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ON SYSTOLIC ZETA FUNCTIONS

We define Dirichlet type series associated with homology length spectra of Riemannian, or Finsler, manifolds, or polyhedra, and investigate some of their analytical properties. As a consequence we obtain an inequality analogous to Gromov's classical intersystolic inequality, but taking the whole homology length spectrum into account rather than just the systole.

Introduction

Let (M, g) be a m-dimensional Riemannian manifold. Let l be the shortest possible length of a closedl geodesic whose homology class is non-trivial in H 1 (M, R). This length is called homological systole of (M, g) and denoted l = sys H (M, g). It carries important information about the manifold (M, g). As was discovered by Gromov ([11]), under topological conditions on M to be explained below, the following inequality holds for all Riemannian metric g on M : [START_REF] Apostol | Introduction to Analytic Number Theory[END_REF] σ m sys H (M, g) m ≤ vol(M, g),

where σ m is a universal constant only depending on the dimension m, whose optimal value is unknown. Now let us explain the topological condition under which Inequality (1) holds. Recall that for any manifold M there is a map, called characteristic map, unique modulo homotopy,

(2)

f : M -→ T b 1
where b 1 = b 1 (M) is the first Betti number of M and T b 1 is the b 1 -dimensional torus, such that the induced map f * : H 1 (M, Z)/Tors -→ H 1 (T b 1 , Z), where Tors means the torsion subgroup of H 1 (M, Z), is an isomorphism of Z-modules.

Let

α[M] denote f * ([M]) ∈ H m (M, Z ⋆ )
,where [M] is the fundamental class of M and Z ⋆ = Z when M is orientable and Z 2 otherwise. A sufficient condition for [START_REF] Apostol | Introduction to Analytic Number Theory[END_REF] to hold for any metric g is that α[M] = 0. It can be shown to be also necessary.

In this paper, instead of just the homological systole, we shall consider what we call the homology length spectrum of (M, g). For any θ ∈ H 1 (M, Z)/Tors , denote l θ the smallest possible length of a closed geodesic in the homology class θ. Denote Θ = H 1 (M, Z)/Tors \ {0} the set of non-trivial homology classes and define the homology length spectrum of (M, g) as L Θ = L Θ (g) = {l θ } θ∈Θ . Of course sys H (M, g) = inf L Θ . The goal of this paper is to extract geometric and topological information from the homology length spectrum as it was done from the systole. The information carried by the homological length spectrum L Θ is conveniently encoded in the formal series Partially supported by the grants RFSF 10-01-00257-a, and ANR Finsler. [START_REF] Babenko | Asymptotic invariants of smooth manifolds[END_REF] ζ sys (z) = θ∈Θ 1 l z θ which we call systolic zeta function of (M, g). In Chapter 2 we show that the formal series [START_REF] Babenko | Asymptotic invariants of smooth manifolds[END_REF] converges in a natural sense and enjoys interesting analytical properties.

To explain our main results we need to define the stable norm of (M, g). Any metric g on M induces a norm • g st on H 1 (M, R) called stable norm (see [START_REF] Federer | Real flat chains, cochains and variational problems[END_REF] and chapter 2 for more detail). Denote by B g (1) the unit ball of the stable norm. Let V (g) be the volume of B g [START_REF] Apostol | Introduction to Analytic Number Theory[END_REF] with respect to the Haar measure on H 1 (M, R), normalised in such a way that the quotient of H 1 (M, R) by the lattice H 1 (M, Z)/Tors has volume 1. 

(ζ sys (z)) = b 1 (M)V (g).
This results comes as a particular case of Theorem 5.2, proven in Chapter 2, which holds for any Riemannian or Finsler polyhedron.

The analytical properties of ζ sys (z) are reflected in the homology length spectrum, which enables us to prove an inequality analogous to [START_REF] Apostol | Introduction to Analytic Number Theory[END_REF]. Furthermore our approach allows us to estimate the constants that appear in the inequality. Theorem 1.2. Let M be a an orientable m-dimensional differentiable manifold with first Betti number b 1 . For any Riemannian metric g on M we have the following inequality :

b 1 v b 1 V [M] Res b 1 (ζ sys (z)) m ≤ vol(M, g) b 1 .
Here V [M] is a topological invariant called algebraic volume, which is defined in Chapter 6. In the particular case m = b 1 it is just to the degree of the characteristic map :

V [M] = |deg(f )|.
The number v n is a universal constant which comes from the solution of an optimization problem in n-dimensional convex geometry. Although the exact value of v n is unknown when n ≥ 3, there are explicit estimates which are asymptotically correct when n goes to infinity. See Chapter 6 for more detail and the proof of Theorem 1.2.

The classical Riemann zeta

ζ(z) = ∞ n=1
1 n z appears naturally in the previous context like as the systolic zeta of function of the simplest manifold, the circle S 1 . In this case for a metric g of unit volume (or length) we have

ζ sys (z) = 2ζ(z).
Another well known number theoretic zeta function is the so called Hurwitz zeta function

(4) ζ ( z; q) = ∞ n=0 1 (q + n) z ,
where q, Req > 0 is a complex parameter. See [START_REF] Apostol | Introduction to Analytic Number Theory[END_REF] for details and analytic properties as well as connections of Hurwitz zeta functions for rational parameter q with Dirichlet L-functions.

Hurwitz zeta functions appear naturally in the systolic setting as well. More precisely in chap. 3 we define the stable systolic zeta functions for Riemannian polyhedra. Weighted graphs are the simplest example. A graph is called combinatorial if the weight of each edge is equal to 1.

In chapter 3 the stable systolic zeta function for a combinatorial graph is explicitly calculated as a linear combination of Hurwitz zeta functions, see Theorem 3.2 for a precise statement. Such a representation of the stable systolic zeta function for a graph provides an analytic extension of the stable systolic zeta function to the whole complex plane as a meromorphic function, see chap. 3 for details.

All results in this paper are presented in the more familiar Riemannien context. Nevertheless, up to Chapter 6 all of them can be directely translated to the Finsler setting. Moreower a stable systolic zeta can be seen as a Finsler zeta on the corresponding flat finsler torus. To be expressed in the Finsler language, the results of Chapter 6 would require more precise statements and a suitable choice of a Finsler volume.

Systolic zeta function

Let us consider a countable set Θ and a map l : Θ -→ R + . Let L Θ = {l θ } θ∈Θ (or L for short) be the graph of this map, seen as a family of positive numbers, not necessarily pairwise disjoint, indexed by Θ. We say that L Θ is a Θ-marked spectrum. If we order L Θ in a natural way, taking multiplicities into account, we get the ordered spectrum

|L Θ | = {(l i , a i )} ∞ i=1 , l 1 < l 2 < .
. . , where the a i ∈ N are the respective multiplicities of the elements l i , i ∈ N. Let us call zeta function of the family L the formal series [START_REF] Babenko | Sur la forme de la boule unité de la norme stable unidimensionnelle[END_REF] ζ

L (z) = θ∈Θ 1 l z θ . Denote Θ ≤t = {θ ∈ Θ l θ ≤ t} and Θ >t = Θ \ Θ ≤t .
Let us say that the series (5) converges for some z ∈ C if the sum

θ∈Θ ≤t 1 l z θ
is finite for all t > 0 and has a limit when t -→ ∞. Observe this notion of cenvergence coincides with the greedy convergence introduced in [START_REF] Shchepin | Greedy Sums and Dirichlet Series[END_REF], and that the convergence of the series (5) is equivalent to the convergence of the classical Dirichlet series

ζ |L| (z) = ∞ i=1 a i l z i ,
where (l i , a i ) are the elements of the marked spectrum |L Θ |. This explains several analytical properties of the function [START_REF] Babenko | Sur la forme de la boule unité de la norme stable unidimensionnelle[END_REF]. It is easily seen that if the cardinality of Θ ≤t satisfies [START_REF] Yu | Periodic Metrics[END_REF] |Θ Let g be a polyhedral Riemannian metric on P (see e.g. [START_REF] Babenko | Forte souplesse intersystolique de variétés fermées et de polyèdres[END_REF]), and for any θ ∈ Θ let us define l θ as the shortest possible length of a closed geodesic in the homology class θ.

The family L(P, g) = L Θ is well-defined and represents the homology length spectrum of (P, g). Denote ζ sys(P,g) (z) (or ζ sys (z) for the sake of brevity) the series corresponding ( 5) for L Θ .

Definition 2.2. The function ζ sys (z) defined by ( 5) for the family L(P, g) is called systolic zeta function of the Riemannian polyhedron (P, g).

Stable zeta function

Let B = (R b , • ) be a Banach space, and let Γ ⊂ R b be a lattice. Let us normalise the Haar measure on

R b so Γ has volume 1. Set Θ = Γ \ {0} et L Θ = {l θ = θ , θ ∈ Θ}, then Θ ≤t = B(t) ∩ Θ where B(t) is the ball of radius t centered at 0 in B. Denote ζ B (z)the corresponding zeta function. For instance if B ν = (R 2 , • ν ) with ν = {1, ∞}, then ζ B∞ (z) = 2ζ B 1 (z) = 8ζ(z -1)
where ζ is Riemann's zeta. In higher dimensions ζ Bν (z), for ν = {1, ∞}, may also be expressed in terms of ζ but we shall not dwell on this topic. In general ζ B (z) enjoys the following properties. 

a(n) = (B(n) \ B(n -1)) ∩ Γ ∞ n=1 and set F (z) = ∞ n=1 a(n) n z . It is easily seen that the series ζ B (z) et F (z) convverge in the same half-plane. Since (8) A(t) = n≤t a(n) = B(t) ∩ Γ = V t b + O(t b-1 ),
the common half-plane of convergence is {z|Re(z) > b} and z = b is singular for both functions. This entails 1). Moreover we have

ζ B (z) -F (z) = ∞ n=1 θ∈(B(n)\B(n-1))∩Γ 1 θ z - 1 n z .
Applying, for z ∈ R, the Mean Value Theorem to the function

f z : R * + -→ C t -→ t -z
we get that, for all t, there exists h(t) ∈ ]t, E(t) + 1[, where E(.) is the floor function, such that

f z (E(t)) -f z (t) = f ′ z (h(t))(1 -{t})
where {x} is the fractional part of x.

Then we have, for z ∈ R,

(9) ζ B (z) -F (z) = z ∞ n=1 n-1< θ <n, 1 -{ θ } h(θ) z+1 , with θ < h(θ) < [ θ ] + 1. Therefore the series (9) converges if z > b -1, thus it is holomorphic in the half-plane Re(z) > b -1.
Taking ( 8) into account, it remains to apply Tauber's Theorem (voir par ex. [START_REF] Tenenbaum | Introduction à la théorie analytique et probabiliste des nombres, collection SMF[END_REF], théorème 2, §7.1) to the function F (z). It follows that F (z) extends to Re(z) > b -1 and

F (z) = bV + o(1) z -b , si z -→ b.
This ends the proof.

If (P, g) is a Riemannian polyhedron, let us denote Γ = H 1 (P, Z)/Tors, then Γ embeds canonically into H 1 (P, R). Denote Θ(P ) = Γ \ {0}. It is well-known that for all θ ∈ Γ the following limit [START_REF] Federer | Real flat chains, cochains and variational problems[END_REF] lim n→∞ l nθ n exists and defines a norm on Γ which extends by homogeneity and continuity to H 1 (P, R). This norm is called mass or stable norm, we denote it • g st (or • st for the sake of brevity). See [START_REF] Federer | Real flat chains, cochains and variational problems[END_REF] for several equivalent definitions.

Applying the contruction at the beginning of this section to the Banach space B st = (H 1 (P, R), • g st ) we get the function

(11) ζ st (z) = θ∈Θ(P ) 1 θ z st
which we call stable zeta of the Riemannian polyhedron (P, g). Thus it verifies Proposition 3.1. Weighted graphs are interesting examples of Riemmannian polyhedra of dimension 1. Such a graph is given by a set of vertices V , a set of edges E (we allow loops and multiple edges between two given vertices, and edges are unoriented), and a weight function w : E -→ R + . We denote P = (V, E), so the weighted graph is (P, w). Each edge is then endowed with a Riemannian metric such that the length of an edge e is w(e). Then the weighted graph (P, w) becomes a dimension 1 Riemannian polyhedron. We say that (P, w) is a combinatorial graph if w(e) = 1 for all e ∈ E. The only topological invariant of P is its first Betti number b = b

1 (P ) = |E| -|V | + 1.
The stable norm on H 1 (P, R) only depends on the weight function w on P and not on the particular choice of the Riemannian metric on each edge. Its unit ball B w st is always a b-dimensional polytope whose vertices are in one-to-one correspondance with the simple cycles in P , and their number is bounded above by 2(2 b -1), see [START_REF] Babenko | Sur la forme de la boule unité de la norme stable unidimensionnelle[END_REF] for more detail.

In particular, for any weighted graph (P, w) the stable zeta function ζ w st (z) verifies Proposition 3.1. For a general weight function w we cannot expect additional analytical properties for ζ w st (z). However our next theorem shows that ζ w st (z) does have interesting analytical properties when (P, w) is a combinatorial graph. In the statement ζ(s) means, as usual, Riemann's zeta. where {p lk } ∈ Q and ζ(s; q) is the Hurwitz zeta defined in (4).

Proof. Part 1) follows directly from Proposition 3.1. We prove 3) before 2). If P is a combinatorial graph, for all θ ∈ Θ(P ), θ st ∈ N (see [START_REF] Babenko | Sur la forme de la boule unité de la norme stable unidimensionnelle[END_REF]), so we have

(13) ζ st (z) = θ∈Θ 1 θ z st = ∞ n=1 A n n z ,
where A n is the number of points in Θ with norm n. If B st (t) is the ball of radius t, since the norm of any θ ∈ Θ(P ) is an integer, we get ( 14)

A n = |B st (n) ∩ Θ(P )| -|B st (n -1) ∩ Θ(P )|.
For any combinatorial graph the unit ball B st of the stable norm is a b-dimensional polytope whose vertices are rational with respect to the lattice H 1 (P, Z) (see [START_REF] Babenko | Sur la forme de la boule unité de la norme stable unidimensionnelle[END_REF]). Applying Ehrhart's theorem ( [START_REF] Ehrhart | Sur les polyèdres rationnels homothétiques à n dimensions[END_REF]), taking the equality B st (t) = tB st into account, we get a natural number m, which depends only on B st , such that

|B st (n) ∩ Θ(P )| = V n b + q(n),
where q(n) is a m-quasipolynomial of degree at most b -1 with rational coefficients, that is,

q(n) = b-1 l=0
q l (n)n l , where q l (n) are m-periodic functions. From this and (14) we deduce

A n = bV n b-1 + p(n),
where

p(n) = b-1 l=0
p l (n)n l is a m-quasipolynomial of degree at most b -1 with rational coefficients. Observe that the leading coefficient p b-1 (n) averages to zero :

m k=1 p b-1 (k) = 0. This is because p(n) = q(n) -q(n -1) so, setting q(n) = b-1 l=0 q l (n)n l , we get p(n) = q(n) -q(n -1) = b-1 l=0 q l (n)n l - b-1 l=0 q l (n -1)(n -1) l whose leading coefficient is q b-1 (n) -q b-1 (n -1)
, which averages to zero. We shall use this fact in the proof of part 2). Now we get from ( 13)

(15) ζ st (z) = ∞ n=1 bV n b-1 + p(n) n z = bV ζ(z -b + 1) + b-1 l=0 ∞ n=1 p l (n) n z-l , Rez > b.
Define a basis {α k } m k=1 for the space of m-periodic functions on N, by the formula α k (n) = 1 if n ≡ k mod m and 0 otherwise, for k = 1, 2, . . . , m.

Set p l (n) = m k=1 p lk α k (n), with p lk ∈ Q. From (15) it follows that ζ st (z) -bV ζ(z -b + 1) = b-1 l=0 m k=1 p lk ∞ n=1 α k (n) n z-l = b-1 l=0 m l-z m k=1 p lk ζ z -l; k m ,
which entails [START_REF] Gromov | Metric Structures for Riemannian and Non-Riemannian Spaces Birkhaüser[END_REF], thus proving part 3) of the theorem. Part 2) now follows from [START_REF] Gromov | Metric Structures for Riemannian and Non-Riemannian Spaces Birkhaüser[END_REF], and the fact that the right-hand side in (12) doesn't have a pole at z = b, because m k=1 p b-1 (k) = 0.

Remark 3.3. If i k < m are mutually prime integers, it is well known (see [START_REF] Apostol | Introduction to Analytic Number Theory[END_REF], Chapter 12) that Hurwitz' zeta function ζ(s, k m ) may be expressed as a linear combination of Dirichlet's L-functions. Thus Formula (12) may be rephrased in terms of Dirichlet's L-functions.

Analytical properties of systolic zeta functions

For any finite Riemannian polyhedron (P, g) the systolic zeta function ζ sys (z) defined in Section 2 satisfies a property analogous to 3.1. Let P be a finite simplicial polyhedron and set Θ(P ) = (H 1 (P, Z)/Tors) \ {0} . For a Riemannian metric g on P we consider the length spectrum L Θ = {l θ } θ∈Θ and denote V (g) = Vol(B(1)) the volume of the unit ball of the stable norm in H 1 (P, R). The proof uses a pair of tools : Proposition 3.1 and the following lemma originally due to D. Burago [START_REF] Yu | Periodic Metrics[END_REF]. Lemma 4.2. For any finite Riemannian polyhedron (P, g) there exists C > 0 such that l θ -θ st ≤ C, θ ∈ H 1 (P, Z)/Tors.

The proof given in [START_REF] Yu | Periodic Metrics[END_REF] (Theorem 1) applies to the particular case of the torus T m , one of the lemmata (Lemma 1) does not extend to the general case. A proof of the general case is published in [START_REF] Cerocchi | Sambusetti Quantitative bound distance theorem and Margulis' lemma for Z nactions with applications to homology[END_REF]. 

|Θ ≤t | = O t b 1 (P ) .
Therefore the series (5) converges if Re(z) > b 1 (P ) so ζ sys (z) is analytical in the half-plane Re(z) > b 1 (P ). On the other hand the series ζ st (z) diverges if Re(z) < b 1 (P ), whence ζ sys (z) also diverges for Re(z) < b 1 (P ), which proves 1). Now observe that The systolic zeta function ζ sys (z) of a Riemannian polyhedron (P, g) encodes a lot of information about (P, g). For instance the ordered homology length spectrum |L Θ | may be recovered from ζ sys (z). It follows from a classical result of [START_REF] Hardy | The general theory of Dirichlet's series[END_REF] (Theorem 13) that for all t / ∈ L Θ and c > b 1 (P ) we have ( 17)

ζ sys (z) -ζ st (z) = θ∈Θ 1 l z θ - 1 θ z st , so, for z ∈ R, (16 
|Θ ≤t | = 1 2πi c+i∞ c-i∞ ζ sys (z)e tz dz z .
The integral ( 17) is non-decreasing and piecewise constant as a function of t.The discontinuities of this function are exactly the points of the ordered length spectrum, and the jumps are the corresponding multiplicities.

On the other hand the metric itself cannot be recovered from ζ sys (z). Milnor ([18]) gives an example of two isospectral (therefore having the same systolic zeta function) non-isometric 16-dimensional flat tori, using two lattices in R 16 discovered by Witt [START_REF] Witt | Eine Identität zwischen Modulformen zweiten Grades[END_REF].

In view of formula [START_REF] Massart | On the homology length spectrum of surfaces[END_REF], an important metric invariant of (P, g) is r(P, g) = inf{t : Z Θ ≤t = H 1 (P, Z)/Tors}.

In plain language r(P, g) is the minimal possible length of a basis of the Z-module H 1 (P, Z)/Tors. It is known (see [START_REF] Gromov | Metric Structures for Riemannian and Non-Riemannian Spaces Birkhaüser[END_REF], Prop. 5.28) that r(P, g) ≤ 2diam(P, g).

Example 4.3. Here we consider a closed, orientable Riemannian manifold (M, g) of dimension two. It is known ( [START_REF] Massart | Normes stables des surfaces[END_REF], [START_REF] Massart | Stable norms for surfaces : local structure of the unit ball at rational directions[END_REF]) that for all θ ∈ Γ = H 1 (M, Z) there exist closed geodesics γ 1 , . . . γ k , k ≤ b 1 (M)/2, and integers λ 1 , . . . λ k , such that θ = k i=1 λ i [γ i ] et ( 18)

θ st = k i=1 λ i [γ i ] st = k i=1 λ i l g (γ i ).
This motivates our interest in the family

Θ min := {γ closed geodesic [γ] st = l g (γ)}
and the corresponding zeta function

ζ min (z) := γ∈Θ min l g (γ) -z .
From the obvious inclusion

{l g (γ) |γ ∈ Θ min } ⊂ { θ st |θ ∈ Γ}
follows the convergence of the series ζ min (z) in the half-plane Re(z) > b 1 (M).

On the other hand, from [START_REF] Massart | On the homology length spectrum of surfaces[END_REF] we know that ζ min (z) cannot converge on any half-plane properly containing Re(z) > 2. Examples of long-necked surfaces are studied in [START_REF] Massart | On the homology length spectrum of surfaces[END_REF], for such surfaces ζ min (z) converges on Re(z) > 2, and extends analytically to Re(z) > 1.

It would be interesting to determine the domain of convergence of ζ min (z). Another question of interest is whether, in the case of a hyperbolic metric g, ζ min (z) depends analytically on the metric, thus defining an analytical function on the product of Teichmuller awith a half-plane.

Example 4.4. Let (P, g) be a Riemannian polyhedron and let ζ sys (z) be its systolic zeta function. Applying Mellin's transform (see [START_REF] Hardy | The general theory of Dirichlet's series[END_REF], Theorem 11) we get :

ζ sys (z) = θ∈Θ 1 l z θ = 1 Γ(z) ∞ 0 x z 2 -1 θ∈Θ e -l 2 θ x dx, for Re(z) > b 1 (P ), where Γ(z) = +∞ 0 t z-1 e -t dt. If P = T b = R n /Λ
and g is a flat metric, the function

Θ g ix π = 1 + θ∈Θ e -l 2 θ x
it the theta function of the lattice Λ (see [START_REF] Serre | Cours d'arithmétique[END_REF]). For a b-dimensional flat torus R n /Λ, we obtain the following equality :

ζ sys (z) = ζ st (z) = 1 Γ(z) ∞ 0 x z 2 -1 Θ g ix π -1 dx,
where Re(z) > b and Θ g is the theta function of the lattice Λ. The most interesting case is when the lattice is even and unimodular, then Θ g is a modular form of weight b 2 , see [START_REF] Serre | Cours d'arithmétique[END_REF].

The Zeta map

Let (M, g)be a Riemannian manifold and let ζ sys (z) be its systolic zeta function. In this section we investigate some properties of the mapping [START_REF] Pelczyński | On parallelepipeds of minimal volume containing a convex symmetric body in R n[END_REF] Z : g -→ ζ sys (z) from the set of continuous Riemann metrics on M, which we denote M(M), to the space of holomorphic functions in the half-plane {Re(z) > b 1 (M)}. First, let us endow the set M(M) with a distance function. Let g i ∈ M(M), i = 1, 2 be continuous Riemann metrics on M, and set ( 20)

̺(g 1 , g 2 ) = sup q∈M inf{ρ ∈ R + e -ρ v q g 1 ≤ v q g 2 ≤ e ρ v q g 1 ; v q ∈ T q M} .
It is easily seen that ̺ makes M(M) a complete metric space. If γ(t), t ∈ [0, 1] is a piecewise smooth curve in M, andρ = ̺(g 1 , g 2 ), then the g i -lengths of γ are related by the inequalities e -ρ l g 1 (γ(t)) ≤ l g 2 (γ(t)) ≤ e ρ l g 1 (γ(t)). It follows that the g i -homology length spectra are ̺-close : Note that the compactness is only local because GL(b) is not compact.

e -ρ l g 1 θ ≤ l g 2 θ ≤ e ρ l g 1 θ , θ ∈ Θ(M).

Zeta functions and isoperimetric inequalities with the length spectrum

In this section we consider a closed, orientable manifold M of dimension m and first Betti number b = b 1 (M). First we define a few algebraic invariants of M, see [START_REF] Babenko | Asymptotic invariants of smooth manifolds[END_REF] for more detail. The characteristic map (2) induces a map between integer homology groups

f * : H m (M, Z) -→ H m (T b , Z) ≃ Λ m H 1 (T b , Z). Set α(M) = f * ([M]
) where [M] is the fundamental class of M. The Haar measure on H 1 (T b , R), henceforth denoted Vol, is normalised in such a way that the lattice H 1 (T b , Z) ⊂ H 1 (T b , R) has volume 1. Take a basis e = {e 1 , . . . , e b } de H 1 (T b , R), and decompose ( 22)

α(M) = i 1 <•••<im α i 1 ...im e i 1 ∧ • • • ∧ e im .
Let us say that e is subordinate to M if the inequality |α i 1 ...im | ≤ 1 holds for every coefficient of [START_REF] Tenenbaum | Introduction à la théorie analytique et probabiliste des nombres, collection SMF[END_REF]. Denote E(M) the set of basis subordinate to α(M). For any basis e, let Vol(e) be the volume of the solid generated by the vectors in e. We define the algebraic volume of M by setting

V [M] = V (α(M)) = inf e∈E(M )
Vol(e).

Similarly we define the algebraic mass of M by

m[M] = m(α(M)) = inf Vol(e)=1 i 1 <•••<im |α i 1 ...im | . Remark 6.1. 1.
Here is the reason for using the word "mass". Endow H 1 (T b , R) with a scalar product , and assume the Haar measure it induces coincides with Vol. Let mass(α) be the usual mass norm defined on Λ m H 1 (T b , R) by means of , (see [START_REF] Federer | Geometric measure theory[END_REF]). It is easily proved that for all α ∈ Λ m H 1 (T b , R) we have 3. We have the following universal inequality between algebraic mass and algebraic volume (see [START_REF] Babenko | Asymptotic invariants of smooth manifolds[END_REF] for details):

m(α) = inf , mass (α) 
∀α ∈ Λ m H 1 (T b , R), m(α) b ≤ b m b V (α) m .
4. When m = b 1 everything boils down to the degree of the characteristic map f :

m[M] = V [M] = | deg(f )|.
Example 6.2. Let M = M h be an orientable surface of genus h. The class α(M h ) ∈ H 2 (T 2h , Z) is induced by a symplectic form with integer coefficients on H 1 (T 2h ) It is proved in [START_REF] Babenko | Asymptotic invariants of smooth manifolds[END_REF] that

h ≥ m[M h ] ≥ (h!) 1 h ; V [M h ] ≥ 1 (2h -1)!! .
6.1. The universal constant v b . Let us consider the following variational problem from convex geometry (for more about this see [START_REF] Babenko | Asymptotic volume of tori and the geometry of convex bodies[END_REF] and -with a diffferent renormalisation- [START_REF] Babenko | Asymptotic invariants of smooth manifolds[END_REF]).

Let B be a centrally symmetric convex body (CSCC) in (R b , Vol), denote P(B) the set of parallelepipeds which contain B. Define

v supp (B) = 1 2 b inf P ∈P(B)
Vol(P ).

The universal constant we are interested in is defined as

v b = inf B Vol(B) v supp (B) ,
where B ranges over all CCSC's with non-empty interior. The constant v b was introduced in asymptotic geometry in [START_REF] Babenko | Asymptotic volume of tori and the geometry of convex bodies[END_REF]. At the same time it appeared in different contexts, among which geometric number theory, see the introduction of [START_REF] Pelczyński | On parallelepipeds of minimal volume containing a convex symmetric body in R n[END_REF] for more details.

The asymptotic rate of v b in b is rather simple, see [START_REF] Kashin | Parallelepipeds of least volume that contain a convex body[END_REF]. There are two positive constants c, C such that

c b ≤ v b ω b ≤ C b ,
where ω b is the volume of the unit ball in R b . The optimal values of c and C are not known. For practical purposes one can use c = 1 √ e and C = 1, see [START_REF] Pelczyński | On parallelepipeds of minimal volume containing a convex symmetric body in R n[END_REF]. The exact value of v b is known only when b = 2 or v 2 = 3, with the infimum achieved at affine regular hexagons [START_REF] Babenko | Asymptotic volume of tori and the geometry of convex bodies[END_REF]. An asymptotically correct lower estimate in b is obtained in [START_REF] Pelczyński | On parallelepipeds of minimal volume containing a convex symmetric body in R n[END_REF]. Manifolds for which dim(M) = b 1 (M) are a very interesting bunch. The m-torus is the simplest example but they may have much more complex topology, for instance the degree of the characteristic map (2) may take any integer value. Theorem 6.3 and Remark 6.1 combine to yield the where f is the characteristic map.

It follows from Theorem 6.3, Example 6.2, and the lower estimate for v 2h given in [START_REF] Pelczyński | On parallelepipeds of minimal volume containing a convex symmetric body in R n[END_REF] that Corollaire 6.5. For any Riemmanian metric g on an orientable surface M h of genus h we have

2hπ h h!(2h -1)!! h + 1 2 h h(2h + 1) 2h -1 2 ≤ Res 2h (ζ sys (z)) vol(M h , g) h .
For large genera we deduce the following asymptotic estimate :

πe 2h Res 2h (ζ sys (z)) 1 h vol(M h , g), si h ≫ 1.
Proof of the Theorem. Consider the homology (or Abelian) cover M of M, that is, the cover whose transformation group is Γ = H 1 (M, Z)/Tors, so M/Γ = M. Let g be the lift to M of the metric g. Fix a point q ∈ M and denote V g (q, t) = {x ∈ M dist g (q, x) ≤ t} the metric ball in M with center q and radius t. It is well-known that the following limit Ω H (M, g) = lim t→∞ vol(V g (q, t), g) t b 1 exists and does not depend on the choice of q. It is easily seen that ( 23) Ω H (M, g) = V (g) vol(M, g), where V (g) is the volume of the unit ball of the stable norm on H 1 (M, R). The quantity Ω H (M, g) is called asymptotic homology volume. In [START_REF] Babenko | Asymptotic invariants of smooth manifolds[END_REF] a lower estimate for Ω H (M, g) was sought/ Set s = b 1 -m m , it is easily seen that Ω H (M, g) vol(M, g) s = V (g) vol(M, g) b 1 m is invariant under dilatation of the metric : g ↔ λ 2 g. It is proved in [START_REF] Babenko | Asymptotic invariants of smooth manifolds[END_REF], Theorem 5.2, that for any metric g on M we have

v b 1 V [M] ≤ Ω H (M, g) vol(M, g) s .
This inequality and (23) combine to end the proof.

Theorem 1 . 1 .

 11 For any Riemannian manifold (M, g), the series (3) converges for all z such that Re(z) > b 1 (M), and diverges when Re(z) < b 1 (M). The function ζ sys (z) is holomorphic in the half-plane Re(z) > b 1 (M). Furthermore the function ζ sys (z) extends analytically to the half-plane Re(z) > b 1 -1, with a simple pole at z = b 1 with residue Res b 1

Example 2 . 1 .

 21 ≤t | = O(t b ) then the series (5) converges in the half-plane Re(z) > b and the function ζ L (z) is holomorphic therein. Let us consider a finite simplicial polyhedron P and set (7) Θ = (H 1 (P, Z)/Tors) \ {0} .

Proposition 3 . 1 .

 31 Let B = (R b , • ) be a Banach space, Γ ⊂ R b be a lattice, and V = Vol(B(1)) be the volume of the unit ball of B. Then the function ζ B (z) satisfies 1) the series (5) converges for all z such that Re(z) > b and diverges if Re(z) < b. 2) the function ζ B (z) extends holomorphically to the half-plane Re(z) > b -1, with a simple pole at z = b, with residue Res b (ζ B (z)) = bV . Proof. Consider the following integer sequence

Theorem 3 . 2 .p

 32 Let P be a combinatorial graph with first Betti number b, and let V = Vol(B st ) be the volume of the unit ball of the stable norm in H 1 (P, R). Then the stable zeta function ζ st (z) of the graph P satisfies 1) the series (11) converges for all zsuch that Re(z) > b and diverges if Re(z) < b. 2) the function ζ st (z) extends analytically to the whole complex plane C as a meromorphic function with simple poles at z = 1, 2, . . . , b, whose residue at z = b is Res b (ζ st (z)) = bV . 3) there exists m = m(P ) ∈ N such that (12) ζ st (z) = bV ζ(z -b + 1) + lk ζ z -l; k m ,

Theorem 4 . 1 .

 41 For any finite Riemannian polyhedron (P, g) the systolic zeta function ζ sys (z) satisfies 1) the series ζ sys (z) = θ∈Θ 1 l z θ converges for all z such that Re(z) > b 1 (P ) and diverges if Re(z) < b 1 (P ). 2) the function ζ sys (z) extends analytically to the half-plane Re(z) > b 1 -1, with a simple pole at z = b 1 with residue Res b 1 (ζ sys (z)) = b 1 V (g).

Proof of Theorem 4 . 1 .

 41 Set l θ = θ st + α(θ), Lemma 4.2 entails |α(θ)| ≤ C, θ ∈ Θ from which follows the estimate (6) :

  ) ζ sys (z) -ζ st (z) = -z θ∈Θ α(θ) ( θ st + β(θ)) z+1 , with |β(θ)| < |α(θ)| ≤ C. The series (16) converges for Re(z) > b 1 -1, so Proposition 3.1 implies 2), which ends the proof.

  Denote H(b) the space of homolorphic functions in the half-plane {Re(z) > b}, topologized by uniform convergence on compact sets. The above inequality implies the following Proposition 5.1. The mapping Z : M(M) -→ H(b 1 (M)) defined in (19) is continuous. Let (R b , Γ) be a vector space with a lattice. To any Banach space structure B = (R b , • ) on R b we associate, as in Section 3, the function ζ B (z). Fixing Γ, and varying the norm • , we define as in (19) a map (21) Z B : B -→ ζ B (z). Denote B = B(b) the set of all norms on R b . Any two norms B i = (R b , • i ), i = 1, 2 are equivalent, let c 12 be the minimal constant such that c -1 12 x 1 ≤ x 2 ≤ c 12 x 1 x ∈ R b . Then ρ(B 1 , B 2 ) := ln c 12 defines a distance on B. The map (21) is easily seen to be continuous. Now we would like to describe the image I(b) = im(Z B ) of the map (21). The group GL(b) operates on B by the rule x h = h -1 (x) , h ∈ GL(b). This action transfers to zeta functions is such a way that Z B is equivariant. The set Q(b) = B(b)/GL(b) of isomorphism classes of Banach structures on R b , called the Banach-Masur space, is compact with respect to its natural metric. The quotient map ẐB : Q(b) -→ I(b)/GL(b) is onto. We have just proved the following Theorem 5.2. The group GL(b) operates in a natural way on I(b). The quotient set I(b)/GL(b) is compact. For any f ∈ I(b) and any h ∈ GL(b) we have Res b f h = (deth)Res b f. Taking into account the fact that the right hand side of (16) belongs to H(b 1 (M) -1) we obtain the Corollaire 5.3. The image of Z : M(M) -→ H(b 1 (M)) is locally compact modulo H(b 1 (M) -1).

  , where , ranges over the set of scalar products of volume 1. 2.The algebraic volume V [M]may vanish for manifolds which are homologically essential, that is, f * ([M]) = 0. The invariant V [M] measures the maximal non-degeneracy of f * ([M]) as a polyvector of H 1 (T b , R).

6. 2 .Theorem 6 . 3 .

 263 Isoperimetric inequality with the length spectrum. Now let us consider an orientable closed manifold M of dimension m with first Betti number b 1 = b 1 (M). Let g be a Riemannian metric on M, and let ζ sys (z) be its systolic zeta function. For any Riemannian metric g on M we have the following inequality :b 1 v b 1 V [M] Res b 1 (ζ sys (z)) m ≤ vol(M, g) b 1 .

Corollaire 6 . 4 .

 64 Let M be an orientable manifold of dimension and first Betti number m. For any Riemannian metric g on M we havemv m | deg(f )| ≤ Res b 1 (ζ sys (z)) vol(M, g),