝐾
𝑛 =

𝐶𝑃ℎ𝐾𝐶𝐾

√𝜆𝑚𝑖𝑛
‖−𝜕𝑡𝑓|𝐼𝑛 + 𝜕𝑡𝑡𝑣̅ℎ𝜏 − ∇ ∙ 𝛿ℎ𝜏

𝑛 ‖
0,𝐾

 in 𝐼𝑛 (which represents velocity of 

dynamic volume residues) and 𝜂GV,𝐾
𝑛 =

1

√𝜆𝑚𝑖𝑛
‖−𝛿ℎ𝜏 + σ(𝜕𝑡𝑢̅ℎ𝜏)‖0,𝐾 (which represents 

velocity of constraints vectors’ jumps); 

- the nonconformity indicator: 

‖𝜂VN‖X2 = ‖𝜕𝑡𝑢̅ℎ𝜏 − 𝑣̅ℎ𝜏‖X2  ; (7) 

- the two initial condition indicators: 

 𝜂𝐶𝐼,1 =
1

√2
‖𝑣0 − 𝑣̅ℎ𝜏

0 ‖
0,Ω

 ; 

𝜂𝐶𝐼,2 =
1

√2
‖𝑢0 − 𝑢̅ℎ𝜏

0 ‖
𝑎,Ω

 . 

(8) 

We can derive the error estimator with these indicators: 
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√‖𝑣 − 𝑣̅ℎ𝜏‖N∞
2 + ‖𝑢 − 𝑢̅ℎ𝜏‖X∞

2  

 ≤  2 { sup
𝑛
{‖𝜂𝑅

𝑛 + 𝜂𝐷𝐹
𝑛 ‖0,Ω} + ‖𝜂𝑅

0 + 𝜂𝐷𝐹
0 ‖0,Ω + √𝑇(‖𝜂VN‖X2 + ‖𝜂𝐷𝐸 + 𝜂𝐺𝑉‖N2)}

+ √2{‖𝜂𝑅 + 𝜂𝐷𝐹‖N2‖𝜂VN‖X2 + 𝜂𝐶𝐼,1
2 + 𝜂𝐶𝐼,2

2 }
1
2 

(9) 

We notice that all the indicators are fully computable from (𝑢ℎ𝜏, 𝑣ℎ𝜏) and we can distinguish 

and estimate separately the different error components. 

2. Numerical results 

A one-dimensional elastic rod is considered as a numerical example. The left end of the rod is 

submitted to a pressure loading that evolves in time as a truncated Ricker-type signal while its right 

end is left free. See Figure 1.  

 

Figure 1 – One-dimensional rod example 

We consider two cases: homogeneous material with uniform mesh and heterogeneous material with 

uniform and adaptive meshes; then we compare the estimated and actual errors in heterogeneous case 

and we analyze the different terms of estimator: term1 = 2sup
𝑛
{‖𝜂

𝑅
𝑛 + 𝜂

𝐷𝐹
𝑛 ‖

0,Ω
}  ; term2 = 2‖𝜂𝑅

0 +

𝜂𝐷𝐹
0 ‖

0,Ω
 ; term3 = 2√𝑇‖𝜂VN‖X2  ; term4 = 2√𝑇‖𝜂𝐷𝐸 + 𝜂𝐺𝑉‖N2 ; term5 = √2‖𝜂𝑅 + 𝜂𝐷𝐹‖N2‖𝜂VN‖X2. 

 

(a) Estimated and actual error   (b) Terms of estimator 

Figure 2.1 – Heterogeneous case with uniform mesh 
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(a) Estimated and actual error   (b) Terms of estimator 

Figure 2.2 – Heterogeneous case with adaptive mesh 

In Figure 3(a), we notice that the estimated error gives a computable upper bound on the unknown 

error to actual error in all cases; but obviously, the effectivity index, as the ratio of the estimated and 

actual error, is too large and it cannot converge to 1 as the computational effort grows. In Figure 3(b), 

we find that the first term ‖𝜂𝐷𝐸 + 𝜂𝐺𝑉‖N2 and the third term sup{‖𝜂𝑅
𝑛 + 𝜂𝐷𝐹

𝑛 ‖0,Ω} contribute the 

most to the estimated error and their performance is determined by the reconstructions in time and in 

space. 

3. Conclusion 

We develop an explicit a posteriori error estimator for elastic wave propagation in heterogeneous 

media. Further research works are needed by taking account higher order reconstructions in time 

(𝑢̅ℎ𝜏, 𝑣̅ℎ𝜏) and in space (𝜎̃ℎ𝜏 , 𝛿ℎ𝜏), which are two key points to improve the numerical results. 

References 

[1] A. Ern and M. Vohralík. A posteriori error estimation based on potential and flux reconstruction for the heat 

equation, SIAM J. Numer. Anal., 198-223, 2010. 

[2] C. Johnson. Discontinuous Galerkin finite element methods for second order hyperbolic problems, Comput, 

Methods Appl. Mech. Engrg. , 117-129, 1993. 

[3] D. Aubry, D. Lucas, B. Tie. Adaptive strategy for transient/coupled problems applications to 

thermoelasticity and elastodynamics, Comput. Methods Appl. Mech. Engrg., 41-50, 1999. 

[4] E. H. Georgoulis, O. Lakkis and C. Makridakis. A posteriori L
∞
(L

2
)-error bounds for finite element 

approximations to the wave equation, IMA J. Numer. Anal., 1245-1264, 2013. 

[5] F. Ibrahima. Estimation d’erreur pour des problèmes de propagation d’ondes en milieux élastiques linéaires 

hétérogènes [Error estimate for wave propagation problems in linear elastic heterogeneous media],  

Internship Report, Ecole Centrale Paris, 2011. 


