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91037 Évry Cedex, France

3 Institute of Applied Mathematics,

Middle East Technical University,

Ankara, Turkey

April 5, 2017

Abstract

For a finite state Markov process X and a finite collection {Γk, k ∈ K} of
subsets of its state space, let τk be the first time the process visits the set Γk. In
general, X may enter some of the Γk at the same time and therefore the vector

τ := (τk, k ∈ K) may put nonzero mass over lower dimensional regions of R
|K|
+ ;

these regions are of the form Rs = {t ∈ R
|K|
+ : ti = tj , i, j ∈ s(1)} ∩

⋂|s|
l=2{t :

tm < ti = tj , i, j ∈ s(l),m ∈ s(l − 1)} where s is any ordered partition of the
set K and s(j) denotes the jth subset of K in the partition s. When |s| < |K|,
the density of the law of τ over these regions is said to be “singular” because
it is with respect to the |s|-dimensional Lebesgue measure over the region Rs.
We derive explicit/recursive and simple to compute formulas for these singular
densities and their corresponding tail probabilities over all Rs as s ranges over
ordered partitions of K. We give a numerical example and indicate the relevance
of our results to credit risk modeling.
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1 Introduction

One of the basic random variables associated with a Markov processX is its first hitting
time to a given subset of its state space. In the present work, we will confine ourselves
to finite state Markov processes. If X has an absorbing state and all of the states can
communicate with it, the distribution of the first hitting time to the absorbing state
is said to be a phase-type distribution. Phase-type distributions, which go back to
Erlang [12], are used to model a wide range of phenomena in, e.g., reliability theory,
communications systems, insurance and finance. The literature on these distributions
is immense, see, e.g., [1, 2, 3, 15, 23].

To the best of our knowledge, Assaf et al. [5] were the first to study multivariate
(multidimensional) phase-type distributions. Their setup, for the two dimensional
case, is as follows: take two proper subsets Γ1 and Γ2 of E, the state space of X, and
assume that with positive probability the process enters their intersection; let τk be
the first time the process hits Γk. The joint law of (τ1, τ2) is called a two dimensional
phase-type distribution. Higher dimensional versions are defined similarly: for a finite
collection of subsets {Γk, k ∈ K} of the state space E, the distribution of the random
vector τ := (τk, k ∈ K) is a |K| dimensional phase-type distribution, where |K| denotes
the number of elements in K. In general, the underlying process can hit some of the
Γk simultaneously and this implies that multidimensional phase-type distributions can
put nonzero mass on certain lower dimensional regions of R

|K|
+ ; e.g., for K = {1, 2, 3}

these regions are {t : t1 = t2 < t3}, {t : t1 = t2 = t3}, {t : t2 < t1 = t3}, etc. In general,

each ordered partition s of K defines an |s|-dimensional subset Rs of R
|K|
+ (|s| denotes

the number of subsets of K which appear in the partition s; the precise definitions
are given in subsection 2.2) over which the law of τ may put nonzero probability
mass. The law of τ , when restricted to one of these lower dimensional regions, turns
out to have a density with respect to the |s|-dimensional Lebesgue measure of that
region; these densities are called “singular” (or “the singular part(s) of the density
of τ”) because of the lower dimensionality of Rs. The focus of the present paper
is on these singular densities of τ ; our goal is to find simple formulas for them and
for the tail probabilities associated with them. To the best of our knowledge, the
only paper currently available which develops density or tail probability formulas for
the singular parts is [5], which focuses on the case of |K| = 2 and Γ1, Γ2 absorbing.
The only currently available density formula for |K| > 2 was also derived in [5] and
covers only the absolutely continuous part of the density (i.e., the density over the |K|

dimensional region {t ∈ R
|K|
+ : ti 6= tj, for i 6= j}) in the case when Γk, k ∈ K, are

assumed absorbing; display (45) in subsection 4.3 gives this density formula from [5]
(which is stated without a proof in [5]; [13] provides a proof for it). Over the last three
decades, this formula has found use in a range of application areas, e.g., [20, modeling
of plant growth], [9, insurance] and [13, credit risk].

The main contributions of the present paper are Theorem 3.1, which gives an
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explicit formula for the singular density of the random vector τ over each Rs ⊂ R
|K|
+

as s ranges over all partitions of K, covering all possible singular and nonsingular parts
and Theorem 3.2 which gives a recursive formula for the tail probabilities of τ using
the density formulas. We make no assumptions on whether {Γk, k ∈ K} are absorbing
and Theorem 3.1 gives a general formula for the joint density of a collection of first
hitting times for any finite state Markov process X. The density formula when Γk are
absorbing follows as a special case (Proposition 4.1).

One common method of computing a density is to compute the corresponding tail
probability and then to differentiate it to get the density. This is the method used in
[5, 13]. As discussed below and in subsection 3.4, “singular” tail probabilities of τ (i.e.,
tail probabilities where some components of τ are equal) turn out to be more complex
than the corresponding densities. If one tries to compute singular tail probabilities
(for example, using the methodology of taboo probabilities as presented in Syski [23])
one runs into difficult calculations even when |K| is small. For this reason, rather
than focusing on the tail probabilities of τ , we directly compute the singular densities
of τ over each Rs ⊂ R

|K|
+ using the following idea: for each t ∈ Rs ⊂ R

|K|
+ , the

event {τ = t} corresponds to the limit of a specific set of trajectories of the Markov
process whose (vanishing) probability can be written in terms of the exponentials of
submatrices of the intensity matrix. These sets of trajectories are of the following form:
X stays in a waiting set W1 until the first jump time t̄1, and jumps exactly at that
time into T1 ⊂ W2; then stays in the set W2 until time t̄2 and jumps exactly then into
T2 and so on until all of the pairs (Wn, Tn), n ≤ |s|, are exhausted. The waiting and
the target sets (Wn, Tn), and the jump times t̄n, n = 1, 2, 3, ..., |s|, are all determined
by t. Subsection 3.1 gives the one step version of this argument in the computation
of the density of a single τk, given as Proposition 3.1. The argument extends to
multiple hitting times in subsection 3.2 and the multidimensional density is given as
formula (20) in Theorem 3.1. The formula (20) gives the density of all singular parts
of the distribution of τ ; it involves the multiplication of exponentials of appropriate
submatrices of the intensity matrix λ determined by the sequence of waiting and target
sets. The well-known density formula (45) from [5] for the absolutely continuous part
involves only exponentials of the full rate matrix.

The proof of Theorem 3.1 uses induction on |K| and starts from the following
fact: f is the density of τ if and only if E[g(τ )] =

∫
f(x)g(x)dx for all bounded

continuous functions g. Other elements of the proof are the strong Markov property
of the underlying process at its jump times, properties of the conditional expectation
and the distribution of the process conditioned on events that occur while the process
goes through the waiting and target sets mentioned above.

Tail events are events of the form {τ ∈
∏

k∈K(tk,∞)}. In general, to compute
the probability of a tail event, one must decompose it into pieces of the form {τ ∈
Rs ∩

∏
k∈K(tk,∞)} and this makes it difficult to derive closed form simple expressions

for tail probabilities. An alternative and simple way to express them is given in
Theorem 3.2 of subsection 3.4 as a recursive formula involving a single dimensional
integral over a one-dimensional version of the density formula.

In Section 4, we derive alternative expressions for the density and the tail prob-
ability formulas for absorbing {Γk} and indicate the connections between our results
and the density formulas in [5].

The calculation of the density formula (20) involves only |s| ≤ |K| number of matrix
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multiplications and exponentiations. For moderate sizes of |E| these computations
can be carried out on a standard laptop (the precise speed will depend on the matrix
multiplication and matrix exponentiation algorithms used in the implementation, for
example, for |E| = 1500, a matrix exponentiation of a typical matrix of size 1500×1500
takes approximately 10 seconds on our laptop using Octave [11]; for |s| = 10 the
density formula requires 10 of these operations). We give several numerical examples
with |E| = 27 in Section 5.

Kulkarni [19] generalizes multivariate phase type distributions to a class of distri-
butions called MPH* and derives a theoretical representation of members of this class
(see [19, Equation(35)]), based on an infinite sum characterization of the full occupa-
tion measure (the time spent in each state until absorption to an absorbing state) of
the process (given in [19, Equation(34)]). Another recent generalization of multivari-
ate phase type distributions is given in Bladt and Nielsen [7], in which a distribution
on R

k
+ is called “multivariate matrix-exponential” (MVME) if its Laplace transform

is the ratio of two multivariate polynomials; as explained in the same work, these can
be seen as generalizations of multivariate phase type distributions.

From an applied perspective, our primary motivation in deriving the results in the
present paper has been to model default times of companies/obligors with first hitting
times of a finite state Markov process where multiple defaults are allowed to happen
at the same time; with the results of the present paper this is now possible in greater
generality (for the case of two obligors one could use the results in [5]). The conclusion
explains this application starting from the credit risk model of [13] and the numerical
example of Section 5. In addition to credit risk, our results may find applications in
reliability theory (see, e.g., [5]), counterparty risk (see, e.g., [10]), and insurance (see,
e.g., [6]). From a theoretical perspective, the first motivation of the paper has been the
solution of a problem whose two dimensional version was solved in [5], i.e., find simple
expressions for the density of τ ; surprisingly, prior to the results of the present paper,
such expressions were not available in the literature. See the Conclusion (Section 6)
for further theoretical motivation for the present study. Another potential application
of multivariate phase type distributions with singularities has been identified in [21] in
the modeling simultaneous shocks to a system. With the results of the present paper
such models become implementable; in particular, in the fitting of such models, the
singular densities we have derived can be used to run maximum likelihood estimation.

2 Definitions

Let E be a finite set and X an E-valued continuous time process defined over a
measurable space (Ω,F ). Let Ft := σ{Xs, s ≤ t} be the filtration generated by X
and for any stopping time τ and let Fτ denote the σ-algebra of events determined prior
to time τ [16, Definition 2.12]. Let Pi, i ∈ E, be a family of measures on (Ω,F) such
that X is a time homogeneous Markov chain with intensity matrix λ and such that
Pi(X0 = i) = 1. The jump rate of the process from state i is −λ(i, i) =

∑
j 6=i λ(i, j).

For any probability measure α on E, define, Pα :=
∑

i∈E α(i)Pi, where α(i) denotes
the measure of {i}, i ∈ E, under α. Under Pα, the process X is a time homogeneous
Markov process with intensity matrix λ and initial distribution α. For α = δi, i ∈ E,
where δi denotes the Dirac measure on E putting unit mass on i, we will simply write
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Pi instead of Pδi . For a square matrix A, define its exponential eA :=
∑∞

j=0
1
j!
Aj. The

distribution of Xt on E under Pα at time t is αetλ.

Remark 2.1. In what follows we will assume −λ(i, i) > 0 for all i ∈ E. The cases
where λ(i, i) = 0 is allowed can be treated by straightforward modifications of the
arguments below. Section 4 treats the case when the sets Γk are assumed absorbing.

For a finite collection {Γk ⊂ E, k ∈ K} of subsets of E, define the hitting times

τk := inf{u ∈ (0,∞) : Xu ∈ Γk}.

The index set K can be any finite set, but we will always take it to be a finite subset
of the integers. In the next section, we derive formulas for the (conditional) joint
density and tail probabilities of the stopping times {τk, k ∈ K}. To ease notation,
unless otherwise noted, we will assume throughout that E −

⋃
k∈K Γk is not empty

and that the initial distribution α puts its full mass on this set, see Remark 3.2 and
subsection 3.3 for comments on how one removes this assumption.

For a set a ⊂ E, ac means its complement with respect to E and |a| means the
number of elements in it. For two subsets a, b ⊂ E, we define λ(a, b) as the matrix
with elements {

λ(i, j) if i ∈ a, j ∈ b,

0, otherwise.
(1)

For a ⊂ E, we will write λ(a) for λ(a, a), so that in particular λ = λ(E).
Throughout we will need to refer to zero matrices and vectors of various dimensions,

we write all as 0; the dimension will always be clear from context.

2.1 Restriction and extension of vectors and τ as a random

function

For any nonempty finite set a, let Ra be the set of functions from a to R. The set Ra

is the same as R|a|, except for the way we index the components of their elements. For
two sets a ⊂ b and y ∈ R

b we denote the restriction of y to a by y|a ∈ R
a:

y|a(i) := y(i) for i ∈ a. (2)

The same notation continues to make sense if we replace the set a by a set of the form
b×c, and therefore can be used to write submatrices of a matrix. Thus, for M ∈ R

E×E

and nonempty b, c ⊂ E
M|b×c (3)

denotes the submatrix of M consisting of its components M(i, j) with (i, j) ∈ b × c.
For b = c we write M|b.

For x ∈ R
a, and a ⊂ b, denote by x|b ∈ R

b the following extension of x to b:

x|b(i) =

{
x(i) for i ∈ a,

0, otherwise.
(4)

The random vector τ = (τk, k ∈ K) can also be thought of as a random function on
K, and we will often do so. Thus for A ⊂ K, we may write τ |A to denote (τk, k ∈ A).
The advantage of the notation τ |A is that we are able to index its components with
elements of A rather than with the integers {1, 2, 3, ..., |A|}; this is useful when stating
the recursive formulas and proofs below.
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2.2 Subpartitions of K

The key feature of the distribution of τ , already mentioned in the introduction, is
that it may put nonzero mass on lower dimensional subsets of R

|K|
+ . This happens, for

example, when X hits with positive probability
⋂

k∈A Γk before
⋃

k∈A Γk −
⋂

k∈A Γk

for some A ⊂ K with |A| > 1. As this example suggests, one can divide R
|K|
+ into a

number of regions and associate with each an intersection of events of the form “X
hits a before b” for appropriate subsets of a, b ⊂ E. To write down the various regions
and the corresponding events we will use subpartitions of K, which we introduce now.

Recall that K is the set of indices of the stopping times {τk} or, equivalently, of the
sets {Γk}. We call an ordered sequence of disjoint nonempty subsets of K an ordered
subpartition of K. If the union of all elements of a subpartition is equal to K, then we
call it a partition. For example, ({1, 2}, {3}, {4}) [({1, 2}, {4})] is a [sub]partition of
{1, 2, 3, 4}. Denote by |s| the number of components in the subpartition and by s(n)
its nth component, n ∈ {1, 2, 3, ..., |s|}. In which order the sets appear in the partition
matters. For example, ({3}, {4}, {1, 2}) is different from the previous partition. In the
combinatorics literature this is often called an “ordered partition,” see, e.g., [22]. Only
ordered subpartitions appear in the present work and, to be brief, we always assume
that every subpartition has a definite order and we drop the adjective “ordered.” With
a slight abuse of notation we will write s(n1, n2) to denote the n2-th element of the
n1-th set in the subpartition.

Two subpartitions s1 and s2 are said to be disjoint if ∪ns1(n) and ∪ns2(n) are
disjoint subsets of K. For a given disjoint pair of subpartitions s1 and s2, let s1 ∪ s2
be their concatenation, for example, ({1, 2}, {3}) ∪ ({4, 6}) = ({1, 2}, {3}, {4, 6}).

For a subpartition s, let us denote by Ls its left shift:

Ls = L(s(1), s(2), ..., s(|s|)) := (s(2), s(3), ..., s(|s|)).

Let Lm denote the left shift appliedm times. Similarly for t ∈ R
n, n > 1, let Lt ∈ R

n−1

be its left shift. For t ∈ R
n and r ∈ R let t− r denote (t1 − r, t2 − r, ..., tn − r).

Given a subpartition s and an integer n such that 0 < n ≤ |s|, let s − s(n) be
the subpartition which is the same as s but without s(n), e.g., ({1, 2}, {3}, {4, 7})

−{3} = ({1, 2}, {4, 7}). Given a nonempty set A satisfying A ⊂ K −
⋃|s|

n=1 s(n), let
s+A denote the subpartition that contains all the sets in s and A, e.g., ({1, 2}, {3})+
{4, 7} = ({1, 2}, {3}, {4, 7}).

Define

S(s) :=

|s|⋃

n=1

⋃

k∈s(n)

Γk, (5)

i.e., S(s) is the set of all states of X contained in the subpartition s. We will denote the

empty subpartition ∅, S(∅) = ∅ by definition (5). For a partition s, define Rs ⊂ R
|K|
+

as

Rs :=

|s|⋂

n=1

{
t ∈ R

|K|
+ : tk1 = tk2 , k1, k2 ∈ s(n)

}

∩

{
t ∈ R

|K|
+ : ts(1,1) < ts(2,1) < · · · < ts(|s|,1)

}
; (6)
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this and the expression used for Rs in the abstract define the same set, the one in the
abstract takes less space, (6) is easier to read.

Example 2.1. For K = {1, 2, 3, 3, 4, 5, 6}, and s = ({1, 4}, {2}, {3, 5, 6}), we have
|s| = 3, s(1) = {1, 4}, s(2) = {2}, s(3) = {3, 5, 6}, s(1, 1) = 1, s(2, 1) = 2, s(3, 1) = 3
and

Rs = {t : t1 = t4 < t2 < t3 = t5 = t6}.

Let S be the set of all partitions of K. The sets Rs, s ∈ S, are disjoint and
their union is R

|K|
+ . Our main result, Theorem 3.1 below, shows that for each s ∈ S,

the distribution of τ restricted to Rs is absolutely continuous with respect to the
|s|-dimensional Lebesgue measure on Rs and gives a formula for the corresponding
density.

Let I be the identity matrix I ∈ R
|E|×|E|. For a ⊂ E, we replace its rows whose

indices appear in ac with the 0 vector and call the resulting matrix Ia, e.g., IE is I

itself and I∅ is the zero matrix. Basic linear algebra implies that the matrix Ia has the
following actions on matrices:

Lemma 2.1. Let n be a positive integer. For any M ∈ R
|E|×n, the left multiplication

by Ia, i.e. IaM, acts on the rows of M, and IaM is the same as M except that its rows
whose indices are in ac are replaced by 0 (a zero row vector of dimension n), i.e., if ri
is the ith row of M then the ith row of IaM is ri if i ∈ a and 0 otherwise. Similarly,
right multiplication by Ia acts on the columns of a matrix M ∈ R

n×|E|, and MIa is
the same as M except that now the columns with indices in ac are set to zero.

It follows from (1) and Lemma 2.1 that λ(a, b) = IaλIb. The operation of setting
some of the columns of the identity matrix to zero commutes with set operations, i.e.,
one has Ia∩b = IaIb, Ia∪b = Ia + Ib − IaIb, Iac = I − Ia. Using this and Lemma 2.1
one can write formulas involving λ(·, ·) in a number of ways. For example, λ(ac, a)
can be written as IacλIa = (I− Ia)λIa = λIa − IaλIa, and λ(a, b ∩ c) can be written
as IaλIb∩c = IaλIbIc = IaλIcIb.

3 The density of first hitting times

We start by deriving the density of a single hitting time over sets of sample paths that
avoid a given subset of the state space until hitting occurs.

3.1 Density of one hitting time

For any set d ⊂ E, any index j ∈ E, any probability measure α ∈ P(E) and any real
number u ∈ R+ we define

puα,d(j) := Pα(Xu = j,Xv /∈ d, ∀v ≤ u), (7)

pud(i, j) := puδi,d(j) = Pi(Xu = j,Xv /∈ d, ∀v ≤ u), pu(i, j) := Pi(Xu = j).

Let the symbol pu
α,d denote the row vector with components puα,d(j); p

u
d and let pu

denote the |E| × |E| matrices with elements pud(i, j) and pu(i, j), respectively. Note
that pu

α,d = αpu
d . It follows from the definition of pu(i, j) that

lim
u→0

pu(i, j)/u = λ(i, j), i 6= j. (8)
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Lemma 3.1. Let α be an initial distribution on E with α|d = 0. Then

pu
α,d = αeuλ(d

c). (9)

Proof. The following proof parallels the proof of [2, Theorem 3.4, page 48]. Let ν1 be
the first jump time of X; by definition of the process X and the probability measure
Pi, X0 = i under Pi and ν1 is exponentially distributed with rate −λ(i, i) > 01 and Xν1

is independent of ν1 with distribution Pi(Xν1 = l) = −λ(i,l)
λ(i,i)

; let us fix (i, j) ∈ dc × dc

and break the computation of pud(i, j) into two cases according to whether ν1 < u or
ν1 > u,

pud(i, j) = Pi(Xu = j,Xv /∈ d, ∀v ≤ u, ν1 > u) + Pi(Xu = j,Xv /∈ d, ∀v ≤ u, ν1 < u)

= Pi(ν1 > u)δi(j) + Ei[P [Xu = j,Xv /∈ d, ∀v ≤ u, ν1 < u|Fν1 ]].

The strong Markov property of X (applied at time ν1) implies

pud(i, j) = Pi(ν1 > u)δi(j) + Ei[1{Xν1
/∈d}1{ν1<u}p

u−ν1
d (Xν1 , j)].

The joint distribution of (ν1, Xν1) pointed out above now gives

pud(i, j) = eλ(i,i)uδi(j) +

∫ u

0
λ(i, i)eλ(i,i)v


 ∑

l∈dc−{i}

λ(i, l)

λ(i, i)
pu−v
d (l, j)


 dv

= eλ(i,i)u


δi(j) +

∫ u

0
λ(i, i)eλ(i,i)(v−u)


 ∑

l∈dc−{i}

λ(i, l)

λ(i, i)
pu−v
d (l, j)


 dv




= eλ(i,i)u


δi(j) +

∫ u

0
λ(i, i)e−λ(i,i)s


 ∑

l∈dc−{i}

λ(i, l)

λ(i, i)
psd(l, j)


 ds


 . (10)

Differentiating the last equality with respect to u gives, for i, j ∈ dc,

dpud(i, j)

du
=

(
∑

l∈dc

λ(i, l)pud(l, j)

)
.

Let us rewrite the last display in matrix form:

dpud
du

= (λ|dc) p
u
d . (11)

Setting u = 0 in (10) gives the initial condition

p0d = I|dc . (12)

The unique solution of the constant coefficient ODE (11) with initial condition (12) is
pud = pu

d |dc = euλ|dc = euλ(d
c)|dc . The equality (9) follows from this and α|d = 0.

Remark 3.1. Probabilities that concern sample paths that stay away from a given
set are called “taboo probabilities” in [23, Section 1.2]. [23, Equation (F), page 28] is
equivalent to (11).

1See Remark 2.1.
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The next corollary is a natural extension of the tail probability formulas in [5]:

Corollary 3.1. For a ⊂ E, τa := inf{u > 0 : Xu ∈ a}, and an initial distribution
with α|a = 0

Pα(τa > u) = αeuλ(a
c)1, (13)

where 1 denotes the |E| dimensional column vector with all components equal to 1.

Proof. Pα(τa > u) =
∑

j∈ac Pα(Xu = j,Xv /∈ a, ∀v ≤ u) = αeuλ(a
c)1, where the last

equality is implied by (9).

Remark 3.2. One must modify (13) to Pα(τa > u) = αIace
uλ(ac)1, Pα(τa = 0) =

αIa1 if one does not assume α|a = 0.

Once Pα(τa > u) is known, one can differentiate it to compute the density of τa.
This is the main method of derivation and proof in the prior literature on phase-
type distributions that we are aware of. We have already noted that this approach is
problematic when the distribution of τ has singular parts. Instead, we will directly
focus on the computation of the densities. The next proposition does so for the case of
a single hitting time τa. The proposition allows also to specify a subset b ⊂ E that the
process is required to stay away before the hitting time; this generalization is useful
in extending the theorem to multiple hitting times (see the next subsection).

Proposition 3.1. Let a, b ⊂ E, a ∩ b = ∅ be given. Define τa := inf{u > 0 : Xu ∈ a}
and set d = a ∪ b. Then

d

du
[Pα(τa ∈ (0, u], Xv ∈ dc, ∀v < τa)] = αeuλ(d

c)
λ(dc, a)1, (14)

where α is the initial distribution of X with α|d = 0.

In other words, the density of τa on the set {Xv ∈ dc, ∀v < τa} is given by the right
side of (14).

Proof of Proposition 3.1. Define

p̂(l, j, h) := Pl(Xτa = j, τa < h) (15)

for l /∈ a, and j ∈ a. Let, as before, ν1 denote the first jump time of the process X.
Then

p̂(l, j, h) = Pl(Xτa = j, τa < h, τa = ν1) + Pl(Xτa = j, τa < h, τa > ν1)

= Pl(Xν1 = j, τν1 < h) + Pl(Xτa = j, τa < h, τa > ν1).

The explicit joint distribution of (ν1, Xν1) and the strong Markov property of X give

p̂(l, j, h) =

∫ h

0

λ(l, l)eλ(l,l)s

(
λ(l, j)

λ(l, l)
+
∑

k/∈a

λ(l, k)

λ(l, l)
p̂(k, j, h− s)

)
ds.

This and the fundamental theorem of calculus imply

dp̂(l, j, h)

dh
(0) = λ(l, j). (16)
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The Markov property of X (applied at time u) gives

Pi(Xτa = j,τa ∈ (u, u+ h], Xv ∈ dc, ∀v ≤ u)

= Ei [P (Xτa = j, τa ∈ (u, u+ h], Xv ∈ dc, ∀v ≤ u|Fu)]

= Ei

[
1{Xv∈dc,v≤u}P (Xτa = j, τa ∈ (u, u+ h]|Fu)

]

= Ei

[
1{Xv∈dc,v≤u}PXu

(Xτa = j, τa ≤ h)
]

=
∑

l∈dc

pud(i, l)p̂(l, j, h). (17)

Then

Pα(τa ∈ (u, u+ h], Xv ∈ dc, ∀v < τa) =
∑

i∈E

∑

l∈dc

∑

j∈a

α(i)pud(i, l)p̂(l, j, h).

The derivative with respect to u appearing in (14) equals the derivative of the last
display with respect to h evaluated at 0, which equals

d

dh
[Pα(τa ∈ (u, u+ h], Xv ∈ dc, ∀v < τa)] (0) =

∑

i∈E

∑

l∈dc

∑

j∈a

α(i)pud(i, l)
d

dh
[p̂(l, j, h)](0),

which, by (16), equals ∑

i∈E

∑

l∈dc

∑

j∈a

α(i)pud(i, l)λ(l, j).

By the previous lemma, pud(i, l) equals the (i, l)th component of euλ(d
c); substituting

this in the last display gives

d

dh
[Pα(τa ∈ (u, u+ h], Xv ∈ dc, ∀v < τa)] (0) = αeuλ(d

c)
λ(dc, a)1,

where we have also used α(i) = 0 for i ∈ d. This proves (14).

Setting b = ∅ in Proposition 3.1 we get the density of τa. The following result will
be needed in the proof of Theorem 3.1.

Proposition 3.2. Let a, b ⊂ E, a∩ b = ∅. Define τa := inf{u : Xu ∈ a} and d = a∪ b.
Let α be a probability measure on E, with α|d = 0. Set α1 := αeτaλ(d

c)
λ(dc, a) and

V := {Xv /∈ b, ∀v ≤ τa}. Then

Pα(Xτa = j|(τa, 1V)) = (α1(j)/α11) on V , (18)

where 1V is the indicator function of the event V .

Note that V is the event that X does not visit the set b before time τa.

Proof. The equality (17) implies

Pα(Xτa = j, τa ∈ (u, u+ h], Xv ∈ dc, ∀v ≤ u) =
∑

i∈E

∑

l∈dc

α(i)pud(i, l)p̂(l, j, h).

10



Differentiating the last display with respect to h and evaluating it at h = 0 give the
density of τa over the event V ∩ {Xτa = j}:

fτa,j(u) :=
∑

i∈E

∑

l∈dc

α(i)pud(i, l)λ(l, j) = αeuλ(d
c)
λ(dc, j),

where we have used (16) and (9). Summing the last densities over j gives the density
of τa over the event V (already computed in the previous proposition):

fτa(u) := αeuλ(d
c)
λ(dc, a)1.

Then, for any Borel set B ⊂ R,

Pα(Xτa = j, τa ∈ B,V) =

∫

B

fτa,j(u)du =

∫

B

fτa,j(u)

fτa(u)
fτa(u)du

= Eα

[
1B(τa)1V

αeτaλ(d
c)
λ(dc, j)

α11

]

= Eα

[
1B(τa)1V

α1(j)

α11

]
;

this and the definition of the conditional expectation imply (18).

3.2 The multidimensional density

One can extend Proposition 3.1 to a representation of the distribution of τ using the
subpartition notation of subsection 2.2 as follows. For a partition s of K, an integer
n ∈ {1, 2, ..., |s|} and a vector t ∈ Rs ⊂ R

|K|
+ , define the real numbers and the sets

t̄n := ts(n,1), t̄0 := 0, Wn := [S(Ln−1s)]c, Tn :=


 ⋂

k∈s(n)

Γk


 ∩Wn+1, (19)

where W stands for “waiting” and T for “target” and S(·) is as defined in (5). In
particular, W1 = [S(L0s)]c = [S(s)]c = [

⋃
k∈K Γk]

c = E −
⋃

k∈K Γk and W|s|+1 =
[S(L|s|(s))]c = E (which follows from S(∅) = ∅).

Example 3.1. Suppose E = {a, b, c, d, e, f, g, h, i}, Γ1 = {a, b}, Γ2 = {b, c, i}, Γ3 =
{c, d, e} and Γ4 = {a, e, f}; consider t = (3.1, 2.7, 1.2, 3.1) ∈ Rs ⊂ R

4 with s =
({3}, {2}, {1, 4}). For τ = t, the process enters first Γ3 at time 1.2, then Γ2 at time
2.7 and finally Γ1 and Γ4 at time t = 3.1. We have: t̄1 = 1.2, t̄2 = 2.7, t̄3 = 3.1 with
W1 = {g, h}, T1 = {d}, W2 = {d, g, h}, T2 = {c, i}, W3 = {c, d, g, h, i} and T3 = {a}.

The idea of the density formula and its proof is the |s| step version of the one in

Proposition 3.1: in order for τ = t ∈ R
|K|
+ , X has to stay in the set W1 until time t̄1

and jump exactly at that time into T1 ⊂ W2; then stay in the set W2 until time t̄2
and jump exactly then into T2 and so on until all of the pairs (Wn, Tn), n ≤ |s|, are
exhausted.

The definitions above depend on the collection {Γk, k ∈ K}. We will express this
dependence explicitly in the following theorem by including the index set K as a

11



variable of the density function f . This will be useful in the proof of the theorem, in
the next subsection where we comment on the case when α may put nonzero mass on
∪k∈KΓk and in Proposition 3.3. For a sequence M1,M2, ...,Mn of square matrices of
the same size

∏n
m=1 Mm will mean M1M2 · · ·Mn.

Theorem 3.1. For any partition s ∈ S, the distribution of τ on the set Rs has density

fs(α, t, K) = α




|s|∏

n=1

eλ(Wn)(t̄n−t̄n−1)λ(Wn, Tn)


1, t ∈ Rs (20)

with respect to the |s|-dimensional Lebesgue measure on Rs, i.e., for any bounded
measurable function g : R|K| → R

E[1Rs
(τ )g(τ )] =

∫

Rs

g(t)fs(α, t, K)dst (21)

holds, where dst denotes the |s|-dimensional Lebesgue measure on Rs.

Proof. The proof will use induction on |K|. For |K| = 1, (20) is the same as (14) with
b = ∅. Let κ > 1 and suppose that (20) holds for all K with |K| ≤ κ− 1; we will now
argue that (20) also holds for all K with |K| = κ. Fix a set K with |K| = κ and a
partition s of K; we will show that (21) holds, which will prove that the distribution
of τ restricted to Rs has the density (20).

Define the stopping time ϑ := min{τk, k ∈ K}, i.e., ϑ is the first time X enters the
set
⋃

k∈K Γk. In the rest of the proof we will assume Pα(ϑ < ∞) = 1; the treatment
of the case Pα(ϑ = ∞) > 0 needs no new ideas and the following argument can be
extended to handle it by adding several case by case comments. On the set {τ ∈ Rs}
the following conditions hold:

Xϑ ∈ T1 and Xu ∈ W1, ∀u < ϑ.

These imply that the equality ϑ = τs(1,1) holds on the same set. Therefore,

{τ ∈ Rs} ⊂ W1 := {Xu ∈ W1, ∀u < ϑ} ∩ {Xϑ ∈ T1}. (22)

Proposition 3.1 implies that if λ(W1, T1) is zero, then W1 has probability zero. Thus,
(22) implies that if λ(W1, T1) is zero then Pα(τ ∈ Rs) = 0 and, indeed, fs(α, t, K) = 0
is the density of τ on Rs. From here on, we will treat the case when λ(W1, T1) is
nonzero.

Next, define the process X̂ by X̂u := Xu+ϑ, u ≥ 0, and τ̂ = (τ̂k, k ∈ S(Ls)) where

τ̂k := inf{u : X̂u ∈ Γk}; X̂ is the trajectory of X after time ϑ. The strong Markov

property of X implies that X̂ is a Markov process with intensity matrix λ and starting
from X̂0 = Xϑ. This and (22) imply

τ̂ = τ |Ls − ϑ, (23)

where τ |Ls is defined in accordance with (2). Finally, the definition of τ̂ and that of
W1 imply

{τ ∈ Rs} = W1 ∩ {τ̂ ∈ RLs}. (24)

12



In words, this equality says: for τ to be partitioned according to s, among all {Γk},
X must visit T1 first (which ensures that all Γk, for k ∈ s(1), are visited at the same
time and before the rest of the Γj, j /∈ s(1)) and after this visit the rest of the hitting
times must be arranged according to the partition Ls.

Denote by 11 the function that maps all elements ofK to 1. Define ĝ : R+×R
S(Ls)
+ →

R as
ĝ(u, t̂) := g

(
u11 + t̂|S(s)

)
,

where we used the vector extension notation of (4). Equalities (23) and (24) imply

E[1Rs
(τ )g(τ )] = E[1W1

1RLs
(τ̂ )ĝ(ϑ, τ̂ )]

= E[E[1W1
1RLs

(τ̂ )ĝ(ϑ, τ̂ )|Fϑ]] (25)

= E[1W1
E[1RLs

(τ̂ )ĝ(ϑ, τ̂ )|Fϑ]],

where, for the last equality, we used the fact that the set W1 is Fϑ measurable. The
property 5A in [8, page 98] implies

E[1RLs
(τ̂ )ĝ(ϑ, τ̂ )|Fϑ] = h(ϑ)

where
h(u) := E[1RLs

(τ̂ )ĝ(u, τ̂ )|Fu]. (26)

The strong Markov property of X and the definition of X̂ imply

h(u) = E[1RLs
(τ̂ )ĝ(u, τ̂ )|Xu] = E[1RLs

(τ̂ )ĝ(u, τ̂ )|X̂0].

The random variable X̂0 takes values in a finite set and therefore one can compute the
conditional expectation E[1RLs

(τ̂ )ĝ(u, τ̂ )|X̂0] by conditioning on each of these values

separately. Since X̂ is a Markov process with initial value X̂0 and intensity matrix λ,
one can invoke the induction hypothesis for the set K − s(1) to conclude that, on the

set {X̂0 = j},

h(u) = E[1RLs
(τ̂ )ĝ(u, τ̂ )|X̂0 = j] =

∫

RLs

fLs(δj, t̂, K − s(1))g(u, t̂)dLst̂ (27)

where fLs is given as in (20) with s changed to Ls and K changed to K − s(1). Once
we substitute (27) in (25) we get an expectation involving only three random variables:

ϑ, 1A and X̂0 = Xϑ, where A = {Xu ∈ W1, u < ϑ}. Proposition 3.1 implies that the
density of ϑ on the set A is αeλ(W1)t̄1λ(W1, T1)1, and Proposition 3.2 implies that the

law of X̂0 conditioned on ϑ and 1W1
is

αeλ(W1)ϑλ(W1, T1)

αeλ(W1)ϑλ(W1, T1)1
. (28)
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Then, starting from (25),

Eα[1Rs
(τ )g(τ )] = Eα[1W1

Eα[1RLs
(τ̂ )ĝ(ϑ, τ̂ )|Fϑ]] = Eα[1W1

h(ϑ)]

= Eα


1W1

∫

RLs

fLs(δXϑ
, t̂, K − s(1))ĝ(ϑ, t̂)dLst̂




= Eα


1W1

∫

RLs


δXϑ

|s|∏

n=2

eλ(Wn)(t̄n−t̄n−1)λ(Wn, Tn)1


 ĝ(ϑ, t̂)dLst̂


 (29)

=

∫ ∞

0

∫

RLs

∑

j∈E

[
αeλ(W1)t̄1λ(W1, T1)

]
(j)

×


δj

|s|∏

n=2

eλ(Wn)(t̄n−t̄n−1)λ(Wn, Tn)1


 ĝ(t̄1, t̂)dLst̂ dt̄1

=

∫ ∞

0

∫

RLs


α

|s|∏

n=1

eλ(Wn)(t̄n−t̄n−1)λ(Wn, Tn)1


 ĝ(t̄1, t̂)dLst̂ dt̄1

=

∫

Rs


α

|s|∏

n=1

eλ(Wn)(t̄n−t̄n−1)λ(Wn, Tn)1


 g(t)dst;

where in going from line (29) to the one following it, we use the conditional distribution
(28) and the density of ϑ. The last line above finishes the proof of the induction step
and completes the proof of the theorem.

The following corollary follows from (21) and the disjoint decomposition R
|K|
+ =⋃

s∈S Rs.

Corollary 3.2. For any bounded and measurable g : R
|K|
+ → R we have

Eα[g(τ )] =
∑

s∈S

∫

Rs

g(t)fs(α, t, K)dst.

In what follows, to ease exposition, we will sometimes refer to f as the “density”
of τ without explicitly mentioning the reference measures ds, s ∈ S.

Remark 3.3. The first κ > 0 jump times of a standard Poisson process with rate
λ ∈ (0,∞) have the joint density

∏κ
n=1 e

λ(tn−tn−1)λ, 0 = t0 < t1 < t2 < · · · < tκ.
Similarly, the first κ > 0 jump times of a Markov arrival process with intensity matrix
C+D (where C [D] is the matrix of transition intensities with [without] arrivals) have
joint density α

(∏κ
n=1 e

D(tn−tn−1)C
)
1, see [4] or [2, page 304]. The density (20) can

also be interpreted as a generalization of these formulas.
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3.3 When α puts positive mass on ∪kΓk

If α puts positive mass on γ :=
⋃

k∈K Γk, one best describes the law of τ proceeding
as follows. Define ᾱ′ := 1−

∑
i∈γ α(i) =

∑
i∈γc

α(i) and, for ᾱ′ > 0:

α′ :=
1

ᾱ′
(α−

∑

i∈γ

α(i)δi) =
1

ᾱ′

∑

i∈γc

α(i)δi;

note that ᾱ′ is the measure of γc under α and, α′, whenever defined, is just the measure
α conditioned on γc.

First consider the case when ᾱ′ > 0. The foregoing definitions imply

Pα(τ ∈ U) = ᾱ′Pα′(τ ∈ U) +
∑

i∈γ

α(i)Pi(τ ∈ U) (30)

for any Borel set U ⊂ R
|K|
+ . By its definition α′ puts no mass on γ = ∪k∈KΓk and

therefore Theorem 3.1 is applicable and f(α′, ·, K) is the density of the probability
measure Pα′(τ ∈ ·). For the second summand of (30), it is enough to compute each
Pi(τ ∈ U) separately. Define Ki := {k : i ∈ Γk}, Ui := {t : t ∈ U, tk = 0, k ∈ Ki},
Ūi := {t|Kc

i
, t ∈ Ui}. Now remember that i ∈ γ; thus if i ∈ Γk then τk = 0 under Pi,

and therefore Pi(τ ∈ U) = Pi(τ ∈ Ui). For τ ∈ Ui, the stopping times τ |Ki
are all 0.

Thus to compute Pi(τ ∈ Ui) it suffices to compute Pi(τ |Kc
i
∈ Ūi). But by definition

i /∈ ∪k∈Kc
i
Γk and once again Theorem 3.1 is applicable and gives the density of τ |Kc

i

under Pi as f(δi, ·, K
c
i ).

If ᾱ′ = 0 then
Pα(τ ∈ U) =

∑

i∈γ

α(i)Pi(τ ∈ U)

and the computation of Pi(τ ∈ U) goes as above.

3.4 Tail probabilities of τ

Probabilities of tail events have representations as integrals of densities given in Theo-
rem 3.1 over appropriate subsets of R

|K|
+ . In the present subsection, we derive a simple

recursive representation of these integrals that use a version of the density formula
and the ideas used in its derivation.

By tail probabilities we mean probabilities of sets of the form {τ2 = τ4 > t1, τ3 >
t2, τ1 = τ5 > t2, τ3 6= τ2, τ1 6= τ2, τ1 6= τ3}, or more generally




|s|⋂

n=1

⋂

k1,k2∈s(n)

{τk1 = τk2} ∩
{
τs(n,1) > tn

}

 ∩

⋂

n1 6=n2,n1,n2≤|s|

{τs(n1,1) 6= τs(n2,1)}, (31)

where s is a partition of K, and t ∈ R
|s|
+ is such that tn < tn+1. In (31) all equality

and inequality conditions are explicitly specified. One can write standard tail events
in terms of these, e.g., {τ1 > t1} ∩ {τ2 > t2} is the same as the disjoint union

({τ1 > t1, τ2 > t2} ∩ {τ1 6= τ2}) ∪ {τ1 = τ2 > max(t1, t2)}.

Both of these sets are of the form (31). Thus, it is enough to be able to compute
probabilities of events of the form (31).
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Remark 3.4. From here on, to keep notation short, we will assume that, over tail
events, unless explicitly stated with an equality condition, all stopping times appearing
in them are distinct from each other (therefore, when writing formulas, we will omit
the last intersection in (31)).

A tail event of the form (31) consists of a sequence of constraints of the form

{τs(n,1) = τs(n,2) = · · · = τs(n,|s(n)|) > tn}.

There are two types of sub-constraints involved here: that entrances to all Γk, k ∈ s(n),
happen at the same time and that this event occurs after time tn. Keeping track of
these constraints as they evolve in time requires that we introduce yet another class
of events that generalize (31). For two disjoint subpartitions s1 and s2 of K and an

element t ∈ R
|s1|
+ such that t|s1| > t|s1|−1 > · · · > t2 > t1 (by convention, t = 0 if

|s1| = 0) define

T (s1, s2, t) :=




|s1|⋂

n=1

⋂

k1,k2∈s1(n)

{τk1 = τk2} ∩
{
τs1(n,1) > tn

}

∩

|s2|⋂

m=1

⋂

ℓ1,ℓ2∈s2(m)

{τℓ1 = τℓ2}. (32)

In view of Remark 3.4, setting s1 = s and s2 = ∅ reduces (32) to (31). The indices in
s1 appear both in equality constraints and time constraints while indices in s2 appear
only in equality constraints.

Remark 3.5. The definition (32) implies that if a component of s2 has only a single
element, that component has no influence on T (s1, s2, t). For example,
T (s1, ({1}, {2, 3}), t) is the same as T (s1, ({2, 3}), t).

To express Pα(T (s1, s2, t)), we will define a collection of functions pi, i ∈ E, of s1,
s2 and t. We will denote by p the column vector with components pi, i ∈ E.

For s1 = ∅ and i ∈ E, define pi(∅, s2, 0) := Pi(T (∅, s2, 0)). If s2 is empty or if
it consists of components with single elements, then the definitions of p and T and
Remark 3.5 imply

p(∅, s2, 0) = 1. (33)

For a given disjoint pair of subpartitions s1 and s2, define

Tn(s1, s2) :=
⋂

k∈s2(n)

Γk − S(s1 ∪ s2 − s2(n)), T (s1, s2) :=

|s2|⋃

n=1

Tn(s1, s2).

If s1 6= ∅, define p recursively as

p(s1, s2, t) := (34)

∫ t1

0

euλ(W )
λ(W,T (s1, s2))




|s2|∑

n=1

ITn(s1,s2) p(s1, s2 − s2(n), t− u)


 du

+ et1λ(W )p (Ls1, s2 + s1(1), Lt− t1) ,

where W = [S(s1 ∪ s2)]
c.
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Theorem 3.2. Suppose E−S(s1∪s2) is not empty and that α is a probability measure
on E that puts all of its mass on this set. Then

Pα(T (s1, s2, t)) = αp(s1, s2, t).

We omit the proof which is parallel to that of Theorem 3.1 and proceeds by induc-
tion. Theorem 3.2 holds for all finite state Markov processes and does not require that
any of the {Γk} be absorbing. The evaluations of p on the right side of the recursion
(34) will have smaller subpartitions in its arguments; then in a finite number of steps
these recursions will lead to an evaluation of p with s1 = ∅.

Note that (34) reduces to

p(s1, ∅, t) = eλ(S(s1)
c)t1p(Ls1, s1(1), Lt− t1), (35)

if s2 = ∅.
When s1 has no equality constraints and s2 = ∅, one can invoke (35) |s1| times

along with Remark 3.5 and (33) and get

Corollary 3.3. Let α be as in Theorem 3.2. If |s1| > 0 equals the dimension of t, (in
particular, there are no equality constraints) then

Pα(T (s1, ∅, t)) = αp(s1, ∅, t) = α




|s1|∏

n=1

eλ(Wn)(tn−tn−1)


1 (36)

where Wn = [S(Ln−1(s1))]
c.

The formula (36) is a generalization of [5, equation (7)] to general finite state
Markov processes.

3.5 Conditional formulas

Let us next derive formulas for the conditional density of τ given Fu0
where u0 > 0

is a fixed deterministic point in time. Introduce the set valued process

Vu := {k ∈ K, τk < u}.

The set K is finite, then so is its power set 2K , thus Vu takes values in a finite set.
The set Vu is the collection of Γk that X has visited up to time u. We will denote
the complement of Vu in K by V c

u . The times τ |Vu0
are known by time u0 and hence

they are constant given Fu0
. Thus, to write the conditional density of τ given Fu0

it
suffices to write down the regular conditional density of τ |V c

u0
, i.e., of the hitting times

to the Γk that have not been visited by time u0. From here on the idea is the same as
in the proof of Theorem 3.1. Define X̂u := Xu+u0

and for k ∈ V c
u0

τ̂k := inf{u ∈ (0,∞) : X̂u ∈ Γk}.

The definitions of X̂ and τ̂ imply

τ̂ = τ |V c
u0

− u0. (37)
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The random variable X̂0 = Xu0
is a constant given Fu0

. Thus the process X̂ has
exactly the same distribution as X with initial point Xu0

and Theorem 3.1 applies
and gives the density of τ̂ , which is, by (37), the regular conditional distribution of
τ |V c

u0
− u0. Therefore, for any bounded measurable g : RV c

u0 → R and a partition s′ of
V c
u0

E

[
g
(
τ |V c

u0

)
1Rs′

(
τ |V c

u0

)
|Fu0

]
=

∫

Rs′

g(u0 + u)f(δXu0
, u, V c

u0
)ds′u.

We record this as

Proposition 3.3. The regular conditional density of τ |V c
u0
−u0 given Fu0

is f(δXu0
, t, V c

u0
).

4 Absorbing {Γk} and connections with earlier re-

sults

The next subsection shows how the formulas in the previous sections can be simplified
when Γk are absorbing; this assumption is made in [5, 13]. The subsection following it
shows how formulas from [5] can be interpreted as special cases of the formulas derived
in the present work.

4.1 Density formula for absorbing {Γk}

A nonempty subset d ⊂ E is said to be absorbing if λ(i, j) = 0 for all i ∈ d and
j ∈ dc, i.e., if λ(d, dc) = 0. Proposition 4.1 gives an alternative expression for the
density formula (20) under the assumption that all {Γk, k ∈ K} are absorbing. Its
proof follows from the next lemma:

Lemma 4.1. Let α be a probability measure on E and d ⊂ E. If d is absorbing and
α|d = 0, then

pu
α,d = αeλuIdc , (38)

where, pu
α,d is the row vector whose jth component is the probability puα,d(j) = Pα(Xu =

j,Xv /∈ d, ∀v ≤ u) (see (7)).

Proof. We already know from Lemma 3.1 that pu
α,d = αeλ(d

c)u; we would like to show

that one has the alternative formula pu
α,d = αeλuIdc when d is absorbing and α|d = 0.

The distribution of X at time u is αeλu, i.e., Pα(Xu = j) = αeλu(j) for all j ∈ E. The
fact that d is absorbing implies that if Xu0

∈ d then Xu ∈ d for all u ≥ u0, Therefore,
for j ∈ dc, Pα(Xu = j) = Pα(Xu = j,Xv /∈ d, ∀v < u), i.e.,

(pu
α,d)|dc = (αeλuIdc)|dc . (39)

The equality pu
α,d = αeλ(d

c) and α|d = 0 imply pu
α,d|d = 0; The definition of Idc implies

(αeλuIdc)|d = 0. These and (39) imply (38).

The previous lemma implies that, when all Γk are absorbing, one can replace the
λ(Wn) appearing in the density formula (20) with λ; this observation gives
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Proposition 4.1. Assume that all Γk, k ∈ K, are absorbing and let α be such that
α|W c

1
= 0. Then, for any s ∈ S and t ∈ Rs, the density fs given in Theorem 3.1 takes

the form

fs(α, t, K) = α




|s|∏

n=1

eλ(t̄n−t̄n−1)λ(Wn, Tn)


1 . (40)

4.2 Tail probabilities for absorbing {Γk}

When {Γk, k ∈ K} are absorbing, in view of (38), one can write the tail probability
that appears in Theorem 3.2 as

Pα(T (s1, s2, t)) =

α

∫ t1

0

eλuλ(W,T (s1, s2))




|s2|∑

n=1

ITn(s1,s2) p(s1, s2 − s2(n), t− u)


 du

+ αeλt1IW p (Ls1, s2 + s1(1), Lt− t1)

and, in particular,

Pα(T (s1, ∅, t)) = αeλt1IS(s1)cp(s1 − s1(1), s1(1), Lt− t1). (41)

4.3 Connections with earlier results

This subsection relates the phasetype density/ tail probability formulas from [5] to
the formulas derived in the present work. In [5], the authors assume that E has a
single absorbing state called ∆ and they denote by A what in our paper is denoted by
λ|{∆}c . Moreover, [5] uses the letter α to denote the initial distribution of X, but on

the set Ê := E − {∆}, rather then on the set E as it is done here; in particular, [5]
implicitly assumes P (X0 = ∆) = 0. We will use the symbol α̂ to denote the ‘α of [5].’
The relation between α and α̂ is α|{∆}c = α̂.

As far as the singular densities / tail probabilities of τ , [5] treats only the case of
|K| = 2. Using the notation of that paper, we are given two sets Γ1,Γ2 ⊂ E with
Γ1 ∩ Γ2 = {∆}, Tk is the first hitting time to Γk. The formula [5, Equation (5), page
692] says

Pα(T1 = T2 > u) = α̂eAuA−1(Ag1g2 − [A, g1]− [A, g2])e, (42)

where gk = IΓk
|{∆}c , e is the vector with dimension |Ê| = |E| − 1 with all components

equal to 1, and for two matrices B and C, [B,C] := BC−CB. The absorbing property
of Γ1 and Γ2 implies that the matrix inside the parenthesis in the right side of (42)
equals g′A, where g′ = I(Γ1∪Γ2)c |Ê i.e., the same matrix as A except that the rows
whose indices appear in Γ1 ∪ Γ2 are replaced with 0. Thus (Ag1g2 − [A, g1]− [A, g2])e
is another way to take the ∆ column of λ and replace its components whose indices
appear in Γ1 ∪ Γ2 with 0. Denote this vector by C∆. Then the right side of (42) is

α|Ê
(
eλu|Ê

)
A−1C∆. (43)

In the present work, the same probability is expressed by a special case of (41); for the
present case one sets K = {1, 2}, s1 = ({1, 2}); for these values, (35) and conditioning
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on the initial state gives

Pα(τ1 = τ2 > u) = αeλuIwp(∅, ({1, 2}), 0), (44)

where w = (Γ1 ∪ Γ2)
c. One sees that this is equivalent to (43) as follows. On the

right side of the last equality s1 = ∅ and we have no time constraints (the inequality
constraints related to t) and thus p(∅, ({1, 2}), 0) is the probability of the event {τ1 =
τ2}; the expression following the matrix exponential in (43) represents this probability.
Finally, the absorbing property of the underlying chain and X0 6= ∆ imply that we
can ignore the restriction to Ê in (43).

The second density formula from [5] is for the absolutely continuous part of the
distribution of τ ; [13] makes use of this formula in the following context. The process
X of [13] is a Markov jump process (with absorbing boundary) taking values in Z

m
2 :=

{0, 1}m (the m-fold Cartesian product), with jumps in {−ek, k = 1, 2, 3, ...,m}, where
ek is the unit vector with kth coordinate equal to 1. In [13], the absorbing sets are
denoted as ∆i, see the display after [13, (2.3)], and they correspond to the Γk = {z ∈
Z

m
2 : zk = 0} of our notation. The key property of the setup in [13] is this: take

any collection {Γk1 ,Γk2 , ...,Γkn} with n > 1; because the only increments of X are the
{−ek}, the process cannot enter the sets in the collection at the same time. Thus, in
this formulation, X must hit the {Γk} at separate times and the distribution of τ has
no singular part, i.e., P (τ ∈ Rs) = 0 for |s| < m, and one needs only the density of τ
with respect to the full Lebesgue measure in R

m (the “absolutely continuous part”);
thus, for the purposes of [13], the density of the absolutely continuous part of the
distribution of τ is sufficient and a formula for this is already available in [5] and is
given in [13, display (3.1.1)] as follows:

f(t) = (−1)mα

(
m−1∏

n=1

eλ(t̄n−t̄n−1)(λGkn −Gknλ)

)
eλ(t̄m−t̄m−1)λGkm1, (45)

for t ∈ Rs with |s| = m; here Gk = IΓc
k
and kn is the index for which tkn = t̄n ([13]

uses the letter Q for the rate matrix λ). We have derived the full density formula (40)
in the absorbing case in Section 4 describing the density of τ over its all possible parts
(singular and nonsingular). Arguments similar to those given for the two dimensional
formula can be used to show that (40) reduces to (45) when all components of t are
distinct.

5 Numerical Example

The state space of our numerical example is E = Z
3
3, where Z3 = {0, 1, 2}; the state

space has 27 elements. For z ∈ Z
3
3 and k ∈ K = {1, 2, 3} let zk denote the kth

component of z. For the collection {Γk} take

Γk = {z ∈ E : zk = 0}.

As before, τk is the first time the process X hits the set Γk. The initial distribution
α will be the uniform distribution over the set

E −
⋃

k∈K

Γk =

{
z ∈ E : min

k∈K
zk > 0

}
.
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Figure 1: The level curves of the density f for τ2 = τ3 < τ1. On the right: the values
of f over the line segment connecting (0, 0) to (0.5, 1)

We will compute the density of τ = (τ1, τ2, τ3) over the sets Rs1 , Rs2 ⊂ R
3
+ defined by

the partitions s1 = ({2, 3}, {1}) and s2 = ({1, 2, 3}); the first corresponds to the event
{τ ∈ Rs1} = {τ2 = τ3 < τ1} and the second to {τ ∈ Rs2} = {τ1 = τ2 = τ3}.

The dynamics of X on Z
3
3 for our numerical example will be that of a constrained

random walk with the following increments:

± ek,±(e1 + e2),±(e1 + e2 + e3), k ∈ K, (46)

where e1 := (1, 0, 0), e2 := (0, 1, 0) and e3 := (0, 0, 1); the {Γk} are assumed to be
absorbing, i.e., if Xu0

∈ Γk any increment involving ±ek can no longer be an increment
of X for u > u0. The sets Bk := {z : zk = 2} are “reflecting” in the sense that if
Xt ∈ Bk for some t, increments involving +ek cannot be the first increment of X in
the time interval [t,∞). We assume the following jump rates for the increments listed
in (46):

2 , 1 , 2 , 1 , 3 , 1 , 0.5 , 0.5 , 0.2 , 0.2;

e.g., if X0 = (1, 1, 1) and σ1 denotes the first jump time of X, σ1 is exponentially
distributed with rate s where s is the sum of the rates in the above display and
P (Xσ1

= X0 + e1 + e2 + e3) = 0.2/s. These rates and the aforementioned dynamics
give a 27× 27 λ matrix. The level sets f(α, ·, K)|Rs1

are depicted in Figure 1 and the
graph of f(α, ·, K)|Rs2

is depicted in Figure 2.
For the parameter values of this numerical example, Pα(∩k 6=k′τk 6= τk′) = 0.899 and

thus the singular parts account for around 10% of the distribution of τ .

6 Conclusion

Our primary motivation in deriving the formulas in the present paper has been their
potential applications to credit risk modeling, especially to model default times of
companies/obligors with first hitting times of a finite state Markov process where
multiple defaults are allowed to happen at the same time; given the results of our
paper this is now possible in a reasonably general framework (for the case of two
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obligors one could use the results in [5]). Let us explain a bit further this application
starting from the credit risk model of [13] and the numerical example of Section 5.

With the results in the present work one can extend the modeling approach of [13]
in two directions. Remember that the underlying process in [13] can only move by
increments of {−ek} i.e., the model assumes that the obligors can default only one at a
time. However, for highly correlated obligors it may make sense to allow simultaneous
defaults, i.e., allow increments of the form −

∑
n ekn . Once multiple defaults are

allowed, the default times will have nonzero singular parts and the formulas in the
present work can be used to compute them, as is done in the numerical example
of Section 5. Secondly, the default sets {Γk} no longer have to be assumed to be
absorbing. Thus, with the formulas derived in the present work, one can treat models
that allow recovery from default.

As |E| increases, (20) and other formulas derived in the present paper will take too
long a time to compute (the same holds for earlier density formulas in the prior litera-
ture)and it can be of interest to derive asymptotic approximations for these densities.

A second theoretical contribution of the present work is to the line of research
originated in [17] and continued in [18] and [14]. In [17] the following problem was
studied: given a filtration G = {Gu, u ∈ R+} and a multivariate random time τ =
(τ1, . . . , τm) study the conditional law, say µG

u , of τ given Gu, in the case that where
P (τi = τj) = 0 for i 6= j, i, j = 1, 2, . . . ,m. Thus, a (random) measure was sought so
that

P (τ ∈ B|Gu) =

∫

B

µG

u (dt), (47)

for any Borel subset B of Rm
+ . If the measure µG

u is represented as

µG

u (dt) = ϕG

u (t)ν(dt), (48)

where ν is a (possibly random) measure on R
m
+ , then ϕG

u is called the density of P (·|Gu)
with respect to ν, and the process ϕG

· is called the conditional density process. This
study was extended in [14], for n = 2, to the case where joint default were allowed,
that is P (τ1 = τ2) > 0.

Now, let F = {Fu, u ∈ R+} be the filtration generated by X. The Markov property
of X implies that the conditional density of τ given Fu directly follows from the
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density formula (20), as we show in Proposition 3.3. Thus, our results generalize (47)
and (48) to the case of arbitrary m ≥ 1 where the restriction P (τi = τj) = 0 for
i 6= j, i, j = 1, 2, . . . ,m is no longer required. This generalization covers only the
Markovian case, i.e., when G = F and when τ is defined as first hitting times of the
process X. Still, it allows one to study and model probabilities related to simultaneous
multivariate trigger events, such as simultaneous defaults in a large pool of obligors.
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