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ON THE QUANTUM DIFFERENTIATION OF SMOOTH

REAL-VALUED FUNCTIONS

KOLOSOV PETRO

Abstract. Calculating the value of Ck∈{1,∞} class of smoothness real-valued
function’s derivative in point of R+ in radius of convergence of its Taylor poly-
nomial (or series), applying an analog of Newton’s binomial theorem and q-

difference operator. (P, q)-power difference introduced in section 5. Addition-
ally, by means of Newton’s interpolation formula, the discrete analog of Taylor
series, interpolation using q-difference and p, q-power difference is shown.

Keywords. derivative, differential calculus, differentiation, Taylor’s theorem,
Taylor’s formula, Taylor’s series, Taylor’s polynomial, power function, Bino-
mial theorem, smooth function, real calculus, Newton’s interpolation formula,
finite difference, q-derivative, Jackson derivative, q-calculus, quantum calcu-
lus, (p,q)-derivative, (p,q)-Taylor formula

2010 Math. Subject Class. 26A24, 05A30, 41A58
e-mail: kolosov 94@mail.ua
ORCID: http://orcid.org/0000-0002-6544-8880

Social media links

Youtube - Kolosov Petro
Twitter - Kolosov Petro
Mendeley - Petro Kolosov

Academia.edu - Petro Kolosov
LinkedIn - Kolosov Petro

Google Plus - Kolosov Petro

Facebook - Kolosov Petro
Vimeo.com - Kolosov Petro

VK.com - Math Facts

Publications on other resources

HAL.fr articles - Most recent updated
ArXiV.org articles
Archive.org articles

ViXrA.org articles
Figshare.com articles
Datahub.io articles

Contents

1. Introduction 2
2. Application of Q-Derivative 5
3. Application on functions of finite class of smoothness 7
4. Application on analytic functions 8
5. Introduction of (P, q)-power difference 8

1

http://orcid.org/0000-0002-6544-8880
https://www.youtube.com/channel/UCkFiAGZcnBoMYekIGHb1KXQ
https://twitter.com/Kolosov_Petro
https://www.mendeley.com/profiles/petro-kolosov/
http://independent.academia.edu/PetroKolosov
https://www.linkedin.com/in/petro-kolosov-a38902b2
https://plus.google.com/109733899876188095852
https://www.facebook.com/petro.kolosov.9
https://vimeo.com/kolosovpetro
https://vk.com/public125198902
https://hal.archives-ouvertes.fr/search/index/q/*/authIdHal_s/petro-kolosov
https://arxiv.org/find/math/1/au:+Petro_K/0/1/0/all/0/1
https://archive.org/search.php?query=creator%3A%22Kolosov+Petro%22
http://vixra.org/author/kolosov_petro
https://figshare.com/authors/_/2869694
https://figshare.com/authors/_/2869694


2 KOLOSOV PETRO

6. Newton’s interpolation formula 11
7. Conclusion 12
References 12

1. Introduction

Let be Taylor’s theorem (see §7 ”Taylor’s formula”, [1])

Theorem 1.1. Taylor’s theorem. Let be n ≥ 1 an integer, let function f(x)
be n + 1 times differentiable in neighborhood of a ∈ R. Let x be an any function’s
argument from such neighborhood, p - some positive number. Then, there is exist
some c between points a and x, such that

(1.2) f(x) = f(a)+
f ′(a)

1!
(x−a)+

f ′′(a)

2!
(x−a)2+ · · ·+

f (n)(a)

n!
(x−a)n+Rn+1(x)

where Rn+1(x) - general form of remainder term

(1.3) Rn+1(x) =

(
x− a

x− a

)p
(x− c)n+1

n!p
f (n+1)(c)

Proof. Denote ϕ(x, a) polynomial related to x of order n, from right part of (1.2),
i.e

(1.4) ϕ(x, a) = f(a) +
f ′(a)

1!
(x− a) +

f ′′(a)

2!
(x− a)2 + · · ·+

f (n)(a)

n!
(x− a)n

Next, denote as Rn+1(x) the difference

(1.5) Rn+1(x) = f(x)− ϕ(x, a)

Theorem will be proven, if we will find that Rn+1(x) is defined by (1.3). Let fix
some x in neighborhood, mentioned in theorem 1.1. By definition, let be x > a.
Denote by t an variable, such that t ∈ [a, x], and review auxiliary function ψ(t) of
the form

(1.6) ψ(t) = f(x)− ϕ(x, t)− (x− t)pQ(x)

where

(1.7) Q(x) =
Rn+1(x)

(x− a)p

More detailed ψ(t) could be written as

(1.8) ψ(t) = f(x)− f(t)−
f ′(t)

1!
(x− t)−

f ′′(t)

2!
(x− t)2 − · · · −

f (n)(t)

n!
(x− t)n

−(x− t)pQ(x)

Our aim - to express Q(x), going from properties of introduced function ψ(t). Let
show that function ψ(t) satisfies to all conditions of Rolle’s theorem [2] on [a, x].
From (1.8) and conditions given to function f(x), it’s obvious, that function ψ(t)
continuous on [a, x]. Given t = a in (1.6) and keeping attention to equality (1.7),
we have

(1.9) ψ(a) = f(x)− ϕ(x, a) −Rn+1(x)
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Hence, by means of (1.5) obtain ψ(a) = 0. Equivalent ψ(x) = 0 immediately follows
from (1.8). So, ψ(t) on segment [a, x] satisfies to all necessary conditions of Rolle’s
theorem [2]. By Rolle’s theorem, there is exist some c ∈ [a, x], such that

(1.10) ψ′(c) = 0

Calculating derivative ψ′(t), differentiating equality (1.8), we have

(1.11) ψ′(t) = −f ′(t) +
f ′(t)

1!
−
f ′′(t)

2!
(x− t) +

f ′′(t)

2!
2(x− t)− · · ·

+
f (n)(t)

n!
n(x− t)n−1 −

f (n+1)(t)

n!
(x− t)n + p(x− t)p−1Q(x)

It’s seen that all terms in right part of (1.11), except last two items, self-destructs.
Hereby,

(1.12) ψ′(t) = −
f (n+1)(t)

n!
(x− t)n + p · (x − t)p−1Q(x)

Given t = c in (1.12) and applying (1.10), obtain

(1.13) Q(x) =
(x− c)n−p+1

n!p
f (n+1)(c)

By means of (1.13) and (1.7), finally, we have

(1.14) Rn+1(x) = (x− a)pQ(x) =

(
x− a

x− a

)p
(x− c)n+1

n!p
f (n+1)(c)

Case x < a is reviewed absolutely similarly. (see for reference [1], pp 246-247)
This proves the theorem. �

Let function f(x) ∈ Ck class of smoothness and satisfies to theorem 1.1, then
its derivative by means of its Taylor’s polynomial centered at a ∈ R in radius of
convergence with f(x) and linear nature of derivative, (gf(x)+um(x))

′

= gf
′

(x)+

um
′

(x), is

(1.15)
d

dx
f(x) =

f ′(a)

1!

d

dx
(x− a) +

f ′′(a)

2!

d

dx
(x− a)2 + · · ·+

f (k−1)(a)

(k − 1)!

d

dx
(x− a)k

+R′k+1(x)

Otherwise, if f ∈ C∞ we have derivative of Taylor series [5] of f given the same
conditions as (1.15)

(1.16)
d

dx
f(x) =

f ′(a)

1!

d

dx
(x− a) +

f ′′(a)

2!

d

dx
(x− a)2 + · · ·+

f (n)(a)

n!

d

dx
(x− a)n+

+ · · ·

Hence, derivative of function f : 1 ≤ C(f) ≤ ∞ 1 could be reached by differentiat-
ing of its Taylor’s polynomial or series in radius of convergence, and consequently
summation of power’s derivatives being multiplied by coefficient, according theo-
rem 1.1, over k from 1 to t ≤ ∞, depending on class of smoothness. Hereby, the
properties of power function’s differentiation holds, in particular, the derivative of
power close related to Newton’s binomial theorem [4].

Lemma 1.17. Derivative of power function equals to limit of Binomial expansion
of (x+∆x)n, iterated from 1 to n, divided by ∆x : ∆x→ 0.

1For example, let f be a k-smooth function, then C(f) = k.
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Proof.

(1.18)
d(xn)

dx
= lim

∆x→0

{
n∑

k=1

(
n

k

)

xn−k(∆x)k−1

}

=

(
n

1

)

xn−1

�

According to lemma (1.17), Binomial expansion is used to reach derivative of
power, otherwise, let be introduced expansion, based on forward finite differences,
discussed in [3]

(1.19) xn = xn−2 + j
∑

k∈C(x)

k · xn−2 − k2 · xn−3, x ∈ N

where j = 3! and C(x) := {0, 1, . . . , x} ⊆ N. Particularize2 (1.19), one has

(1.20) xn =
∑

k∈U(x)

j · k · xn−2 − j · k2 · xn−3 + xn−3

where U(x) := {0, 1, . . . , x− 1} ⊆ N.

Property 1.21. Let S(x) be a set S(x) := {1, 2, . . . , x} ⊆ N, let be (1.20)
written as T (x, U(x)), then we have equality

(1.22) T (x, U(x)) ≡ T (x, S(x)), x ∈ N

Let (1.19) be denoted as U(x, C(x)), then

(1.23) U(x, C(x)) ≡ U(x, S(x)) ≡ U(x, U(x))

Proof. Let be a plot of jkxn−2 − jk2xn−3 + xn−3 by k over R+
≤10, given x = 10

0 2 4 6 8 10

0

50

100

150

k ∈ R≤10

y
=
jk
x
n
−
2
−
jk

2
x
n
−
3
+
x
n
−
3

Figure 1. Plot of jkxn−2 − jk2xn−3 + xn−3 by k over R+
≤10, x = 10

2Transferring xn−2 under sigma operator, decreasing the power by 1 and taking summation
over k ∈ U(x)
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Obviously, being a parabolic function, it’s symmetrical over x
2 , hence equivalent

T (x, U(x)) ≡ T (x, S(x)), x ∈ N follows. Reviewing (1.19) and denote u(t) =
txn−2 − t2xn−3, we can make conclusion, that u(0) ≡ u(x), then equality of
U(x, C(x)) ≡ U(x, S(x)) ≡ U(x, U(x)) immediately follows.
This completes the proof. �

By definition we will use set U(x) ⊆ N in our next expressions.
Since, for each x = x0 ∈ N we have equivalent

Lemma 1.24. ∀x = x0 ∈ N holds

(1.25)

x∑

t=1

n∑

k=1

(
n

k

)

tn−k

︸ ︷︷ ︸

xn

≡

x−1∑

k=0

j · k · xn−2 − j · k2 · xn−3 + xn−3

Proof. Proof can be done by direct calculations. �

By lemma 1.24 we have right to substitute (1.20) into limit (1.18), replacing Bi-
nomial expansion, and represent derivative of power by means of expression (1.20).
Note that,

(1.26) ∆(xn) =

n∑

k=1

(
n

k

)

xn−k 6= j · k · xn−2 − j · k2 · xn−3 + xn−3

As (1.20) is analog of Binomial expansion of power and works only in space of
natural numbers, different in sense, that Binomial expansion, for example, could
be denoted as M(x, C(n)), where n - exponent. While (1.20) could be denoted
T (x, U(x) ≡ S(x)), it shows that in case of Binomial expansion the set over which
we take summation depends on exponent n of initial function, when for (1.20)
it depends on point x = x0 ∈ N. To provide expressions’ (1.20) usefulness3 on
taking power’s derivative over R+, derivative in terms of quantum calculus should
be applied, as next section dedicated to.

2. Application of Q-Derivative

Derivative of the function f defined as limit of division of function’s grow rate
by argument’s grow rate, when grow rate tends to zero, and graphically could be
interpreted as follows

x

y

0 x0 x0 +∆x

tangent line at x0 as ∆x→ 0+

f(x0)

f(x)

f(x0 +∆x)

3By classical definition of derivative, we have to use upper summation bound (x +∆x) ∈ R
+

on (1.20), which turns false result as (1.20) works in space of N.
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Figure 2. Geometrical sense of derivative

In 1908 Jackson [10] reintroduced [11], [12] the Euler-Jackson q-difference operator
[9]

(2.1) (Dqf)(x) =
f(x)− f(qx)

(1− q)x
, x 6= 0

The limit as q approaches 1− is the derivative

(2.2)
df

dx
= lim

q→1−
(Dqf)(x)

More generalized form of q-derivative

(2.3)
df(x)

dx
= lim

q→1−

f(x)− f(xq)

x− xq
︸ ︷︷ ︸

(Dqf−)(x)

≡ lim
q→1+

f(xq)− f(x)

xq − x
︸ ︷︷ ︸

(Dqf+)(x)

where (Dqf
+)(x) and (Dqf

−)(x) forward and backward q-differences, respectively.
The follow figure shows the geometrical sense of above equation as q tends to 1+

x

y

0 x0 x0 · q

f(x)

tangent line at x0 as q → 1+

f(x0)

f(x0 · q)

Figure 3. Geometrical sense of right part of (2.3)

Review the monomial xn, where n-positive integer and applying right part of (2.3),
then in terms of q-calculus we have forward q-derivative over R

(2.4)
d(xn)

dx
= lim

q→1+
(Dqx

n+

)(x) = lim
q→1+

xn(qn − 1)

x(q − 1)

= lim
q→1+

xn−1
n−1∑

k=0

qk, q ∈ R

Otherwise, see reference [9], equation (109).
Generalized view of high-order power’s derivative by means of (2.4)

(2.5)
dk(xn)

dxk
= lim

q→1+
(Dk

qx
n+

)(x) = lim
q→1+

xn−k
k−1∏

j=0

(
n−j
∑

m=0

qm

)

Since, the main property of power is

Property 2.6.

(x · y)n = xn · yn

Let be definition
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Definition 2.7. By property (2.6) and (1.20), definition of c = x · t : t ∈ R, x ∈
N ⇒ c ∈ R to power n ∈ N

(2.8) cn := ξ(x, t)n :=

x−1∑

k=0

jkxn−2 · tn − jk2xn−3 · tn + xn−3 · tn

Hereby, applying definition (2.7) and (2.4), derivative of monomial xn : n ∈ N

by x in point x0 ∈ N is

(2.9)
d(xn)

dx

∣
∣
∣
∣
x=x0

= lim
q→1+

ξ(x, q)n − ξ(x, 1)n
x · q − x

︸ ︷︷ ︸

def
= Dq>1[xn]

≡ lim
q→1−

ξ(x, 1)n − ξ(x, q)n
x · q − x

︸ ︷︷ ︸

def
= Dq<1[xn]

,

Let us approach to extend the definition space of expression (2.9) from x0 ∈ N to
x0 ∈ R

+. Let be x0 = ξ(t0, p)1 ∈ R
+ 6⊇ N as p ∈ R

+ 6⊇ N and t0 ∈ N, then
applying (p, q)-difference discussed in [13]

(2.10) Dp,qf(x) =
f(px)− f(qx)

(p− q)x
, x 6= 0

by means of definition (2.7) and (2.10), (p, q)-differentiating of monomial xn, n ∈ N

gives us

(2.11)
d(xn)

dx

∣
∣
∣
∣
x=t0

= lim
p→q+

Dp,qx
n = lim

p→q+

ξ(x, p)n − ξ(x, q)n
x · p− x · q

︸ ︷︷ ︸

def
= Dp→q[xn]

≡ lim
q→p−

ξ(x, p)n − ξ(x, q)n
x · p− x · q

︸ ︷︷ ︸

def
= Dp←q[xn]

, t0 ∈ N, [p, q] ∈ R
+ 6⊇ N

Geometrical interpretation is shown below

x

y

0 x0 · q x0 · p

tangent line at x0 as p→ q+

f(x) = xn

ξ(x0, q)n

ξ(x0, p)n

Figure 4. Geometrical interpretation of (2.11)

3. Application on functions of finite class of smoothness

In this section we will get derivative of function f ∈ Cn in point x0 ∈ R
+ by

means of its Taylor’s polynomial and (2.9), where n - some positive integer. Let
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f(x) be an n-smooth function, then derivative of its Taylor’s polynomial at radius
of convergence with f in x0 : (x0 − a) ∈ N is

(3.1)
df(x)

dx

∣
∣
∣
∣
x=x0

=

n∑

k=1

[
f (k)(a)

k!
Dq>1[(x− a)k]

]

+ Dq>1[Rn+1(x)]

≡

n∑

k=1

[
f (k)(a)

k!
Dq<1[(x − a)k]

]

+ Dq<1[Rn+1(x)]

Otherwise, let (x0 − a) satisfies to conditions of (2.11), i.e (x0 − a) ∈ R
+, then

applying operator D , defined in (2.9) we can reach derivative of f : f ∈ Cn in
point x0 : (x0 − a) ∈ R

+, by differentiation of its Taylor’s polynomial in radius of
convergence with f , that is

(3.2)
df(x)

dx

∣
∣
∣
∣
x=t0

=

n∑

k=1

[
f (k)(a)

k!
Dp→q[(x − a)k]

]

+ Dp→q[Rn+1(x)]

≡

n∑

k=1

[
f (k)(a)

k!
Dp←q[(x − a)k]

]

+ Dp←q[Rn+1(x)]

4. Application on analytic functions

If f ∈ C∞ (i.e analytic), then approximation by means of Taylor series holds in
neighborhood of its center at a ∈ R. Suppose that f is real-valued and satisfies to
conditions of Taylor’s theorem 1.1, then derivative of f at x0 : x < x0 < a is

(4.1)
df(x)

dx
=

d

dx

∞∑

k=0

f (k)(a)

k!
(x− a)k =

[
∞∑

k=0

f (k)(a)

k!

d

dx
(x− a)k

]

x=x0

Let x0 satisfies to conditions of (3.1), then, applying definition (2.7), we have de-
rivative of f in point x0 ∈ R

+

(4.2)
df(x)

dx
=

[
∞∑

k=1

f (k)(a)

k!
Dq>1[(x− a)k] ≡

∞∑

k=1

f (k)(a)

k!
Dq<1[(x − a)k]

]

x=x0

Otherwise, if x0 satisfies to conditions of (3.2) and x0 in radius of convergence with
f , then derivative of f ∈ C∞, by means of its Taylor’s series and (2.7), is

(4.3)
df(x)

dx
=

[
∞∑

k=1

f (k)(a)

k!
Dp→q[(x − a)k] ≡

∞∑

k=1

f (k)(a)

k!
Dp←q[(x− a)k]

]

x=t0

5. Introduction of (P, q)-power difference

Lemma 5.1. Let be m ∈ R/I and m could be represented as m = at, then exists
some c ∈ R/I, such that

(5.2) m = ac

Reviewing (2.3), we can see, that argument’s differential ∆x is given by x · q−x,
according to lemma 5.1 ∃c ∈ R/I, x · t− x = xc − x, then, from (2.4) immediately
follows q-power difference, (see [14], page 2, equation 3)

(5.3) Dq>1f(x) :=
f(xq)− f(x1)

xq − x1
, x 6= 0
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As q tends to 1+ we have reached derivative

(5.4)
df(x)

dx
= lim

q→1+
Dq>1f(x) = lim

q→1+

f(xq)− f(x1)

xq − x1
︸ ︷︷ ︸

def
=Dq>1 [f(x)]

≡ lim
q→1−

f(x1)− f(xq)

x1 − xq
︸ ︷︷ ︸

def
=Dq<1 [f(x)]

=: lim
q→1−

Dq<1f(x)

where lim
q→1−

Dq<1f(x) denotes the derivative through backward q-power difference

By lemma 5.1 from (2.10) immediately follows (p, q)-power difference

(5.5) Dp→qf(x) :=
f(xp)− f(xq)

xp − xq
, x 6= 0

Hence, for v = xp, p ∈ R

(5.6)
df(x)

dx
(v) = lim

p→q+
Dp→qf(x) = lim

p→q+

f(xp)− f(xq)

xp − xq
︸ ︷︷ ︸

def
=Dp→q[f(x)]

≡ lim
q→p−

f(xp)− f(xq)

xq − xp
︸ ︷︷ ︸

def
=Dp←q [f(x)]

=: lim
q→p−

Dp←qf(x)

where Dp→q[f(x)], Dp←q [f(x)] denote derivative through forward and backward
(p, q)-power differences. Let us to show geometrical interpretation of (5.4) and (5.6)

x

y

0 x0 xq0

f(x)

tangent line at x0 as q → 1+

f(x0)

f(xq0)

Figure 5. Geometrical sense of (5.4)
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x

y

0 xq0 xp0

f(x)

tangent line at x0 as p→ q+

f(xq0)

f(xp0)

Figure 6. Geometrical sense of (5.6)

Applying (5.4) with monomial xm : m ∈ N, we get

(5.7)
d(xm)

dx
= Dq>1[x

m] = lim
q→1+

[
m∑

k=1

(xq)m−k · xk−1

]

= mxm−1

≡ lim
q→1−

Dq<1[x
m] = lim

q→1−

[
m∑

k=1

xk−1 · (xq)m−k

]

= mxm−1

Note that Dq<1[x
m], Dq>1[x

m] defined by (5.4). The high order N ≤ m derivative,
derived from (5.7)

(5.8)
dN (xm)

dxN
= DN

q>1[x
m] = lim

q→1+

N−1∏

j=0

(
m−j
∑

k=1

(xq)m−k · xk−j−1

)

≡ DN
q<1[x

m] = lim
q→1−

N−1∏

j=0

(
m−j
∑

k=1

xk−j−1 · (xq)m−k

)

Let be analytic function f and let f satisfies to Taylor’s theorem 1.1 on segment of
(a, x), a ∈ R, then, applying (5.4), in radius of convergence of its Taylor’s series,
we obtain derivative

(5.9)
df(x)

dx
=
∞∑

k=1

f (k)(a)

k!
Dq<1[(x − a)k] ≡

∞∑

k=1

f (k)(a)

k!
Dq>1[(x− a)k]

Using Dp→q[f(x)], Dp←q[f(x)] defined by (5.8), for each v = xp, we receive

(5.10)
df(x)

dx
=

[
∞∑

k=1

f (k)(a)

k!
Dp→q[(x− a)k] ≡

∞∑

k=1

f (k)(a)

k!
Dp←q [(x− a)k]

]

x=v

Or, by means of definition (2.7) and (5.9), when (x0 − a) ∈ N derivative could be
taken as follows
(5.11)

df(x)

dx
=

∞∑

k=1

{

f (k)(a)

k!
· lim
n→1+

m∑

k=1

ξ(x− a, 1)nm−nkx
′ · ξ(x− a, 1)k−1x

′

}∣
∣
∣
∣
∣
x=x0
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Given x0, such that (x0−a) ∈ R
+, then conditions of (3.2) is reached, and, applying

definition (2.7), derivative f ′ follows
(5.12)

df(x)

dx
=

∞∑

k=1

{

f (k)(a)

k!
· lim
n→1+

m∑

k=1

ξ(x − a, 1)nm−nkx
′ · ξ(x − a, 1)k−1x

′

}∣
∣
∣
∣
∣
x=t0

Otherwise, let be f : f ∈ Cn, where n - positive integer, then under similar condi-
tions as (5.11) and (5.13), derivative could be reached by differentiating of n-order
Taylor’s polynomial of f in terms of q-power difference (5.3) under limit notation
over n

(5.13)
df(x)

dx
=

n∑

k=1

{

f (k)(a)

k!
· lim
n→1+

m∑

k=1

(x− a)nm−nkx′ · (x− a)k−1x′

}

+R′n+1(x)

Similarly, as (5.13), derivative of f ∈ Cn in point x = x0, such that (x0 − a) ∈ N

(5.14)

df(x)

dx
=

n∑

k=1

{

f (k)(a)

k!
· lim
n→1+

m∑

k=1

ξ(x− a, 1)nm−nkx
′ · ξ(x− a, 1)k−1x

′

}∣
∣
∣
∣
∣
x=x0

+R′n+1(x)

Otherwise, going from (5.14), ∀(x0 − a) ∈ R
+

(5.15)

df(x)

dx
=

n∑

k=1

{

f (k)(a)

k!
· lim
n→1+

m∑

k=1

ξ(x− a, 1)nm−nkx
′ · ξ(x− a, 1)k−1x

′

}∣
∣
∣
∣
∣
x=t0

+R′n+1(x)

6. Newton’s interpolation formula

Being a discrete analog of Taylor’s series, the Newton’s interpolation formula [6],
first published in his Principia Mathematica in 1687, hereby, by author’s opinion,
supposed to be discussed

(6.1) f(x) =

∞∑

k=0

(
x− a

k

)

∆kf(a)

Given q = const in (2.3) divided q-difference f [xq; x] is reached. Let be ∆f =
f [xq; x](xq− x), then, by means of generalized high order forward finite difference
∆kf, k ≥ 2, ([7], [8]), revised according to (2.3), Newton’s formula (6.1) takes the
form

(6.2) f(x) =
∞∑

k=0

[(
x− a

k

) k∑

m=0

(−1)m
(
m

k

)

f(x · tm)

]

Review (5.4) and given q = const divided q-power difference follows, by similar way
as (6.2) reached, (6.1) could be written as

(6.3) f(x) =

∞∑

k=0

[(
x− a

k

) k∑

m=0

(−1)m
(
m

k

)

f(xn
k−m

)

]
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7. Conclusion

In this paper was discussed a way of obtaining real-valued smooth function’s
derivative in radius of convergence of it’s Taylor’s series or polynomial by means of
analog of Newton’s binomial theorem (1.20) in terms of q-difference (3.1) and (p, q)-
power difference operators (5.12). In the last section reviewed a discrete analog of
Taylor’s series - Newton’s interpolation formula (6.1), and applying operators of
q-difference, (p, q)-power difference interpolation of initial function is shown (6.2),
(6.3).
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