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This work deals with explicit a posteriori error estimates for elastic wave propagation in heterogeneous media. Based on some previous works on acoustic problems, the proposed explicit error estimator is derived in a non-natural L ∞ norm by using several reconstructions of numerically calculated fields. The effectivity of the estimator on uniform meshes and adaptive meshes is studied numerically. The results indicate that the error estimator gives an upper bound to the true error. Improvements for the reconstruction in time and in space are proposed.

A posteriori error estimate for wave equation 1.Elastic wave propagation model problem

For 𝑡 ∈ (0, T) and 𝑥 ∈ Ω , we consider the elastic wave propagation problem in an elastic solid Ω : finding (𝑢(x, 𝑡) × 𝑣(x, 𝑡)) ∈ X 2 × N 2 with (𝑢 0 , 𝑣 0 ) ∈ 𝐻 0 [START_REF] Ern | A posteriori error estimation based on potential and flux reconstruction for the heat equation[END_REF] (Ω) × 𝐿 [START_REF] Johnson | Discontinuous Galerkin finite element methods for second order hyperbolic problems[END_REF] (Ω) and 𝑓 ∈ N 2 such that { 𝜌𝜕 𝑡 𝑣(x, 𝑡) -∇ • 𝜎(𝑢) = 𝑓 ∀(x, 𝑡) ∈ Ω × (0, T) Div (σ(𝜕 𝑡 𝑢(x, 𝑡) -𝑣(x, 𝑡))) = 0 ∀(x, 𝑡) ∈ Ω × (0, T)

𝑢 = 0 ∀(x, 𝑡) ∈ ∂Ω × (0, T) 𝑢(x, 0) = 𝑢 0 (x) ∀x ∈ Ω 𝑣(x, 0) = 𝑣 0 (x) ∀x ∈ Ω (1)
We define the space of functions 𝐹(0, 𝑇; 𝐸) = {𝑢 ∈ 𝐸; for ∀𝑡 ∈ (0, T) and 𝑡 → 𝑢(x,•) is in 𝐹}. For example, here we denote: N 2 = 𝐿 2 (0, 𝑇; 𝐿 2 (Ω)), X 2 = 𝐿 2 (0, T; V(Ω)) . Notice that the secondorder elastodynamic equation is transformed here to a first-order hyperbolic system (1) and the equivalence of 𝜕 𝑡 𝑢 and 𝑣 is imposed through the equilibrium of internal forces.

Space and time reconstructions

To be solved, the system (1) is discretized in space by the finite element method and in time by a finite difference scheme. The so-obtained numerical solutions are denoted by (𝑢 ℎ𝜏 , 𝑣 ℎ𝜏 ). With respect to different regularities required by corresponding ingredients of the estimator, we take a timecontinuous reconstruction (𝑢 ̅ ℎ𝜏 , 𝑣̅ ℎ𝜏 ) with Hermitian interpolation:

{ 𝑢 ̅ ℎ𝜏 (x, 𝑡): = (𝑡 -𝑡 𝑛+1 )(2𝑡 + 𝑡 𝑛+1 -3𝑡 𝑛 ) 𝜏 𝑛 𝑢 ℎ𝜏 𝑛 (x) + (𝑡 -𝑡 𝑛 )(-2𝑡 -𝑡 𝑛+1 + 3𝑡 𝑛 ) 𝜏 𝑛 𝑢 ℎ𝜏 𝑛+1 (x) + (𝑡 -𝑡 𝑛 )(𝑡 𝑛+1 -𝑡) 2 𝜏 𝑛 𝑣 ℎ𝜏 𝑛 (x) + (𝑡 -𝑡 𝑛+1 )(𝑡 𝑛 -𝑡) 2 𝜏 𝑛 𝑣 ℎ𝜏 𝑛+1 (x) 𝑣̅ ℎ𝜏 (x, 𝑡): = 𝑡 𝑛+1 -𝑡 𝜏 𝑛 𝑣 ℎ𝜏 𝑛 (x) + 𝑡 -𝑡 𝑛 𝜏 𝑛 𝑣 ℎ𝜏 𝑛+1 (x) - (𝑡 -𝑡 𝑛 )(𝑡 𝑛+1 -𝑡) 2 𝜏 𝑛 𝑣 ℎ𝜏 𝑛+2 -2𝑣 ℎ𝜏 𝑛+1 + 𝑣 ℎ𝜏 𝑛 (𝜏 𝑛 ) 2 (x) (2) 
𝜎 ̃ℎ𝜏 (•, 𝑡) ∈ 𝐻(𝑑𝑖𝑣, Ω), (𝜕 𝑡 𝑣̅ ℎ𝜏 -∇ • 𝜎 ̃ℎ𝜏 𝑛 , 1) 𝐾 = (𝑓 ,1) 𝐾 in 𝐼 𝑛 ∀𝑡 ∈ 𝐼 𝑛 , ∀1 ≤ 𝑛 ≤ 𝑁

𝛿 ̃ℎ𝜏 (•, 𝑡) ∈ 𝐻(𝑑𝑖𝑣, Ω), (𝜕 𝑡𝑡 𝑣̅ ℎ𝜏 -∇ • 𝛿 ̃ℎ𝜏 , 1) 𝐾 = (𝜕 𝑡 𝑓 ,1) 𝐾 in 𝐼 𝑛 ∀𝑡 ∈ 𝐼 𝑛 , ∀1 ≤ 𝑛 ≤ 𝑁 (4)

Explicit error bound

The residual method of a posteriori error estimates is exploited with all these reconstructions mentioned. We define the indicator as follows:

-

the residual and flux indicator: 

‖𝜂 𝑅 + 𝜂 𝐷𝐹 ‖ N 2 = {∑ ∫ ∑ (
‖𝜂 VN ‖ X 2 = ‖𝜕 𝑡 𝑢 ̅ ℎ𝜏 -𝑣̅ ℎ𝜏 ‖ X 2 ; (7) 
the two initial condition indicators:

𝜂 𝐶𝐼,1 = 1 √2 ‖𝑣 0 -𝑣̅ ℎ𝜏 0 ‖ 0,Ω ; 𝜂 𝐶𝐼,2 = 1 √2 ‖𝑢 0 -𝑢 ̅ ℎ𝜏 0 ‖ 𝑎,Ω . (8) 
We can derive the error estimator with these indicators: In Figure 3(a), we notice that the estimated error gives a computable upper bound on the unknown error to actual error in all cases; but obviously, the effectivity index, as the ratio of the estimated and actual error, is too large and it cannot converge to 1 as the computational effort grows. In Figure 3(b), we find that the first term ‖𝜂 𝐷𝐸 + 𝜂 𝐺𝑉 ‖ N 2 and the third term sup{‖𝜂 𝑅 𝑛 + 𝜂 𝐷𝐹 𝑛 ‖ 0,Ω } contribute the most to the estimated error and their performance is determined by the reconstructions in time and in space.

Conclusion

We develop an explicit a posteriori error estimator for elastic wave propagation in heterogeneous media. Further research works are needed by taking account higher order reconstructions in time (𝑢 ̅ ℎ𝜏 , 𝑣̅ ℎ𝜏 ) and in space (𝜎 ̃ℎ𝜏 , 𝛿 ̃ℎ𝜏 ), which are two key points to improve the numerical results.
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		velocity of constraints vectors' jumps);		
	-	the nonconformity indicator:			

𝑛 ‖ 0,𝐾 in 𝐼 𝑛 (which represents dynamic volume residues in the interior of each element), 𝜂 𝐷𝐹,𝐾 𝑛 -σ(𝑢 ̅ ℎ𝜏 )‖ 0,𝐾 in 𝐼 𝑛 (which represents constraints vectors' jumps of solutions before reconstruction); where 𝐼 𝑛 = (𝑡 𝑛 , 𝑡 𝑛+1 ] , 𝜆 𝑚𝑖𝑛 is the smallest eigenvalue of the fourth order tensor ℂ , 𝐶 𝑃 is the Poincaré constant and 𝐶 𝐾 is the Korn constant;

We notice that all the indicators are fully computable from (𝑢 ℎ𝜏 , 𝑣 ℎ𝜏 ) and we can distinguish and estimate separately the different error components.

Numerical results

A one-dimensional elastic rod is considered as a numerical example. The left end of the rod is submitted to a pressure loading that evolves in time as a truncated Ricker-type signal while its right end is left free. See Figure 1.