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The
 
study

 
of

 
a
 
reinforced

 
concrete

 
beam

 
tested

 
under

 
four-point

 
bending

 
is

 
proposed

 
in

 
this

 
article.

 

An
 
analysis

 
of

 
the

 
behaviour

 
of

 
this

 
beam

 
from

 
the

 
global

 
response

 
down

 
to

 
local

 
information

 
such

 
as

 

cracking
 
is

 
performed.

 
In

 
order

 
to

 
describe

 
the

 
progressive

 
degradation

 
of

 
the

 
beam,

 
a
 
damage

 
model

 

is
 
used,

 
associated

 
to

 
a
 
stress-based

 
non-local

 
regularisation

 
method.

 
A

 
post-treatment

 
of

 
the

 
finite

 

element
 
analysis

 
is

 
then

 
performed

 
to

 
characterise

 
the

 
cracking

 
pattern

 
(crack

 
spacing

 
and

 
crack

 

open-ing).
 
In

 
this

 
article,

 
two

 
different

 
methods

 
of

 
post-treatment

 
are

 
compared:

 
the

 
topo-logical

 

search
 
and

 
continuous/discontinuous

 
crack

 
opening

 
and

 
the

 
global/local

 
analysis.

 
Results

 
show

 
the

 

capability
 
of

 
both

 
methods

 
to

 
give

 
a
 
good

 
estimation

 
of

 
cracking.

 
Finally,

 
the

 
main

 
advantages

 
and

 

drawbacks
 
of

 
both

 
methods

 
are

 
under-lined.

Keywords: cracking; non-local damage; lattice model; reinforced concrete

1. Introduction

The durability analysis of reinforced concrete structures requires the quantification of

cracking. To deal with this problematic, several approaches are available.

On one hand, the description of cracking can be explicitly introduced in the model-

ling, as shown in X-FEM (Moës, Dolbow, & Belytschko, 1999), G-FEM (Strouboulis,

Babuška, & Copps, 2000) or E-FEM (Oliver, Huespe, & Sánchez, 2006) for example.

In these approaches, the location of the crack and the crack opening are directly quanti-

fied. However, the modelling of crack initiation is still under discussion.

On the other hand, the initial micro-cracking process and the macro-cracking failure

can be modelled in a continuous framework using regularised damage models. The

description of cracking is then performed by means of a post-processing procedure. In

this paper, the continuous approach is explored with two particular post-treatment meth-

ods used to quantify cracking in reinforced concrete elements. Both methods are com-

pared on a case study of a reinforced concrete beam subjected to a four-point bending

test.

In the first part of this contribution, the mechanical models used to describe the

degradation of the structure in a continuous framework are presented, including recent

developments regarding the description of the strain localisation. Then, two original

methods designed to extract information on cracking are described. Finally, these
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methods are compared within the framework of the modelling of a reinforced concrete

beam subjected to a four-point bending test.

2. Description of degradation in concrete

The micro-cracking process observed in concrete is described at the macro-scale in a

continuous framework with a non-local damage model. The main details of the model

are described in this part.

2.1. Damage model

The progressive degradation of concrete is characterised by a scalar damage variable D.

This internal variable links the stress tensor r to the strain tensor e, following Equation

(1).

r ¼ ð1� DÞC:e (1)

where C represents the elasticity tensor. This damage scalar variable D ranges from 0

(virgin material) to 1 (failed material). According to the model proposed by Mazars

(1986), this variable is driven by an internal variable κ that corresponds to the maxi-

mum value reached by the equivalent strain eeq during the loading and is initially equal

to eD0
(strain at first crack in tension). The formula of the equivalent strain eeq is given

in Equation (2).

eeq ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X3

i¼1

heii
2
þ

v
u
u
t (2)

where ei are the principal strain values and h�iþ are the Macaulay brackets. Equation (2)

expresses that damage is driven by strain extensions. The damage loading function

fD(εeq, κ) associated to the damage variable D corresponds to the maximum value

reached by the equivalent strain eeq during the loading and is initially equal to eD0

(strain at first crack in tension). The damage loading function fDðeeq; jÞ follows the

Kuhn–Tucker conditions (Equation (3)).

eeq � j� 0; _j� 0; _jðeeq � jÞ ¼ 0 (3)

In order to account for the non-symmetrical behaviour of concrete under uniaxial

loading, the damage variable D is expressed as a linear combination of two variables

(Equation (4)): Dt for the degradation in tension and Dc for the degradation in

compression.

D ¼ abc � Dc þ a
b
t � Dt (4)

where ac and at represent the recombination factors for tri-axial loading and b is a

parameter accounting for shear behaviour. Equation (5) gives the evolution of the

variables Dt and Dc.

Dc;t ¼ 1þ
ð1� Ac;tÞeD0

j
� Ac;t � expð�Bc;tðj� eD0

ÞÞ (5)

This model offers a robust and accurate representation of concrete behaviour and is

therefore largely used for industrial studies. Unfortunately, like every model presenting
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a softening behaviour, it suffers from localisation process during failure. By describing

this process with a constitutive model expressed in a local formulation, it leads to

non-objective results in numerical applications. In order to address this problem and to

introduce an explicit description of the fracture process zone (FPZ) (i.e. introduction of

characteristics length of the FPZ in the modelling), several regularisation methods have

been proposed (gradient enhanced media, non-local model on internal variable, etc).

2.2. Non-local model

A non-local regularisation method on the internal variable is used in this study in order

to maintain the objectivity of the results. This model, originally proposed by Pijaudier‐

Cabot and Bažant (1987), replaces a local variable X by its non-local counterpart �X

following Equation (6).

�X ðxÞ ¼

RRR

X
/ðx; sÞX ðsÞdX

RRR

X
/ðx; sÞdX

(6)

where /ðx; sÞ is a weighting function, x is the position of the point where the non-local

variable is calculated and s is the position of a point in its neighbourhood. Classically,

the weight function can be chosen as the Gaussian function Equation (7).

/ðx; sÞ ¼ exp �
4jjx� sjj2

l2c

!

(7)

Different choices can be made regarding the variable to regularise. In the framework

of isotropic damage model as the one presented previously, the internal variable j is a

classical choice (Saouridis & Mazars, 1992) that does not lead to locking problem

(Jirásek, 1998).

This regularisation method allows the objectivity of the results. Nevertheless, it fails

to properly describe both the strain field and the damage profile at complete failure and

cracking initiation close to boundaries. In order to improve the description of the contin-

uous fields at failure and thus the estimation of cracking by post-treatment of these

fields, an evolution of non-local interactions should be introduced during computation.

Among the recent developments relative to this pathology inherent to the original non-

local model, one can quote the works of Desmorat and Gatuingt (2007), Pijaudier-Cabot

and Dufour (2010) and Gregoire, Rojas-Solano, and Pijaudier-Cabot (2013). However,

in the actual contribution, the method proposed by Giry, Dufour, and Mazars (2011) is

used. The influence of the stress state is introduced in the description of the non-local

interactions through a stress factor ρ defined in Equation (8).

qðx; rðsÞÞ ¼
1

f 2t
sin2 u cos2 h

r2
1
ðsÞ

þ sin2 u sin2 h

r2
2
ðsÞ

þ cos2 u

r2
3
ðsÞ

� � (8)

where h is the angle between u1 and the projection of ðx� sÞ over the plane defined by

u1 and u2 and u is the angle between u2 and ðx� sÞ. u1, u2 and u3 are the eigenvectors

of the stress tensor r and r1, r2 and r3 are the associated eigenvalues. The internal

length of the non-local model is thus modified following Equation (9).

lcðx; rðsÞÞ ¼ qðx; rðsÞÞlc0 (9)
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This stress-based non-local model allows us to describe the progressive decrease of

non-local interactions across the FPZ during failure. As a consequence, Giry et al.

(2011) have shown that the strain field across the damaged zone is much closer to a

strong discontinuity than the original version by Pijaudier‐Cabot and Bažant (1987).

Furthermore, the interactions close to free boundaries are better described by avoiding

the attraction phenomena.

3. From continuous calculation to discrete information: a characterisation of

cracking

In this part, the two post-treatment methods to extract cracking from the continuous

calculation are briefly presented. The basic ideas to locate and quantify the cracks –

through their openings – are given. More details can be found in Bottoni and Dufour

(2010), Dufour, Pijaudier-Cabot, Choinska, and Huerta (2008) and Dufour, Giry, and

Mazars (2013) for the topological search and continuous/discontinuous crack opening

(CDCO) and in Oliver-Leblond, Delaplace, Ragueneau, and Richard (2013) for the glo-

bal/local analysis.

3.1. Location and quantification of crack: topological search method and

continuous/discontinuous crack estimation

3.1.1. Location of the crack path

The method to locate the crack path is based on a topological search approach. From a

2D scalar field Y representative of micro-cracking, the locus of the maximum values

corresponds to crack path. For the continuous model considered here, j is considered as

the representative field of cracking Y.

To perform the crack path search, three main steps need to be defined: the initiation

step, the current step and the ending step. The numerical parameters introduced in the

procedure are the searching step a and the length of regularization lsmooth used in a

Gaussian function / introduced for the convolution product.

� Initiation step

The Gauss point Pini bearing the maximum value of the post-treated field is used to

initiate the searching procedure. As no direction of search is initially defined, a circle

centred on Pini with a radius equal to a is used to project the field of interest. The maxi-

mum value of the convoluted profile Y ðsÞ � /ðs; lsmoothÞ, where � is the convolution

product, defines the point P2 of the crack. The first point Pini is re-evaluated, since its

position depends on the location of Gauss points, by taking the maximum of the convo-

luted profile along the profile which is perpendicular to P2Pini
���!

at Pini. Then, current

steps can be performed. As two directions are defined by points Pini and P0, each is

considered in turn.

� Current step

From a point Pi and a searching direction Pi�1Pi
���!

, the point Piþ1 is defined as the

locus of the maximum value of the convoluted profile Y ðsÞ � /ðs; lsmoothÞ along the line

which is perpendicular to the search direction at point P0 defined as PiP0
��!

¼ a
Pi�1Pi
���!

jjPi�1Pi
���!

jj
.
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It is worth noting that the crack path does not depend on the space discretisation of the

initial simulation since the crack path is found out from the convoluted field.

� Ending step

Different criteria are considered to stop the searching procedure: point P0 is out of

boundaries or, the maximum of the convoluted profile used to identify Piþ1 is smaller

than eD0
(strain at first crack in tension).

As this procedure can only be performed for 2D fields, an intermediate step must be

performed by projecting the field of interest on several cut planes along the depth of the

considered structure.

3.1.2. Crack opening

In order to estimate crack opening, a post-treatment of the strain field obtained from the

FE calculation is performed. After identifying the crack path, the crack opening is calcu-

lated by comparing the computed strain field eFE and the analytical strain profile

eFE ¼ ½U �dðxÞ corresponding to a strong discontinuity (displacement jump) along a line

which is perpendicular to the crack path. As the analytical strain profile is a Dirac-like

function, a direct comparison cannot be performed with the numerical strain profile.

Thus, a convolution product is applied on both profiles using a Gaussian function /. In

order to get an evaluation of crack opening, one should make a hypothesis between the

analytical and the finite element strain profiles in order to compare them. In the follow-

ing work two different hypotheses have been considered: the “strong approach” and the

“weak approach”. The “strong approach” considered an equality of the convoluted pro-

files at the crack location x0 (Dufour et al., 2008), whereas the “weak approach” consid-

ered an equality in average for the convoluted profiles (Dufour, Pijaudier-Cabot, &

Legrain, 2009). One can then obtain an estimation of the crack opening ½U � (see Equa-

tion (10.a) for the “strong approach” and (10.b) for the “weak approach”).

½U �st ¼
ðeFE � /Þðx0Þ

R

l
/ðx� x0Þdx

/ð0Þ
(10.a)

½U �we ¼

R

ðeFE � /ÞðxÞð
R

l
/ðx� sÞdsÞdx

R

l
/ðx� x0Þdx

(10.b)

This method also gives an error indicator Dðx0; ½U �Þ along the crack path for each

perpendicular profile (Equation (11)). It quantifies the error made by comparing the

numerical profile to a strong discontinuity.

Dðx0; ½U �Þ ¼

R

l
jðeSD � /Þðx; x0; ½U �Þ � ðeFE � /ÞðxÞjdx

R

l
ðeFE � /ÞðxÞdx

(11)

Equation (11) gives only a model error and should be seen by the user as an indicator

of the quality of the hypothesis made by comparing the finite element strain profile and

the strain profile of a strong discontinuity.
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3.2. Location and quantification of crack: global/local analysis

3.2.1. Process of analysis

After the continuous computation of the damage pattern at the global scale, a non-intru-

sive reanalysis at the local scale can be performed with a discrete model in order to

extract fine information about cracking. The successive steps of this strategy are summa-

rised in Figure 1.

The obtained damage pattern is studied and several regions of interest (ROIs) are

defined corresponding to distinct areas of damage. Then, the loading steps for the

extraction of crack features are determined and will correspond to the steps of reanaly-

sis. For those loading steps, boundary conditions are extracted from the continuous dis-

placement field and applied on the non-free surfaces of the ROIs – namely the ones

which cut the whole domain. The natural way to transfer the displacement field from

the global scale to the local scale is to use the shape functions of the finite elements

used for the global computation. Then, the displacement uLðxLÞ applied at a local node

xL of a non-free surface of a ROI is directly obtained with Equation (12).

uLðxLÞ ¼
XNFE

j¼1

N juLðxLÞuj (12)

where Nj are the shape functions of the finite element model, uj is the displacement

vector computed at the global scale and NFE is the number of finite element nodes.

The cracking pattern obtained at the previous step will be retrieved at the current

step of the local reanalysis in order to follow the crack propagation accurately. The

discrete computation of the chosen ROIs can be parallelised.

3.2.2. The local model

The discrete model used at the local scale has been proposed by Delaplace and Desmorat

(2007) and offers a reliable description of concrete behaviour for tensile loadings.

The material is described as an assembly of polyhedral particles linked by

Euler–Bernoulli beams. The quasi-brittle behaviour of the material is obtained through a

brittle behaviour for the beams. The breaking threshold Pab of a − b, the beam linking

the particles a and b, not only depends on the beam extension eab but also on the

rotations of the two particles θa and θb (see Equation (13)).

Pab ¼
eab

ecr
;

jhb � haj

hcr

� �

[ 1 (13)

The six parameters of the beam a − b need to be calibrated. First, the length and the

area are imposed by the geometry. Then, the inertia and the elastic modulus are identi-

fied in order to retrieve the elastic behaviour of the global computation. Finally, the

Displacements

Cracking pattern

Continuous analysis

Discrete reanalysis

Figure 1. Global/local sequential analysis.
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calibration of the breaking thresholds of the beam ecr and hcr allows us to fit the peak

and post-peak behaviour of the global model. The calibration is performed on an inde-

pendent case study (Oliver-Leblond et al., 2013).

Our study focuses on a fine description of crack pattern and on the measurement of the

crack opening. The crack pattern is defined as the common side of the particles initially

linked by the breaking beams. The opening of the crack is computed by considering the

relative displacement ub � ua of the unlinked particles a and b. The measure of the open-

ing between those particles eab is projected on the normal nab of the local discontinuity

(Equation (14)).

eab ¼ hðub � uaÞ � nabiþ (14)

4. Analysis of a reinforced concrete structure

The structure studied in this section is a reinforced concrete beam subjected to a four-

point bending test. This test has been proposed as a numerical experiment within the

French project CEOS.fr.

4.1. Description of the test

A reinforced concrete beam – 5.1 m long, 0.8 m high and 0.47 m deep – has been

loaded in a four-point bending test. Three layers of three rebars of 32 mm in diameter

are placed at the bottom of the beam (area under tension) and three rebars of 25 mm in

diameter are placed at the top of the beam (area under compression). The vertical

concrete cover is equal to 50 mm and the horizontal rebar spacing is equal to 35 mm.

The two loading points are 1.6 m away from each other.

The various symmetries of the structure and assuming a symmetrical crack pattern

allow us to only study a quarter of the beam. A displacement control has been consid-

ered for the loading (Figure 2).

The concrete and the steel reinforcement used for this beam have the following char-

acteristics: Ecm = 40.8 GPa, fcm = 64MPa, ftm = 4.4 MPa, Es = 200 GPa and fyk = 500

MPa. The model parameters considered for the computation of the continuous analysis

(Section 2) are summarised in Table 1.

In order to reduce the computational time, the non-linear behaviour of concrete is

only considered for the central part of the beam (1.7 m long) which includes the loading

points.

2.55 m

0
.8

 m

0.8 m

0.
23

5m

Figure 2. Mechanical scheme and mesh of a quarter of the reinforced concrete beam.
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Cubic elements with linear interpolation functions have been used to describe

concrete and lower rebars. Bar elements have been used to describe upper rebars. The

average mesh size is equal to 15 mm in the centre part of the beam and 40 mm outside.

The mesh used for the computation and the loading scheme is given in Figure 2.

4.2. Behaviour of the structure – force/displacement analysis

One can observe in Figure 3 a classical behaviour of a reinforced concrete structure: the

progressive degradation of the flexural modulus with the appearance of the different

cracks in the specimen.

4.3. Behaviour at the material scale – cracking analysis

One can observe during the degradation of the beam, the development of three main

areas of cracking (Figure 4). The left crack is initiated at first on the lower rebars under

the loading plate due to the perturbation of the strain field above it. A damage evolution

along the lower rebars is then observed until the initiation of the second cracks.

In Figure 4, the damage field at failure stays relatively sharp and no spurious diffu-

sion of damage is observed at crack levels and close to rebars. This precise definition of

the different damaged areas is obtained thanks to the stress-based non-local model that

leads to a progressive decrease of non-local interactions in the crack vicinity.

The cracking profiles – crack path and opening – obtained with the cut planes

method (Figure 5(a)) and with the global/local analysis (Figure 5(b)) are shown to be in

Table 1. Model parameters for concrete and steel.

Concrete Steel

Ec (GPa) νc (−) eD0
(−) Es (GPa) νs (−)

40.8 0.18 10−4 200 0.3
At (−) Bt (−) Ac (−) Bc (−) lc0 (m)
0.9 6000 1.8 1400 0.045

0 

200 

400 

600 

800 

1000 

0 0,001 0,002 0,003 0,004 0,005 0,006 

F
o

rc
e 

(k
N

) 

Mid-span deflection (m) 

Figure 3. Evolution of the force applied on a loading plate vs. the mid-span deflection.
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good agreement with each other. The appearance of a secondary crack in the neighbour-

hood of the central crack is also caught by both methods.

Table 2 summarises the averaged location from the loading plates of the three main

cracks for both methods on the surface of the beam. It shows again a good agreement

in the determination by both methods of the crack location.

These results are also in good agreement with the location of the maximum stress

state observed along the lower rebars (Figure 6). The small discrepancies observed for

the left and the central cracks are due to the change in the crack path at the level of the

rebars. Indeed, when only the upper part of the macro-crack (i.e. the area above the re-

bars) is considered, the same crack location is obtained for both methods.

Figure 4. Damage field for the first macro-crack and at the end of the computation.

Figure 5. Crack field at the last step of the computation: (a) topological search and CDCO
estimation and (b) global/local method.

Table 2. Crack location.

Left crack (m) Central crack (m) Right crack (m)

CDCO method 0.12 0.47 0.75
Global/local method 0.11 0.46 0.75
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Figure 7 gives a comparison between both methods for the quantification of crack

opening at two different loading steps for a crack at the surface of the beam (average

stress in the lower rebars in the central part of the beam: 150 and 219MPa).

One can observe a good agreement between both methods at the bottom of the beam.

At the location of the rebars, a small discrepancy is seen. This difference can be explained

by the damage area observed. Indeed, the rebars tends to distribute the damage in their

vicinity. At the surface, the influence is still felt for this specimen, leading to a small level

damaged area inside which we find a higher damaged more localised area corresponding

to the macro-crack. The “strong approach” of the CDCO method supposed an equality of

the convoluted profile at the crack location whereas the “weak approach” considered an

equality of the profile in average. These two hypotheses can be seen as limit conditions

and the estimation of the crack opening of a macro-crack in a micro-cracked field is proba-

bly a combination of these two approaches. For the GLA method, the area of broken ele-

ments corresponds to the micro-cracked area and the macro-crack. This last is identified

among the broken elements as the path with the main crack opening. It is interesting to

note that the crack opening obtained with the “strong” and the “weak” approaches of the

CDCO method surround the values obtained with the GLA method. At failure, the strain

field is fully localised, leading to a decrease of the difference observed between both meth-

ods. Furthermore, the difference observed close to rebars can be also explained by the

presence of a partial mode II failure that is not caught by the GLA method. In Figure 7,

the difference at the level of the rebars between both methods tends to increase. Over this

area, the FPZ is no longer influenced by the rebars and a good agreement is recovered

between both methods.

The CDCO method identified the crack path from the last step of the computation.

One can see in Figure 7 (Average stress in the rebars: 219MPa) a good agreement

between both methods in the identification of the crack tip. For the previous step, the

CDCO method tends to give a crack tip location higher than for the GLA method as

the diffused micro-cracks area observed in front of the FPZ tends to give a small crack

opening along the crack path identified from the last step of the calculation. For the

Figure 6. Evolution during the loading of the stress profile along the bottom rebars.
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GLA method, the identification of the crack path has been made at each computed step

of the discrete reanalysis using graph theory combined to Bellman-Ford algorithm.

In Figure 8, one can see the model error for the CDCO method. At the front of the

FPZ, a high error is observed due to the fact that the finite element strain profile is still

diffused compared to analytical Dirac-like profile. At the bottom of the beam, the

macro-crack is well established and the model error is lower. The error limit value

observed is relative to the mesh discretisation considered. Indeed, the mesh used for the

finite element computation is coarse as a consequence one gets at failure a finite element

strain profile closer to a step function than a Dirac-like function. Nevertheless, this error

should be seen as an error indicator for the model only and not be directly taken as a

difference with a global error indicator as the different methods used tends to give simi-

lar values for crack opening at the bottom of the beam.

Average stress in the rebars: 150 MPa 

0,0 

0,1 

0,2 

0,3 

0,4 

0,5 

0,0E+00 4,0E-05 8,0E-05 1,2E-04 1,6E-04 

Y
 (

m
) 

Crack opening (m) 

Method CDCO ST 

Method GLA 

Method CDCO WK 

Average stress in the rebars: 219 MPa 
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0,1 
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m
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(a)

(b)

Figure 7. Evolution of crack opening along the height for a crack (at right in Figure 7) at the
surface of the beam for two average stress levels in the lower rebars: 150 and 219MPa during the
loading of the stress profile along the bottom rebars.
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5. Conclusion

Continuum damage mechanics, largely developed these last two decades, succeed in

predicting the strongly non-linear behaviour of reinforced concrete structures. The steel

rebars employed for large scale structures lead to the occurrence of a large number of

micro- and macro-cracks. This phenomenon is the key point to describe so as to account

for the structural elements ductility. Some interesting mechanisms may be handled

within this framework such as: Young’s modulus degradation, permanent strain, crack

closure, induced anisotropy, strain rate effects and frictional sliding (Richard & Rague-

neau, 2013). Unfortunately, due to the post-peak softening branch, the uniqueness

properties of the mechanical solution are lost and regularised models have to be intro-

duced. Moreover, if one is concerned with more precise features of cracks like spacing,

openings or tortuosity, the macroscopic model such as damage mechanics fails. This

contribution aimed to give some insights regarding these two drawbacks.

An original non-local procedure has been presented allowing the introduction of the

anisotropic interaction in the FPZ along the crack tip. The energy dissipation when the

crack propagates is more physically motivated.

(a) 
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Figure 8. Evolution of the model error for both approaches of the CDCO method along the
height for a crack (at right in Figure 7) at the surface of the beam for two average stress levels in
the lower rebars: 150MPa (a) and 219MPa (b) during the loading of the stress profile along the
bottom rebars.
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Regarding crack opening determination, the use of damage mechanics at the

structural scale is kept, for robustness evidence and engineering point of view. Some

post-treatments are then needed. This paper exhibited two different approaches for

post-treating a Finite Element Analysis performed at the structural scale.

On the one hand, a topological search method is used to locate cracks, analysing a

damage strain field. The crack openings are computed by comparing the regularised

strain field and the analytical strong discontinuity displacement field induced by a dis-

crete crack. On the other one hand, the global/local method exposed in this paper intro-

duces a discrete mechanical model at the finer scale to obtain crack properties of a

Region of Interest using the finite element displacement field as Dirichlet boundary

conditions.

Using the same macroscopic damage model, the two approaches have been

compared regarding the crack opening prediction for a reinforced concrete beam

subjected to a four-point bending test. The results in terms of crack location and open-

ing at several loading steps are very close to each other. This means that regarding

cracks refined features, the use of continuum damage mechanics at the higher scale

makes sense, since two completely different post-treatment methods give the same

cracks pattern and crack opening profiles.

The main advantage of the first method lies in the fact that a unique mechanical

model is used and identified. One major difficulty remains in the crack opening compu-

tation, implying the post-treatment of only mode I propagations. The use of cut plans

only gives discrete values of openings instead of a continuous line in 3D. Concerning

the second method, two mechanical models (one finite, the other discrete) have to be

handled and identified generating more difficulties. The main advantage in introducing

the discrete element methods is the kinematic of such elements: the cracks are naturally

described in 3D. Some important phenomena such as tortuosity can be accounted for in

case of mechanical – diffusive coupled problems.
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