
HAL Id: hal-01516404
https://hal.science/hal-01516404

Submitted on 30 Apr 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

An adaptation of the Gear scheme for fractional
derivatives

Ana Cristina Galucio, Jean-François Deü, Stéphanie Mengué, François Dubois

To cite this version:
Ana Cristina Galucio, Jean-François Deü, Stéphanie Mengué, François Dubois. An adaptation of the
Gear scheme for fractional derivatives. Computer Methods in Applied Mechanics and Engineering,
2006, 195 (44-47), pp.6073-6085. �10.1016/j.cma.2005.10.013�. �hal-01516404�

https://hal.science/hal-01516404
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


An adaptation of the Gear scheme for fractional derivatives

A.C. Galucio a, J.-F. Deü a, S. Mengué b, F. Dubois c,d

a Conservatoire National des Arts et Métiers, Structural Mechanics and Coupled Systems Lab., Case 353, 292 rue Saint Martin,

75141 Paris Cedex 03, France
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The Gear scheme is a three-level step algorithm, backward in time and second-order accurate for the approximation of classical time
derivatives. In this contribution, the formal power of this scheme is proposed to approximate fractional derivative operators in the con-
text of finite difference methods. Some numerical examples are presented and analysed in order to show the effectiveness of the present
Gear scheme at the power a (Ga-scheme) when compared to the classical Gru¨nwald–Letnikov approximation. In particular, for a 
frac-tional damped oscillator problem, the combined Ga-Newmark scheme is shown to be second-order accurate.
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1. Introduction

The notion of fractional calculus appears in diverse fields of science and engineering. If the notion first appears during
the 17th century, a precise definition has been proposed by Riemann–Liouville and more recently by Caputo [1].

The importance of fractional calculus for modeling viscoelastic materials has been recognized by the mechanical scien-
tific community since the article of Bagley and Torvik [2]. The numerical approximation of such systems has been inten-
sively studied since the work of Padovan [3]. For applications to complex mechanical systems, one refers to [4]. On the
other side, the numerical community is interested in the approximation of fractional derivatives. One refers to the pioneer-
ing theoretical work of Lubich [5] and the state of the art proposed by Diethelm et al. [6]. Most applications use the discrete
convolution formula proposed by Grünwald–Letnikov [7,8]. Another direction could be autonomous systems in the con-
text of diffusive representations [9–11].

In this work, we develop a numerical method based on the Gear scheme for the approximation of fractional derivatives.
After a first tentative [12] for preliminary tests using semi-derivatives, we focus on (i) the analytic determination of the coef-
ficients of the numerical scheme and (ii) a set of preliminary tests in order to derive orders of convergence. Then, we study
the harmonic oscillator with fractional damping from analytical and numerical points of view.
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2. Mathematical background

Let us introduce the Riemann–Liouville fractional integral operator of order a

IauðtÞ ¼ 1

CðaÞ

Z t

0

ðt � sÞa�1uðsÞds; ð1Þ

where a is a real number such that 0 < a < 1 and C is the Gamma function. The corresponding differential operator arises
from Eq. (1), such that

DauðtÞ ¼ d

dt
½I1�auðtÞ� ¼ 1

Cð1� aÞ
d

dt

Z t

0

ðt � sÞ�auðsÞds; ð2Þ

which is the classical Riemann–Liouville fractional differential operator of order a. It is well known that this operator can
be alternatively defined by using the Caputo [1] approach:

DauðtÞ ¼ 1

Cð1� aÞ

Z t

0

ðt � sÞ�a duðsÞ
ds

ds. ð3Þ

Obviously, the equivalence of Eqs. (2) and (3) is valid only when the function u satisfies the requirement u(0) = 0. Further-
more, we assume throughout this study that u is a causal function, i.e. u(t) = 0 for t 6 0, except for the fundamental frac-
tional differential equation studied in Section 4.2.

In this work, we are interested in numerical methods to approximate the Riemann–Liouville fractional derivative. For
didactical purposes, some basic definitions are recalled before showing the generalization of two finite difference methods
to fractional derivative operators.

Let u be a time dependent function known only in its discretized values un at each time tn, where n is a positive integer.
The function un is approximated by u(tn) with tn = nDt, where Dt, which is supposed to be fixed, is the time step. Further-
more, let us introduce a delay operator given by

ðd�uÞn ¼ un�1. ð4Þ
2.1. Two renowned schemes for integer derivatives

Recall that the first-order derivative of the function un can be approximated using the Euler backward formula

ðD1uÞn � 1

Dt
ðun � un�1Þ � ðEuÞn; ð5Þ

where (Eu)n is the Euler backward operator applied to the function u at time tn, defined as follows:

E ¼ 1

Dt
ðI � d�Þ. ð6Þ

Analogously, we can approximate an integer derivative of u by using the Gear three-time step scheme [13]

ðD1uÞn � 1

Dt
3

2
un � 2un�1 þ 1

2
un�2

� �
� ðGuÞn; ð7Þ

where G is the Gear operator defined by

G ¼ 1

Dt
3

2
I � 2d� þ 1

2
ðd�Þ2

� �
. ð8Þ

It should be stressed that these two schemes can be extended to the case of fractional derivatives, as we shall see below.

2.2. The Grünwald–Letnikov scheme

The extension of the Euler backward scheme to fractional calculus generates the so-called Grünwald–Letnikov (GL)
scheme that can be represented, following the work of Oustaloup [14], by

GL ¼ Ea ¼ 1

Dta
ðI � d�Þa. ð9Þ

In Eq. (9), the term in brackets can be computed by using the Newton binomial formula

ð1þ xÞa ¼
X1
j¼0

Cj
axj. ð10Þ
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By applying this expression to Eq. (9), one obtains the following fractional derivative operator:

GL ¼ 1

Dta
X1
j¼0

ð�1ÞjCj
aðd
�Þj ð11Þ

with the coefficients ð�1ÞjCj
a given in terms of the Gamma function

ð�1ÞjCj
a ¼

Cðj� aÞ
Cð�aÞCðjþ 1Þ ¼ Aa

jþ1; ð12Þ

where Aa
jþ1 are the so-called GL-coefficients, with Aa

1 ¼ 1 for any a. Then, the a-derivative of function u evaluated at time tn

is approximated by the Grünwald–Letnikov scheme [7,8]:

ðGLuÞn ¼ 1

Dta
X1
j¼0

Aa
jþ1un�j. ð13Þ

Using the property nC(n) = C(n + 1), the GL-coefficients in Eq. (12) can be computed by the recurrence formula

Aa
jþ1 ¼

j� a� 1

j
Aa

j . ð14Þ

It is important to note that this scheme has been widely used to approximate fractional derivatives in the context of finite
element method due to its simplicity when implemented numerically. Furthermore, Eq. (14) describes correctly the fading
memory phenomena observed in the behavior of viscoelastic materials (see, for example, [2,4,15–17]).

3. Outline of the Ga-scheme

Based on the previous procedure used to achieve the Grünwald–Letnikov fractional differential operator GL from the
Euler backward formula, one introduces the fractional differential operator Ga as

Ga ¼ 1

Dta
3

2

� �a

I � 4

3
d� þ 1

3
ðd�Þ2

� �a

; ð15Þ

which is directly obtained by evaluating the a-power of Eq. (8). The basic idea is to reproduce the formalism used to
achieve GL from the Gear scheme. In this way, using (10) and (12), the Gear operator for fractional derivatives is written
as

Ga ¼ 1

Dta
3

2

� �aX1
j¼0

Xj

‘¼0

4

3

� �j
1

4

� �‘

ð�1ÞjCj
að�1Þ‘C‘

jðd
�Þjþ‘. ð16Þ

Thus, the a-derivative of u at time tn can be approximated by

ðGauÞn ¼ 1

Dta
3

2

� �aX1
j¼0

Xj

‘¼0

4

3

� �j
1

4

� �‘

Aa
jþ1Bj

‘þ1un�j�‘; ð17Þ

where the coefficients Aa
jþ1 are given in (14) and the coefficients Bj

‘þ1 are calculated using the recurrence formula

Bj
‘þ1 ¼

‘� j� 1

‘
Bj
‘. ð18Þ

The sign of these coefficients is alternate following the evolution of j, while coefficients from Eq. (14) are always negative
when j increases. Furthermore, one notes that Bj

1 ¼ 1 for any j.
The calculation of the Ga-coefficients is a hard task due to cumulative numerical errors. In order to overcome such a

difficulty, the method employed here consists of calculating these coefficients analytically using Symbolic Matlab Toolbox.
For illustrative purposes, the reader is referred to Table 1 and Fig. 1, where the first 20 Ga-coefficients are presented for
three values of a: 1/3, 1/2, and 3/4. Such coefficients are related to Eq. (17) by the following expression:

ðGauÞn ¼ 1

Dta
3

2

� �aX1
j¼0

gjþ1un�j; ð19Þ

where g is a rational number. As one can observe, this way of writing the Ga-scheme is similar to that one for the GL-
scheme (see Eq. (13)). Thence, from a numerical point of view, it is obvious that Eq. (19) represents a handle tool for
approximating fractional derivatives when compared to Eq. (17).
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Table 1
First 20 coefficients gj+1 of the formal power series (19)

j a = 1/3 a = 1/2 a = 3/4

0 1 1 1

1 � 4

9
� 2

3
�1

2 � 7

81
� 1

18

1

12

3 � 104

2187
� 1

27
� 1

108

4 � 643

19683
� 17

648
� 1

96

5 � 4348

177147
� 19

972
� 7

864

6 � 92809

4782969
� 59

3888
� 193

31104

7 � 683552

43046721
� 71

5832
� 151

31104

8 � 5164958

387420489
� 2807

279936
� 5813

1492992

9 � 358288744

31381059609
� 10627

1259712
� 128713

40310784

10 � 2805807422

282429536481
� 109159

15116544
� 430313

161243136

11 � 22259881232

2541865828329
� 142175

22674816
� 1096381

483729408

12 � 535550331838

68630377364883
� 2998469

544195584
� 67957279

34828517376

13 � 4334271220472

617673396283947
� 3992599

816293376
� 19727803

11609505792

14 � 35352201712094

5559060566555523
� 42901489

9795520512
� 208231963

139314069504

15 � 870889752873248

150094635296999121
� 19352735

4897760256
� 1662771445

1253826625536

16 � 7193513666039383

1350851717672992089
� 562399301

156728328192
� 47567917685

40122452017152

17 � 59726249109026884

12157665459056928801
� 770550923

235092492288
� 128430924385

120367356051456

18 � 4483567582032536119

984770902183611232881
� 25468251097

8463329722368
� 12557611331455

12999674453557248

19 � 37550676035640523928

8862938119652501095929
� 35235269609

12694994583552
� 11429505516665

12999674453557248

20 � 315652090179612522809

79766443076872509863361
� 783187819237

304679870005248
� 250861326299015

311992186885373952

(a) (b)

Fig. 1. First 20 coefficients gj+1 of the formal power series (19).
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Moreover, even if the method used for computing the Ga-coefficients avoids cumulative numerical errors, it is limited to
handle only a few hundred terms due to numerical overflow. For example, only 29 = 512 terms are used in the calculations
performed in this work (see Section 4). This would correspond to a fraction where numerator comprises 605, 392, 468 digits
and denominator 609, 397, 473 digits, when a equals respectively to 1/3, 1/2, 3/4.

4. Results and analysis

In this section, three sets of numerical tests are performed in order to validate and analyse the Ga-scheme. The analysis
starts by ‘‘static’’ tests related to the power function, where one compares the proposed scheme with an exact solution pro-
posed in literature. The second set of tests deals with the solution of a ‘‘fundamental’’ fractional differential equation whose
solution is the analogous of the exponential function. Finally, in the last but not least set of tests, one presents a now clas-
sical problem in structural dynamics, which consists of a fractional damped oscillator submitted to a dependent-time exci-
tation. Calculations carried out using a combined (GL, Ga)-(Heun, Newmark) scheme are compared with a proposed
formal series solution.

4.1. First elementary test cases

In this section, some numerical tests are performed in order to establish a rate of convergence for the Ga-scheme. The
function chosen for this purpose is the power function

uðtÞ ¼ tm; m P 0. ð20Þ
The basic idea is (i) to find the approximated solution for the following fractional derivative equation:

DauðtÞ ¼ f ðtÞ ð21Þ
using (GL, Ga)-scheme, then (ii) to compare it with an exact solution f(t) such as, for the power function (20), its Riemann–
Liouville fractional derivative is [18,19]

f ðtÞ ¼ Cðmþ 1Þ
Cðmþ 1� aÞ t

m�a. ð22Þ

Furthermore, the order of accuracy of the Ga-scheme can be quantified by calculating L2- and L1-errors. For a fixed time
step Dt = 1/2m, these errors are respectively calculated by

em
1 ¼ maxfjuðjDtÞ � ujj; j ¼ 0; . . . ; 2mg; ð23Þ

em
2 ¼

ffiffiffiffiffi
Dt
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
juð0Þ � u0j2 þ

X2m�1

j¼1

juðjDtÞ � ujj2 þ 1

2
juð2mDtÞ � u2m j2

vuut ; ð24Þ

where m is a positive integer.
Preliminary results related to the rate of convergence of the Ga-scheme are presented in Table 2. These results are

obtained from the error estimates in L2- and L1-norms, with three values of a: 1/3, 1/2 and 3/4 and various values of
the power m. Moreover, the time discretization is bounded to m 6 9. All the calculations are also performed using the
GL-scheme. It should be emphasized that the rate of convergence for both schemes depends strongly on the power m (evo-
lution of columns) and weakly on the order of the fractional derivative a (evolution of rows). As for finite difference meth-
ods, the smoothness of the approximated function plays an essential role in the accuracy of the scheme. In order to show
this, rows in Table 2 are split on four row-blocks as values of m increase. One focuses the analysis on second (1 6 m 6 7/4)
and third (2 6 m 6 11/4) row-blocks that correspond to the accuracy range of GL- and Ga-schemes. As expected, the rate of
convergence for the GL-scheme does not exceed 2 (see underlined elements in second row-block). The rate is bounded
between 1 and 2 for all values of a, while for Ga-scheme, the rate is always superior to 2 (see underlined elements in third
row-block). Moreover, the slope of error estimates on norm L1 corresponds to m or, in terms of a, one has a rate of con-
vergence at best of order a + 1 for GL and at best a + 2 for Ga. It might be worth mentioning that such a similar phenom-
enon have been described and theoretically analysed and proved for a different numerical method by Diethelm et al. [20].

In order to better understand the results presented in Table 2, Fig. 2 shows the evolution of the rate of convergence
derived from an error estimate in L1-norm in terms of m. Points A–C stand for the convergence stagnation of Ga-scheme
(see also Table 2 for corresponding superscripts). One observes that for same values of a and m, the convergence of the GL-
scheme stagnates before (points D–F). For example, for m = 9/4 and a = 1/2, GL-convergence has been unchanged since
m = 3/2 while the Ga-convergence goes on increasing.
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(a) (b)

Fig. 2. Rate of convergence estimated with L1-norm for (a) Ga- and (b) GL-scheme.

Table 2
Error estimates in L2- and L1-norms for various values of m

m L2 L1

a = 1/3 a = 1/2 a = 3/4 a = 1/3 a = 1/2 a = 3/4

Ga GL Ga GL Ga GL Ga GL Ga GL Ga GL

1/4 0.75 0.74 0.75 0.75 0.75 0.75 0.25 0.25 0.25 0.25 0.25 0.25
1/3 0.83 0.83 0.83 0.83 0.83 0.83 0.33 0.33 0.33 0.33 0.33 0.33
1/2 1.00 0.99 1.00 1.00 1.00 1.00 0.50 0.50 0.50 0.50 0.50 0.50
2/3 1.16 0.95 1.17 1.11 1.17 1.16 0.67 0.67 0.67 0.67 0.67 0.67
3/4 1.25 1.08 1.25 1.08 1.25 1.25 0.75 0.75 0.75 0.75 0.75 0.75

1 1.48 1.24 1.49 1.35 1.50 1.44 1.00 1.00 1.00 1.00 1.00 1.00
5/4 1.74 1.30 1.68 1.45 1.73 1.62 1.25 1.25 1.25 1.25 1.25 1.25
4/3 1.83 1.31 1.82 1.46 1.79 1.66 1.33 1.33D 1.33 1.33 1.33 1.33
3/2 1.99 1.32 2.00 1.48 1.99 1.71 1.50 1.33 1.50 1.50E 1.50 1.50
5/3 2.13 1.32 2.16 1.49 2.17 1.73 1.67 1.33 1.67 1.50 1.67 1.67
7/4 2.18 1.32 2.23 1.49 2.25 1.73 1.75 1.33 1.75 1.50 1.75 1.75F

2 2.28 1.32 2.40 1.49 2.49 1.73 2.00 1.33 2.00 1.49 2.00 1.74
9/4 2.29 1.32 2.46 1.49 2.65 1.73 2.25 1.32 2.25 1.49 2.25 1.74
7/3 2.29 1.32 2.46 1.49 2.68 1.73 2.33A 1.32 2.33 1.49 2.33 1.74
5/2 2.29 1.32 2.46 1.49 2.71 1.73 2.32 1.32 2.50B 1.48 2.50 1.73
8/3 2.28 1.32 2.45 1.48 2.71 1.73 2.31 1.32 2.49 1.48 2.67 1.73
11/4 2.28 1.32 2.45 1.48 2.71 1.73 2.30 1.32 2.48 1.48 2.75C 1.73

3 2.27 1.32 2.44 1.48 2.70 1.73 2.29 1.31 2.46 1.48 2.73 1.72
13/4 2.26 1.33 2.43 1.49 2.69 1.73 2.27 1.31 2.45 1.47 2.72 1.72
10/3 2.26 1.33 2.43 1.49 2.68 1.73 2.27 1.31 2.45 1.47 2.71 1.72
7/2 2.25 1.33 2.42 1.49 2.68 1.73 2.26 1.31 2.44 1.47 2.70 1.71
11/3 2.25 1.33 2.42 1.49 2.67 1.73 2.25 1.30 2.43 1.47 2.69 1.71
15/4 2.25 1.33 2.42 1.49 2.67 1.73 2.25 1.30 2.42 1.47 2.69 1.71
4 2.24 1.33 2.41 1.49 2.66 1.73 2.24 1.30 2.41 1.46 2.67 1.71
For illustrative purposes, for a fixed value of a = 1/2 and different values of power (m = 1,2,3), exact and approximated
solutions of Eq. (21) are presented below in Figs. 3–5, as well the corresponding error estimates in L2- and L1-norms. For
example, when taking m = 1 (see Fig. 3), Ga-scheme is poor accurate, i.e. it has same slope than GL-scheme in L1-norm.
Such a result lead us to think that this is due to the non-regularity of the function t in origin.

Fig. 4 presents the tests related to the semi-derivative of the function t2. In this case, the Ga-convergence is larger or
equal to 2, then being better accurate than the GL-scheme.

In Fig. 5, the semi-derivative of the function t3 is analysed. As for the previous result, the Ga-scheme is better accurate,
noting that the rate of convergence of the GL-scheme is the same than in Fig. 4.

These results for a preliminary test case show that the accuracy of the Ga-scheme depends on the regularity of the
evaluated function in origin. The set of tests carried out in the following sections emphasizes such a numerical
phenomenon.
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(a) (b)

Fig. 3. (a) Exact and approximated solutions of (21) for m = 1, a = 1/2, Dt = 1/29; (b) error estimates in L2- and L1-norms.

(a) (b)

Fig. 4. (a) Exact and approximated solutions of (21) for m = 2, a = 1/2, Dt = 1/29; (b) error estimates in L2- and L1-norms.

(a) (b)

Fig. 5. (a) Exact and approximated solutions of (21) for m = 3, a = 1/2, Dt = 1/29; (b) error estimates in L2- and L1-norms.
4.2. The fundamental fractional differential equation

Consider the following elementary differential equation:

du
dt
þ u

s
¼ 0; t P 0; ð25Þ
7



where s > 0 is a time type constant. The solution of (25), as well-known, can be explicited by using the exponential func-
tion. For fractional differential operators, the situation is analogous. Thus, the fundamental fractional differential equation
can be written as

Dauþ u
sa
¼ 0; t > 0;

uð0Þ ¼ u0.

(
ð26Þ

The solution of this problem is given in terms of the Mittag-Leffler’s fundamental ‘‘exponential’’

uðtÞ ¼ u0Ea½�ðt=sÞa�; t P 0; ð27Þ
where Ea(•) is the one-parameter Mittag-Leffler function [21], defined as

EaðxÞ �
X1
k¼0

xk

Cð1þ akÞ ð28Þ

Table 3 presents error estimates in L2- and L1-norms of GL- and Ga-schemes for three values of a when solving Eq. (26).
This test case shows a limitation of the present Ga-scheme when the fractional derivative drives the governing equation, i.e.,
when the highest derivative term is the fractional one. In this case, both schemes are poor accurate, having the same order
which equals at about to a.

In Fig. 6(a), one presents exact and approximated (with GL- and Ga-schemes) solutions of (26) for a = 1/2 and s = 1 (in
a suitable unit system). As in previous examples (see Section 4.1), the accuracy is probably lost due to the non-regularity of
the function at the origin as illustrated by the spurious points in the beginning. For this example, the error estimates in L1-
norm of both schemes is at about a according to Fig. 6(b).

4.3. The fractional damped oscillator problem

Consider a fractional one-dof system submitted to a constant step load f for t > 0 with zero initial conditions. The damp-
ing is taken into account by introducing a fractional damping term or a spring-pot element in the formulation. The corre-
sponding governing equation as well as the initial conditions are given below

m
d2u
dt2
þ csaDauþ ku ¼ f ; t > 0;

uð0Þ ¼ du
dt
ð0Þ ¼ 0;

8>><
>>: ð29Þ
Table 3
Error estimates in L2- and L1-norms for various values of a

L2 L1

a = 1/3 a = 1/2 a = 3/4 a = 1/3 a = 1/2 a = 3/4

Ga GL Ga GL Ga GL Ga GL Ga GL Ga GL

0.69 0.69 0.83 0.84 0.95 0.96 0.23 0.25 0.43 0.47 0.72 0.82

(a) (b)

Fig. 6. (a) Exact and approximated solutions of (26) for a = 1/2 and Dt = 1/29; (b) error estimates in L1-norm.
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where m and k are mass and stiffness constants; and csa is a fractional damping constant with s the relaxation time and c

the classical damping constant.
The aim of this section is to solve the set of Eq. (29) with a direct time integration method (Newmark and Heun

schemes) in conjunction with an approximation for the a-derivative Dau (Ga- or GL-scheme). Furthermore, in order to
validate such a combination, the approximated solution is compared to an exact solution proposed below. Finally, error
estimates in L1-norm are performed (see formula (24)).

4.4. Exact solution

Let us introduce an original exact solution for the problem (29) such that a = p/q, where p and q are positive integers.
One proposes to write this exact solution in terms of formal power series as

u ¼
X1
j¼1

Sjtj=q; ð30Þ

where the corresponding Sj coefficients are defined as follows:

Sj ¼

0; j ¼ 1; . . . ; 2q� 1;
f

2m
; j ¼ 2q;

� q2

mjðj� qÞ kSj�2q þ csa

C
jþ p

q
� 1

� �

C
j
q
� 1

� � Sjþp�2q

2
664

3
775; j > 2q.

8>>>>>>>>><
>>>>>>>>>:

ð31Þ

These coefficients have been obtained after some analytical calculations. More details will be presented in a coming paper.
The above solution is used for the calculation of the order of convergence of our numerical scheme using a finite number

of terms in the series (see the numerical application).

4.5. Algorithm

Concerning the numerical approximation of the a-derivative, one follows the strategy used by Galucio et al. in [4] with a
combined GL-Newmark algorithm for structural dynamics. In other words, the displacement history arising from the a-
derivative approximation (damping term) is shifted to the right-hand side of Eq. (29). In this way, using (16), the governing
equation in its discretized form is written as

m€unþ1 þ ðk þ jÞunþ1 ¼ f nþ1 þ /nþ1; ð32Þ
where the modified terms j and / arise from the approximation of the a-derivative:

j ¼ csa

Dta
3

2

� �a

; ð33aÞ

/nþ1 ¼ � csa

Dta
3

2

� �aXN

k¼1

gkþ1unþ1�k. ð33bÞ

One notes that the stiffness term j is constant in time, depending only on the time step, which is supposed to be fixed. Con-
cerning the modified loading /, it depends on the displacement history.

Let us recall two classical predictor–corrector integrators: Newmark and Heun schemes. Both are one-time step and
second-order accurate algorithms when used to solve second-order differential equations sufficiently smooth. Newmark
is an implicit scheme while Heun is an explicit one. Below, we shall outline how to adapt both integrators to Eq. (32).

Newmark scheme (average acceleration algorithm)

1. Initialize: u0; _u0; €u0 ¼ m
f 0 � ðk þ jÞu0
2. Enter time step loop
(a) Predict displacement and velocity

Dt2
up ¼ un þ Dt _un þ
4

€un

_up ¼ _un þ Dt
2

€un
(b) Evaluate acceleration
€unþ1 ¼ 1

s
½f nþ1 þ /n � ðk þ jÞunþ1

p � with s ¼ mþ Dt2

4
ðk þ jÞ
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Table
Rate o

a = 1/3
a = 1/2
a = 3/4
(c) Correct displacement and velocity
4
f

F

unþ1 ¼ up þ
Dt2

4
€unþ1

_unþ1 ¼ _up þ
Dt
2

€unþ1
(d) Compute /n using Eq. (33b)

3. Update time step and return to 2
Heun scheme (second-order Runge–Kutta algorithm)

1. Initialize: u0, _u0

2. Enter time step loop
(a) Evaluate /n�1 using Eq. (33b)
(b) Predict displacement and velocity
up ¼ un þ Dt _un

_up ¼ _un þ Dt
m
½f n þ /n�1 � ðk þ jÞun�
(c) Compute /n using Eq. (33b)
(d) Correct displacement and velocity
unþ1 ¼ un þ Dt
2
ð _un þ _unþ1

p Þ

_unþ1 ¼ _un þ Dt
2m
½f n þ f nþ1 þ /n�1 þ /n � ðk þ jÞðun þ upÞ�
3. Update time step and return to 2

In all calculations performed in this work, we assume that m = k = s = f = 1 in a suitable unit system. In Table 4, as well
in Figs. 7–9, one assumes that c = 1. Moreover, as one has seen in previous sections, three values of a are tested. The final
time is chosen to be T = 15 for various values of time step. Moreover, 400 terms are retained in the series for the calculation
of the exact solution (30).

In Table 4, error estimates in L1-norm are presented when integrating Eq. (29) with Newmark and Heun algorithms.
These errors are measured by using Eq. (24) over two time discretizations, i.e. when the number of time steps is bounded
convergence computed with the L1-norm for various values of a

Newmark Heun

Ga GL Ga GL

1.99 1.00 1.81 1.24
1.96 0.99 1.65 1.19
1.90 0.99 1.37 1.13

(a) (b)

ig. 7. (a) Exact and approximated solutions of (29) using Newmark scheme for a = 1/3 and Dt = T/26; (b) error estimates in L1-norm.
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(a) (b)

Fig. 9. (a) Exact and approximated solutions of (29) using Newmark scheme for a = 3/4 and Dt = T/26; (b) error estimates in L1-norm.

(a) (b)

Fig. 8. (a) Exact and approximated solutions of (29) using Newmark scheme for a = 1/2 and Dt = T/26; (b) error estimates in L1-norm.
between 27 and 29. One notes that the combined Ga-Newmark scheme keeps the second-order accuracy of both Ga and
Newmark schemes for any value of a. However, the use of a GL-Newmark algorithm decreases the order of accuracy
to 1. Concerning the combination Ga- or GL-Heun scheme, one might say that due to driving acceleration term in Eq.
(29), the accuracy is not conserved neither for Ga nor for GL.

Figs. 7–9 show the evolution of the displacement for various values of a as well the error estimates on L1-norm, when
using a combined Ga- or GL-Newmark scheme. In Figs. 7–9(a), the exact solution of Eq. (29) and its corresponding numer-
ical approximations (GL and Ga methods) are presented, with a time discretization corresponding to 26 = 64 time steps.
One can easily note that the solution obtained by using the Ga-scheme is very close to the exact solution while that one
obtained by the GL-method is overestimated.

Error estimates in L1-norms are presented in Figs. 7–9(b). In the three situations, the combined Ga-Newmark scheme
shows a better accuracy than the GL one. One recalls that the rates of convergence presented in Table 4 are computed with
7–9 meshes, otherwise the slopes are wrongly estimated.

It should be emphasized that the order of the fractional derivative does not affect the rate of convergence (according to
Table 4 and Figs. 7–9) when using a Newmark integrator. The influence of a is observed in the mechanical behavior of the
fractional damped oscillator by means of a damping factor. In other words, when a decreases, the damping and the time
required to achieve the quasistatic time solution increase.

In order to show the influence of an added damping, the results presented below are computed for a fixed value of a = 1/
2 and different values of the classical damping constant c. According to Table 5 (see also Table 4), the rate of convergence
remains the same when using the Newmark scheme, while a slight difference is observed for the Heun scheme. As in pre-
vious results, using the combined Ga-Newmark algorithm, the order of accuracy is 2.

For illustrative purposes, the responses of the oscillator computed with the Ga-Newmark scheme are presented in
Fig. 10(a) for three values of damping: c = 0.5, 1.0, 1.5 (see Eq. (29)). These results are obtained for a semi-derivative
11



Table 5
Rate of convergence computed with the L1-norm for various values of c

Newmark Heun

Ga GL Ga GL

c = 0.50 1.98 0.96 1.71 1.22
c = 1.00 1.96 0.99 1.65 1.19
c = 1.50 1.93 1.00 1.63 1.17

(a) (b)

Fig. 10. (a) Exact and approximated solutions of (29) for a = 1/2 and Dt = T/29; (b) error estimates in L1-norm.
problem. Comparing to the exact solution (30), the corresponding error in L1-norm is plotted in Fig. 10(b). One notes that
the rate of convergence remains the same for all c.

5. Conclusion

A numerical method based on the Gear scheme to approximate fractional derivatives is proposed. This Ga-scheme is
written in terms of a formal power series as the Grünwald–Letnikov approximation. This means that the Ga-scheme is
no more expensive than the Grünwald–Letnikov one. The numerical evaluation of Ga-coefficients is delicate due to a
bad conditioning of the recurrence formula. However, with the help of formal calculus, cumulative numerical errors are
avoided.

Three sets of tests are performed. In a first time, numerical experiences based on power functions yield a L1 error at best
of order a + 1 for the Grünwald–Letnikov scheme and a + 2 for the Ga-scheme. Secondly, the fundamental fractional dif-
ferential problem is treated. Results obtained show that the Ga-scheme is poor accurate (of order a) due to the non-smooth-
ness of the function at origin. Finally, a single degree-of-freedom oscillator with a fractional damping is analysed. In order
to validate our numerical approach, an exact solution for the single dof problem submitted to a constant load is proposed.
Two classic algorithms are used to integrate the governing equation: Newmark (average acceleration) and Heun (second-
order Runge–Kutta) schemes. The combined algorithm Ga-Newmark seems to be an effective tool for dynamic problems
since a two-order accuracy is obtained. Obviously, for real problems in structural dynamics, i.e. with many dof’s, the effec-
tiveness of the present method should be demonstrated.
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