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Introduction

The Bidirectional Reflectance Distribution Function (BRDF) characterises the light reflection on surfaces, and is thus used in several domains like scene modelling, image synthesis, optical scattering or remote sensing. The BRDF depends on five parameters at least: two angles for the incident light direction, two angles for the output direction, and the wavelength. As a consequence, spectral and directional data sets are usually huge, which leads to an unwieldy storage problem.

Moreover measurement data sets do not allow a continuous representation of the reflectance. These drawbacks are avoided by modelling. Considerable attention has been given in recent years to the elaboration of BRDF models and also to their classification [START_REF] Goel | Models of vegetation canopy reflectance and their use in estimation of biophysical parameters from reflectance data[END_REF] [START_REF] Pinty | Radiation Transfer Model Intercomparison (RAMI) Exercise[END_REF]. Two modelling strategies are widely used:

• explicit models that need an explicit description of the surface in term of simple elements or structures,

• implicit models that do not require an explicit description of the surface but are based on phenomenological approaches or representations of the measurements.

The new wavelet-based numerical model presented in this paper belongs to this last category. It has been designed to efficiently represent, in term of compression and computing time, the spectral BRDF data of all kind of surfaces as long as a measured data set is available. Section 2 introduces the definition of the BRDF and its properties, then explains the main shortcomings to analytical modelling and particularly to the measureand-fit approach. Section 3 presents the general formulation of the wavelet transform, and its most useful properties. Section 4 describes previous approaches to numerical BRDF modelling using wavelets and the method used to construct our new BRDF model is developed. Section 5 discusses modelling results achieved on real acquired BRDFs as well as synthetic BRDF data set. Section 6 addresses the model sensitivity to multiplicative and additive noise with realistic noise levels.

We conclude and point out lines of future research in Section 7.

BRDF definition and properties

Definition

The Bidirectional Reflectance Distribution Function (BRDF) is a distribution in the mathematical point of view, which describes the relationship between the incoming irradiance and the radiance reflected or scattered by a surface. Usually, the BRDF expression is relative to the target's local space [START_REF] Nicodemus | Geometric Considerations and Nomenclature for Reflectance[END_REF]:

f r (ω i , ω r , λ) = dL r (ω r , λ) dE i (ω i , λ) = dL r (ω r , λ) L i (ω i , λ) cos θ i dω i , (1) 
where E i is the incoming irradiance, and L i (respectively L r ) is the incoming (respectively outgoing) radiance in lighting direction ω i = (θ i , φ i ) (respectively viewing direction ω r = (θ r , φ r )). This definition ignores polarization, time variation, frequency shift, and surface position dependence in order to reduce complexity. This BRDF definition is accurate enough for most remote sensing applications and scene modelling purposes. BRDF support is then reduced to

H 2 i × H 2 r × R
where H 2 i is the incident hemisphere, H 2 r is the reflection hemisphere, and R the wavelength space.

Physical Properties

The BRDF has four important and interesting properties:

1. Non-negativity: BRDF value is strictly positive

f r (θ i , φ i , θ r , φ r , λ) ≥ 0 (2) 
2. Helmholtz reciprocity: the behavior of the surface is independent of the luminous flux direction [START_REF] Minnaert | The Principle of Reciprocity in Lunar Photometry[END_REF] , i.e.

f r (θ i , φ i , θ r , φ r , λ) = f r (θ r , φ r , θ i , φ i , λ)

3. Energy conservation: the energy reflected by the surface is not greater than the incoming energy on the surface, i.e. for each possible incoming direction ω i and outgoing direction ω r (assuming integration over wavelength is implied)

dΦ r dΦ i = H 2 i H 2 r f r (ω i , ω r )L i (ω i ) cos θ i cos θ r dω i dω r H 2 i L i (ω i ) cos θ i dω i <= 1, (4) 
where dΦ i (respectively dΦ r ) is the incoming (respectively outgoing) luminous flux 4. Isotropy: for a lot of surfaces the reflectance does not change with respect to the surface orientation (isotropic BRDF), i.e. for any wavelength

f r (θ i , φ i , θ r , φ r ) = f r (θ i , 0, θ r , |φ r -φ i |) = f r (θ i , θ r , φ = |φ r -φ i |) (5)
otherwise the BRDF is said to be anisotropic.

For measurements on homogeneous surfaces, Equation (3) allows to simplify BRDF data sets [START_REF] Snyder | Reciprocity of the BRDF in Measurements and Models of Structured Surfaces[END_REF]. This simplification is often used in image synthesis. However for real measurements on heterogeneous surfaces, this equation is not strictly applicable.

Modelling BRDF

BRDF is an input data of several applications including target and background signature modelling, radiative transfer simulation, and inversion of thematic physical models. However, the large amount of measurement samples needed to accurately describe the BRDF does not allow the use of raw data, and modelling is usually required. Indeed lots of applications, like scene modelling, manage many different BRDFs at the same time and memory requirement can be easily prohibitive.

On the one hand a model has to provide a good compression scheme. On the other hand we are interested in a convenient, accurate, and efficient representation. These reasons mainly explain the success of analytical models, but these models are not well-suited for spectral BRDF modelling of arbitrary surfaces.

Actually, model parameters for most surfaces are not directly available. Advanced numerical optimization techniques retrieve the best parameter values by minimizing a distance between modelled and measured data. This modelling can suffer from numerical instabilities in non-linear fitting routines, and results strongly depend on initial conditions. Secondly, analytical models, either phenomenological or based on a physical theory, lack generality. Physically-based models start with specific assumptions about the surface and are only able to predict the reflectance of surfaces that closely match those assumptions. Phenomenological models are custom-made and are not suitable for arbitrary BRDF.

Moreover, as the viewing angle of the sensor increases, the effects of BRDF become exacerbated, and significantly affect the accuracy in off-nadir views. Thus, most analytical models become not appropriate in these cases. Therefore, models should cover the entire range of possible angles of incidence and reflection.

At last, to the best of our knowledge, no analytical model explicitly handles the wavelength dependence of the BRDF.

These reasons press us to develop a new numerical BRDF model, more general as it does not rely on either specific assumptions or physical theory. The main idea is to project the BRDF measurement data set onto a new space, which is usually more efficient and convenient. Primer representations based on projective methods for BRDF modelling used spherical harmonics [START_REF] Cabral | Bidirectional Reflection Functions from Surface Bump Maps[END_REF] [7] [START_REF] Stephen | Predicting Reflectance Functions From Complex Surfaces[END_REF]. But the evaluation cost of these functions is prohibitive due to their global support on the sphere. Wavelets are locally defined, consequently they are faster. Furthermore they offer a better and more flexible compression scheme. There are also some mathematical constructions of wavelets based on spherical harmonics [START_REF] Freeden | Spherical Wavelet Transform and its Discretization[END_REF] [10] but they have no concrete application and are still at a formal state.

3 Wavelet theory

Introduction

Wavelets have become very popular during the last decade due to many of their interesting properties [START_REF] Daubechies | Ten Lectures on Wavelets[END_REF] [12]:

• compression: able to manage large data sets

• multiresolution: a reconstruction at different levels of accuracy is possible

• efficiency: the reconstruction of the signal is done in a logarithmic time according to the number of samples 

Definition

The discrete wavelet transform is a filtering operation that separates a signal into a low-frequency part (approximation) and a high-frequency part (details), via convolution (projection on a wavelet function basis). Then separating again, recursively, the approximation part, the discrete wavelet transform leads to a decomposition at different resolutions or scales. The more general formulation of the discrete wavelet transform of a sampled function f can be written as follows:

f = k a k 0 ϕ k 0 + n j=0 m d m j ψ m j ( 6 
)
ψ m j (respectively ϕ k j ) is the wavelet (respectively scaling) function number m (respectively k) at decomposition level number j. The first one encodes the details while the second one encodes the approximation of the sampled function f . The corresponding projection coefficients d m j and a k j are computed using fast recursive algorithms. Computing scaling and wavelet coefficients from a fine resolution to a coarser resolution is called analysis:

a k j = l hk,l j a l j+1 ( 7 
)
d m j = l gm,l j a l j+1 (8) 
The inverse operation, consisting in retrieving the finest approximation starting from coarser level, is called synthesis:

a l j+1 = k h k,l j a k j + m g m,l j d m j ( 9 
)
Wavelet transform may be viewed as a filtering operation where coefficients h, g are analysis filters and h, g are synthesis filters. Wavelet compression consists in removing weak wavelet coefficients (setting their values to zero) in the final decomposition of the function (equation 6). The analysis process computes the final decomposition of the function (wavelet transform) while the synthesis process reconstructs the function from its compressed version (inverse wavelet transform).

The main thing to notice is that this formulation is generic because it does not rely on a particular wavelet function or support space. As a consequence, algorithms are pretty similar for any transform. There is only one requirement: the support space must be a Hilbert space [START_REF] Raghuveer | Wavelet Transforms : Introduction to Theory and Applications[END_REF].

4 Wavelet-based BRDF modelling

Introduction

A parallel can be drawn between the analytical approach [START_REF] Verstraete | A physical model of the bi-directionnal reflectance of vegetation canopies[END_REF] and a numerical approach based on wavelets. Indeed, the spirit of both methods is very similar and both modelling process are illustrated on Figure 1. The inverse mode consists in retrieving the model's parameters from the measurement data set. In the analytical case a numerical optimization is performed while in the numerical case wavelet transform and compression are applied. The direct mode consists in computing the BRDF value for any possible incoming/outgoing direction and wavelength, from the model's parameters. In the analytical case the model formula is evaluated while in the numerical case the inverse wavelet transform and an interpolation scheme are applied. The better the model is, the lower the distance between the original and the simulated BRDF is. Before the complete presentation of the modelling process in the next sections, we present previous work on waveletbased BRDF modelling.

Previous work

Schröder et al. [START_REF] Schroder | Spherical Wavelets: Efficiently Representing Functions on the Sphere[END_REF] are the first researchers to mention the use of wavelets for BRDF modelling. They introduce spherical wavelets to efficiently represent functions on the sphere S 2 . A function defined over S 2 is approximated by a piecewise constant function over a set of triangles almost regular in term of solid angle 1 . The triangle set is constructed using a recursive subdivision starting from an octahedron (or a tetrahedron on the hemisphere H 2 ). At each level the triangles are subdivided into four children, then projected on the sphere, until a given accuracy level (Figure 2).

Schröder et al. define a multiresolution analysis in the space of finite energy

functions defined over S 2 thanks to the lifting cheme [START_REF] Sweldens | The Lifting Scheme: A Construction of Second Generation Wavelets[END_REF]. The spherical wavelet basis (Figure 3) is a Haar-like basis derived from the well-known Haar basis [START_REF] Girardi | A New Class of Unbalanced Haar Wavelets that form an Unconditional Basis for Lp on General Measure Spaces[END_REF] [18]. The most important thing to notice is that this construction is parameterization independent, which is not the case of a previous method introduced by [START_REF] Dahlke | Multiresolution Analysis and Wavelets on S2 and S3[END_REF] using tensor product. But the work of Schröder et al. is still restricted to function defined over H 2 while BRDF is potentially a 5D function defined over 

H 2 × H 2 × R (incident

Model description

In this section we introduce a new BRDF model based on wavelets. Our contribution is to separate the BRDF into a spectral part defined over R and a directional or geometrical part defined over H 2 . Each part is projected independently on the appropriate wavelet space, that is using spherical wavelets for the angular dependence, and one-dimensional wavelets for the dependence on wavelength. We have chosen the standard approach [START_REF] Daubechies | Ten Lectures on Wavelets[END_REF] that uses product of decompositions to transform multidimensional signals, in contrast with the non-standard approach [START_REF] Daubechies | Ten Lectures on Wavelets[END_REF] (used by Lalonde), which consists in building multidimensional wavelet bases from one-dimensional bases using a tensor product of basis functions. The key idea is to perform multiple atomic transforms, that is to say transforms defined over a single space (not a product of spaces), instead of using a single multidimensional transform. The last method is theoretically more efficient, but the former has many advantages.

First we can increase the compression ability by exploiting the coherence in each space in addition to the coherence in the hidden dimension-connections. Secondly a partial transform or reconstruction can be computed, i.e. we do not need to perform the complete 5D transform. Indeed, we can choose which spaces will be used, providing a more flexible model that allows the representation of all kind of BRDF: isotropic, anisotropic, spectral or at a fixed wavelength. At last, our approach does not require any mapping since the model is naturally defined on the support of the BRDF.

BRDF projection

The initial step of our method consists in projecting the BRDF measurement data set into the appropriate wavelet spaces. A first recursive subdivision is used to store BRDF data according to the incoming direction. Each triangle of the subdivision stores the directional-hemispherical reflectance distribution corresponding to the direction aimed by the triangle centre. Then, a second recursive subdivision is used to store the reflectance data according to the outgoing direction.

Each triangle stores a real value, or a spectrum in the spectral case. Two spherical wavelet transforms are applied in the case of a BRDF at a fixed wavelength (on incoming and outgoing directions). In the case of a spectral BRDF, an additional level is required: a one-dimensional wavelet transform is applied on each BRDF spectrum.

Although only one wavelet basis is available for the spherical transform, many bases are available for the dependence on wavelength since one-dimensional bases are common [START_REF] Daubechies | Ten Lectures on Wavelets[END_REF]. Our model selects the best basis according to the modelling error among a set of 52 different bases. Nevertheless, many bases belong to the same family but differ from one another in their properties (vanishing moments, support width, order, etc.): Daubechies [START_REF] Daubechies | Orthonormal Bases of Compactly Supported Wavelets[END_REF], Symmlet [START_REF] Daubechies | Ten Lectures on Wavelets[END_REF], Coiflet [START_REF] Beylkin | Fast Wavelet Transforms and Numerical Algorithms I[END_REF],

Battle-Lemarié [START_REF] Mallat | A Theory for Multiresolution Signal Decomposition: the Wavelet Representation[END_REF], Beylkin [START_REF] Beylkin | Fast Wavelet Transforms and Numerical Algorithms I[END_REF], Adelson [START_REF] Adelson | Orthogonal Pyramid Transforms for Image Coding[END_REF], FBI [START_REF] Bradley | The FBI Wavelet/Scalar Quantization Standard for Gray-Scale Fingerprint Image Compression[END_REF], Vaidyanathan [START_REF] Vaidyanathan | Lattice Structures for Optimal Design and Robust Implementation of Two-Channel Perfect-Reconstruction QMF Banks[END_REF] Antonini [START_REF] Antonini | Image Coding using Wavelet Transform[END_REF], Villasenor [START_REF] Villasenor | Wavelet Filter Evaluation for Image Compression[END_REF] [30] [START_REF] Strutz | Wavelet Filter Design For Image Compression[END_REF], Burt-Adelson [START_REF] Daubechies | Ten Lectures on Wavelets[END_REF], Brislawn [START_REF] Brislawn | Classification of Nonexpansive Symmetric Extension Transforms for Multirate Filter Banks[END_REF], Cohen-Daubechies-Feauveau (CDF) [START_REF] Cohen | Biorthogonal Bases of Compactly Supported Wavelets[END_REF], Spline [START_REF] Daubechies | Ten Lectures on Wavelets[END_REF], Odegard [START_REF] Odegard | Smooth Biorthogonal Wavelets for Applications in Image Compression[END_REF], and Pseudo-Coiflet [START_REF] Finkelstein | Multiresolution Applications in Computer Graphics: Curves, Images, and Video[END_REF]. The restriction to the use of the Haar basis on the recursive subdivision is not annoying because this basis is well-suited to signals with discontinuities as shown by Schröder [START_REF] Schroder | Spherical Wavelets: Efficiently Representing Functions on the Sphere[END_REF]. It will be efficient for BRDF modelling of shiny surfaces with narrow peaks, which are very common in scene representing artificial surfaces. Moreover, it allows a fast sampling scheme based on the multiresolution of the wavelet decomposition to perform importance sampling of the BRDF. This technique can dramatically reduce the variance of Monte Carlo simulations [START_REF] Claustres | BRDF Measurement Modelling using Wavelets for Efficient Path Tracing[END_REF] intensively used into radiative transfer codes.

In fact, isotropic BRDFs are simpler than anisotropic ones, and this property can be used to simplify the transform process. Indeed, any BRDF value can be recovered from the BRDF data in the plane where φ i = 0, by a rotation of φ around the local surface normal. So the spherical wavelet transform on incoming directions is not relevant here, since we do not store all BRDF measurements but only a small part according to the plane where φ i = 0. Avoiding this transform is possible without any fuss using the standard approach, while it is not possible with the non-standard approach, which would require the elaboration of a specific 3D model instead of the general 5D model. With our approach, we simply have to ignore the atomic wavelet transform on H 2 i and to perform both other atomic transforms on H 2 r and R.

The technical details of the model, as well as the algorithms and the data structures needed for implementation can be found in [START_REF] Claustres | BRDF Measurement Modelling using Wavelets for Efficient Path Tracing[END_REF]. We have put the source code for a wavelet-based representation of different radiometric terms into a C++ library called The Discrete Wavelet Transform Library (DWTL). The DWTL is part of the Ray Of Light project, and is available for free at http://www.realisticrendering.org.

Compression strategy

Wavelet coefficients express local signal coherence at different levels according to a specific norm. If a coefficient is weak, there will be no strong variation between two levels, so the lowest level will approximate information without introducing a large error. Thus, wavelet compression is simply done by removing weak coefficients of the projected BRDF.

In our modelling approach, the wavelet compression is performed in each space where the transform took place. The coherence between directional-hemispherical reflectances according to incoming direction is fully used. The same for spectra coherence and for BRDF values according to reflected direction. At last, the coherence according to wavelength for spectral BRDFs is also used. We have demonstrated in [START_REF] Claustres | BRDF Measurement Modelling using Wavelets for Efficient Path Tracing[END_REF] that for a given error level we can reach a better compression ratio than obtained by Lalonde.

Usually, multidimensional wavelet transform uses a single threshold, which implies a global error control. We have prefered to use a global threshold for each space. Furthermore, we have set up an adaptive threshold, starting from each global threshold, by scaling the threshold according to the local level of the BRDF.

BRDF reconstruction

The inverse wavelet transform only allows the reconstruction of the original discrete BRDF, starting from the compressed version. But many applications, such as radiative transfer codes, require a BRDF continuously defined for all combinations of incident angles, reflected angles, and wavelengths. Consequently, we have interpolated the BRDF values after the reconstruction. A detailed study of interpolation techniques is out of the scope of this paper, and is not related to the wavelet representation. Indeed, the estimation of a function f for arbitrary configurations, where only a sampled version of f is available, is a central problem in signal processing [START_REF] Press | Numerical Recipes in C, The Art of Scientific Computing[END_REF].

Here we use well-known interpolation methods depending on the requirements: for C 0 BRDF, we use linear interpolation for the spectral part and barycentric interpolation over the triangles [START_REF] Foley | Computer Graphics, Principles and Practice, Second Edition[END_REF] for the directional one; for a more continuous BRDF (C 2 ), we use cubic B-Splines [START_REF] Press | Numerical Recipes in C, The Art of Scientific Computing[END_REF] for the spectral part and Clough-Tocher interpolant [START_REF] Salesin | Reconstructing Illumination Functions with Selected Discontinuities[END_REF] for the directional one.

Results

For determining the performances of the model, we need estimators of the difference between the original BRDF and the simulated one after an analysis-synthesis cycle. Particularly, we have chosen the relative errors r 1 and r 2 in term of L 1 and L 2 norms according to compression ratio:

r 1 = 1 n i |f i -f i | f i (10) r 2 = 1 n i (f i -f i ) f 2 i 2 (11) 
where f i are the values of the original BRDF, f i are the values of the reconstructed BRDF from its compressed version, and n is the total number of samples in the measurement data set. The compression ratio r c is the ratio of the initial number of measurement points to the final number of remaining wavelet coefficients after compression. It is related to the compression rate t c (percentage of initial data removed by compression) by the following expression:

t c = 100 -( 100 r c )
The number of wavelet coefficients for a compression ratio of 1:1 is equal to the initial number of samples for the measured BRDF, i.e. the BRDF is just projected into the wavelet spaces without any compression. A small initial error appears for this projection because S 2 is sampled regularly in term of (θ, φ) angles for the BRDF measurement and not regularly in term of solid angle as the recursive subdivision does.

Data

In this paper we present results achieved on measured and simulated BRDFs. Real

BRDFs have been measured by the goniometer set up at the ONERA [START_REF] Serrot | Presentation of a new BRDF Measurement Device[END_REF], over a wide variety of surfaces. We have selected artificial targets (cloth, plastic, plywood, spectralon, velvet), but also natural ones (green and dry grass, wood, sand).

The total number of measurement points is 485,376 for one material (476 directions and 1024 wavelengths). The precision of the measurement is better than 5% in the spectral range 420-950 nm with a spectral resolution of 3 nm and a spectral sampling of 0.5 nm. However, we have used here a spectral sampling step of 5 nanometers, which is fine enough for our requirements. Zenithal angles are sampled every ten degrees, and the relative azimuth angle every twenty degrees.

Estimation of the modelling error

Reflectance spectra

Because our BRDF representation has two independent parts, one for the directional aspect of the data, and one for the spectral aspect of the data, these two parts can be used as stand-alone representations.

For this reason, we have first tested the spectrum modelling with reflectance spectra extracted from measured BRDFs at fixed incoming and outgoing direction, but also with other radiometric terms such as spectral measured radiance and emissivity. The Figure 4 shows the compression rate achieved according to different wavelet bases, for a constant modelling error r 2 = 2 %, and on different acquired spectra. A graphical representation of the reconstructed spectra is shown in Figures 5 and6, corresponding respectively to the spectral emissivity of a paint, and the spectral radiance of sand, with different compression ratios.

Table 1 contains more quantitative results and shows that our model is efficient to represent many different kind of spectrum with a small number of samples from the initial data. In this table, r1 (respectively r2) is a green grass (respectively paint) reflectance measured in the spectral range 0.3-4 microns; l1 (respectively l2) is a sand (respectively canopy) radiance measured in the spectral range 0.3-13.6 microns; e1 and e2 are IR paint emissivities measured in the spectral range 2.5-21 microns. Moreover, the model provides a smooth profile for the spectrum by removing the noise. Even if the modelling error growths with the compression ratio, we think that, in many cases, a better spectral profile is reconstructed, because of the denoising. This interesting property will be investigated precisely in Section 5.3.

Isotropic BRDF

BRDF for fixed wavelengths : Table 2 presents compression ratios and corresponding modelling errors for acquired isotropic BRDFs at different fixed wavelengths. All measurement data sets can be compressed up to 64:1 with a global L 1 and L 2 error<10%, except the plastic one. This sample is the most specular (dif-fuse and specular parts differ by a factor 100), with a large peak leading to a large discontinuity. As the wavelet transform is basically a filtering operation, a high compression ratio smooths the specular peak. However, the specular peak is wellpreserved with a medium compression rate. Moreover, we have shown in [START_REF] Claustres | Spectral brdf modeling using wavelets[END_REF] that wavelet modelling has similar performances than the analytical modelling at fixed wavelength for diffuse surfaces, and better ones for specular surfaces.

Figure 7 shows the plots of the BRDF of three different samples (cloth, sand, and dry grass) for a fixed incoming direction and azimuth angle. The worst results, apart from the plastic one, are achieved for the dry grass (Table 2), which is the measurement with the lowest BRDF level (about 0.03 sr -1 ). Thus, for a constant noise level, the signal-to-noise ratio (SNR) is weaker and the signal is lower.

In this case the model hardly makes the difference between BRDF variations and noise (Figure 7c). In contrast, modelling is accurate for the sand and the cloth sample, even for some radical thresholds. The wavelet-based representation correctly handles the backscattering of the sand sample (Figure 7b) and the relative "specularity" of the cloth sample (Figure 7a).

Spectral BRDF :

Table 3 shows results achieved on isotropic spectral BRDF data. For each compression ratio, the best wavelet basis selected by the model is given. Modelling error according to compression is often better than it is in the case of a fixed wavelength (especially for the plastic BRDF). All available measurement data sets can be compressed up to 128:1 and a global L 1 error<10% and L 2 error<20%. The main reason is the smooth spectral variations of the BRDFs.

The behaviour of the model is compared to the measurements, as illustrated in Figure 8 for the cloth target and two different wavelet bases and compression ratios. In addition to the modelling error, the spectral shape might be a criterion for the wavelet basis selection. Indeed, this shape strongly depends on properties of the chosen basis.

However few materials present larger errors than those obtained in the case of fixed wavelength. One possible explanation is influence of the noise, which is not spectrally flat. Actually, our data are especially noisy in the range 400-450 nm and the compression removes this noise, that introduces an error with no physical signification (Figure 9), which only represents the difference between the original noisy spectrum and the simulated denoised one.

Anisotropic BRDF

The goniometer of the ONERA is fully automatic for isotropic measurement, but for anisotropic measurement, a manual rotation is applied to the sample between each acquisition, resulting in an unwieldy process. This is the reason why we have measured a single anisotropic material (a glazed velvet), with an azimuth angle step of fifteen degrees. The final number of samples was 6,309,888 for the whole BRDF data set. The velvet sample presents pronounced directional effects (anisotropy), and the detection limit of the device is reached in some part of the measured BRDF. In those parts, the overall signal level is very low and the (SNR) is very weak. To be more exhaustive in the fixed wavelength case, we have also tested the performances of the model with synthetic BRDF data sets.

BRDF for fixed wavelengths : Table 4a presents the modelling error for the anisotropic velvet BRDF data set and for a synthetic BRDF data set generated using the anisotropic Ward's BRDF model [START_REF] Ward | Measuring and Modeling Anisotropic Reflection[END_REF]. Until a compression ratio of 16:1, modelling is as good for the velvet as for the synthetic data. Beyond this ratio, the L 2 error becomes very large for the velvet sample unlike for the synthetic BRDF, while the L 1 error is still good in both cases. This phenomenon is here again probably induced by the noise of the measurements on the velvet. Indeed, relative L 2 error is more sensitive to modelling errors for low BRDF levels. As wavelet compression smoothes the BRDF and removes the noise, the modelling error always raises with the compression ratio, even if denoising is, in some cases, an interesting property of the model.

Spectral BRDF :

In the spectral case, as far as we know, no analytical BRDF models are available, so the performances of the model have only been estimated

with the glazed velvet data set. As expected, we have noticed the same increase of the L 2 error with compression ratio, but more strongly marked (see Table 4b).

The most probable reason is that the SNR of the measurement device depends on the wavelength and is relatively weak in some regions of the spectrum. Indeed, some measured BRDF values in the range 400-450nm are negative because of the noise, that has no physical meaning. To ensure the non-negativity rule (Equation 2), we have replaced these negative values by a low BRDF bound. This process introduces yet virtual discontinuities in the smooth BRDF spectra with, as a consequence, oscillations around the discontinuities after compression (Figure 10).

This effect, known as the Gibbs Phenomenon [START_REF] Jeffreys | The Gibbs Phenomenon in Methods of Mathematical Physics[END_REF], may explain, at least partly, the large L 2 observed error.

Noise sensitivity

Robustness is one of the most important properties desirable for modelling of measurement data set. In particular, measured BRDF data are always more or less noisy, and the model should be proof against measurement noise. In this Section we estimate the sensitivity of our model according to Gaussian additive and multiplicative noises.

Data

First of all, a BRDF data set had to be chosen for this study. Since measurements are noisy by nature, we have used a synthetic data set to test the robustness of the model, so as to be able to parameter the noise level. We have built a virtual measurement data set using the Phong's BRDF model [START_REF] Lewis | Making Shaders More Physically Plausible[END_REF], which calculates the directional variations of the synthetic BRDF. At this first directional kernel, we have added a spectraly-dependent kernel. Its spectral profile S(λ) is a unit frequency-varying sine curve with an amplitude of ±20 %, with no physical realism but that allows us to test the performance from smooth to strong spectral variations between 0.5 and 1 micron:

S(λ) = 1 + 0.2 * cos(2 * π * λ/λ 0 ) with λ 0 = -150/500 * λ + 350nm,
where λ belongs to the range [500nm, 1000nm]. For each possible directions set, the spectrum is scaled by the BRDF level computed through the evaluation of the Phong's model, and modulated by S(λ). Spectral sampling is done every 2 nanometer and the recursive subdivision level for the spherical wavelet projection is equal to 3, which results in a set of 449,792 samples.

Secondly, we have taken care to set realistic noise levels for this experiment.

For convenience, we have not considered the spectral variation of the noise. The additive noise level has been estimated from a simple dark measurement on a perfect absorber. This level is about 10 -3 sr -1 at nadir viewing for the considered measurement device. A realistic additive noise follows a law in 1/ cos θ r [START_REF] Boucher | Round Robin of Painted Targets BRDF Measurements[END_REF], and we have also taken this effect into account to closely match the device noise.

Multiplicative noise level can be estimated from the standard deviation of real and spectraly flat measured BRDFs. For our device, this level is about 0.2 %, and does not depend on angular variations. To perform a more complete evaluation, we have not limited ourselves to these levels and have also included several higher noise levels.

Method

We have constructed two initial data sets for this test. The first one was the compressed version of the synthetic BRDF, using a Villasenor wavelet basis and a compression ratio of 8:1 (case I). The second one was using a Brislawn wavelet basis and a compression ratio of 16:1 (case II). The modelling error introduced by the compression is presented in Table 5.

The method consists in adding noise to the initial BRDF data sets according to a chosen noise type and level. A first comparison is performed, called "initial case", to evaluate the impact of the noise without any compression. Then, the noisy data set is compressed with the same configuration used for cases I and II.

The final step for the completion of the test consists in comparing the simulated sets to the original one as illustrated in Figure 11.

For a more qualitative evaluation, we also include spectral angle comparisons.

The spectral angle is a physically-based spectral criterion that supplies the spectral similarity between two spectra by calculating the angle between them, treating them as vectors in a space with dimensionality equal to the number of bands [START_REF] Kruse | The Spectral Image Processing System (SIPS) -Interactive Visualisation and Analysis of Imaging Spectrometer Data[END_REF]. Usually, a spectral angle < 0.1 radian means that spectra are very similar. We choose three different spectral angles as 1 , as 2 , and as 3 , corresponding respectively to the following configurations:

[θ i 1 = θ r 1 = 60, φ 1 = 180], 22 
[θ i 2 = θ r 2 = 60, φ 2 = 0]
, and [θ i 3 = 60, θ r 3 = 30, φ 3 = 180].

Results for multiplicative noise

Table 6 summarizes the results achieved on noisy data in the multiplicative case.

One can see that the model is able to remove low noise level with the highest compression ratio (case IIa and IIb). The modelling error is quite similar to the one obtained for compressed noise-free data (initial cases I and II). On the other hand, the lowest compression ratio is not sufficient to denoise the data. Nevertheless, compression always provides a beneficial effect on the noisy spectrum, since the shape of the spectrum after compression is closer to the original noise-free spectrum, as shown by the different values of the spectral angle. Moreover, for the highest noise level, the modelling error induced by the noise is larger than the one induced by the compression. This error is reduced by a large amount as the compression ratio increases.

Figure 12 shows a close-up for a multiplicative noise of 5% (case IIc) in the range 500-600 nm. One can see that the model is not sensitive to the noise, because the compressed noise-free BRDF spectrum closely match the compressed noisy BRDF spectrum. The small offset between these two spectra is due to the compression in the geometrical domain (spherical wavelet transform) that generates a spectral approximation in the neighbourhood of a given direction by averaging spectra around.

Figure 13 represents the four BRDF sets (noise-free uncompressed, noise-free compressed, noisy uncompressed, and noisy compressed) at fixed wavelength and fixed incoming direction. Here again, the compressed noisy set is closer to the original set than the uncompressed noisy set.

Results for additive noise

Table 6 contains the results achieved on noisy data in the additive case. The noise increases with the reflection angle θ r with respect to the law in 1/ cos θ r . At grazing angles, the high noise level explains that the difference between the compressed noisy set and the original one is larger than in the multiplicative case.

However, the model presents the same overall behaviour: compression always improves the similarity between compressed noisy and noise free data sets, as

shown by the spectral angles values, even at grazing angles.

Figure 13 represents the four BRDF sets (noise-free uncompressed, noise-free compressed, noisy uncompressed, and noisy compressed) for an additive noise level of 5 * 10 -3 sr -1 (case If) at fixed incoming and outgoing directions in the range 800-900 nm. The compressed noisy BRDF set is very similar to the compressed noise-free BRDF set. Moreover, variations due to the noise cannot be confused with the spectral BRDF variations.

Conclusion and future work

We Nevertheless, some work remains to be done. Interpolation schemes in the specific case of BRDF should be more deeply investigated. Another perspective is to improve spherical wavelet bases. We should for instance use the work of Bonneau [START_REF] Bonneau | Optimal Triangular Haar Bases for Spherical Data[END_REF] about the design of Haar-like bases thanks to semi-orthogonality.

In the same way, one-dimensional basis selection should be more efficient using the best basis algorithm [START_REF] Coifman | Entropy Based Methods for Best Basis Selection[END_REF]. At last, we left as future work the use of the wavelet projection for classification, like Kaewpijit did [START_REF] Kaewpijit | Spectral data reduction via wavelet decomposition[END_REF] for hyperspectral data.
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  denoising: small and localized signal variations are avoided by the compression Moreover wavelets handle low-frequency signals with localized high-frequencies very well. They should be naturally adapted to the strong variations of acquired BRDFs (specular peak, hot-spot phenomenon).

  and outgoing direction, and wavelength). In fact, spherical wavelets are suitable for directional-hemispherical reflectance, or BRDF at a fixed incident direction, without taking into account the dependence on wavelength.A more complete model was presented by Lalonde et al.[START_REF] Lalonde | A Wavelet Representation of Reflectance Functions[END_REF]. They use multidimensional wavelets (4D) on the real line to handle BRDF at fixed wavelength, which requires a mapping from H 2 × H 2 to R 4 . The use of Nusselt embedding[START_REF] Lewis | Light-Driven Global Illumination with a Wavelet Representation[END_REF], to compromise on the matter of redundancy at the poles, provides an elegant solution but cannot entirely avoid the distortion introduced by the map-1 Generating a uniform distribution of points on the sphere is still an open problem ping. This representation is still strongly parameterization dependent. The global control of the compression (thresholding) induced by the single multidimensional wavelet transform is also one of the most important drawbacks of this representation. Nevertheless, this work should be easily extended to include the dependence on wavelength (with an additional dimension).

Figure 1 :

 1 Figure 1: BRDF modelling process: (a) analytical approach, (b) numerical approach.

Figure 2 :

 2 Figure 2: Hemispherical subdivision at level 0, 1, and 2 starting from a tetrahedron. Each triangle is split into four children almost equal in term of solid angles at each subdivision step.

Figure 3 :

 3 Figure 3: Multiresolution analysis on the sphere S 2 : (a) scaling functions defined on a triangle, (b) wavelet functions defined on a triangle.

Figure 4 :

 4 Figure 4: Compression rates achieved according to different wavelet bases, for a constant modelling error r 2 = 2 %, on different acquired spectra.

Figure 5 :

 5 Figure 5: Spectrum reconstruction of an acquired paint emissivity from different compression ratios.

Figure 6 :

 6 Figure 6: Spectrum reconstruction of an acquired sand radiance from different compression ratios.

Figure 7 :

 7 Figure 7: Different reconstructed BRDF compared to measurements: (a) cloth BRDF in the principal plane φ i = 0 • for θ i = 60 • (450nm), (b) sand BRDF in the principal plane φ i = 0 • for θ i = 60 • (700nm), (c) dry grass BRDF in the plane φ = 40 • for θ i = 50 • (800nm).

Figure 8 :

 8 Figure 8: Spectral isotropic BRDF of the cloth target reconstructed with two different wavelet bases and compression ratios, represented here for θ i = θ r = 60 • , φ = 180 • .

Figure 9 :

 9 Figure 9: Spectral isotropic BRDF of the spectralon panel reconstructed with two different wavelet bases and compression ratios. The compression smooths the BRDF and removes the noise (θ i = θ r = 30 • , φ = 180 • ).

Figure 10 :

 10 Figure 10: Illustration of the Gibbs Phenomenon for the reconstructed velvet
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  have presented a new BRDF model based on wavelets to overcome the main shortcomings to analytical modelling. This model is suitable and efficient for any kind of BRDF measurement data set, without any spectral or angular range limitation. It has been tested against many different surface samples and the model agrees reasonably well with the measurements, even for some radical compression thresholds. Usually, isotropic BRDFs can be compressed up to 64:1 with a global relative error < 10%. The model is less impressive on anisotropic BRDFs, but the main reason is certainly the poorer quality of the measurement in this case. Indeed, results are still pretty good with a synthetic anisotropic BRDF data set.

	Moreover we have demonstrated the denoising capability of the model for syn-
	thetic BRDF data sets. The model is very robust to moderate but realistic noise
	levels, for multiplicative noise as well as additive noise, and the compressed noisy
	BRDF data set is always closer to the original noise-free data set than the uncom-
	pressed noisy data set.

Table 1 :

 1 Relative modelling error (%) achieved on different measured spectra for a large set of compression ratios.

	Tables						
	r c	8:1		16:1		32:1
	Case	r 1	r 2	r 1	r 2	r 1	r 2
	r1	1.4	2	3.2	4.2 8.6	13
	r2	0.68	1.2	1	1.8 2.3 4.5
	l1	3.5	6.5	4.9	9.2 6.1	11
	l2	9.5	16	14	22	25	32
	e1	0.57 0.76 0.87 1.1 1.6 2.1
	e2	0.94	1.2	1.9	2.3 4.6 5.6

1996, he was Assistant Professor at the Université Paul Sabatier (UPS) and became Associate Professor in 1997. He is now leading the Visualisation and Rendering research group at IRIT. His research interests include physically based rendering, high quality real-time rendering and advanced architecture for computer graphics.

Table 2 :

 2 Relative modelling errors (%) achieved on isotropic BRDFs at fixed wavelength acquired with our goniometer.

	BRDF		spectralon		plywood			cloth
	rc	r 1	r 2	basis	r 1	r 2	basis	r 1	r 2	basis
	1:1	0.078 0.36	-	0.26 1.2	-	0.53 2.8	-
	2:1	0.18	0.41	FBI	0.43 1.3	CDF3_5	1.3	3.2	Coiflet1
	8:1	0.27	0.46 Villasenor5 0.65 1.4	CDF3_5	6	10	CDF3_1
	16:1	0.36	0.54 Villasenor5 0.73 1.4	CDF2_8	7.1	12	CDF3_1
	64:1	0.5	0.74 Villasenor1	1.3	2.2	Villasenor2	7.4	12	Coiflet1
	128:1	0.63	0.92	CDF2_2	2	3	Villasenor1	9.5	16	BurtAdelson
	256:1	0.92	1.1	Villasenor1	4.4	6.3	Villasenor1	11	19	CDF2_4
	BRDF		sand			plastic		wood
	rc	r 1	r 2	basis	r 1	r 2	basis	r 1	r 2	basis
	1:1	0.25	1	-	0.42 2.9	-	0.14 1.2	-
	2:1	0.58 1.1 Villasenor6 0.75	3	Coiflet4	0.72 1.6 Daubechies3
	8:1	0.71 1.2	Symmlet4	1.7	4.9	Coiflet4	0.93 1.9 Daubechies3
	16:1	1.1	1.6	Symmlet6	2	5.1 Daubechies10	3.1	7.5	CDF4_4
	64:1	1.6	2.2 Villasenor3	8	13	Brislawn2	4.4	9.4	Villasenor2
	128:1	2.4	3	Symmlet6	8.8	20	CDF4_4	5.6	11	CDF4_4
	256:1	2.8	3.5 Villasenor3	15	30	Brislawn2	7.8	12	Villasenor6

Table 3 :

 3 Relative modelling errors (%) achieved on spectral isotropic BRDFs acquired with our goniometer.

			(a)							
								(b)		
	BRDF	velvet		Ward					
	r c 1:1	r 1 0.05	r 2 1.2	r 1 0	r 2 0	BRDF r c	r 1	r 2	velvet	basis
						1:1	1.3 4.5		-
	2:1	0.059	1.5	0.32 0.076					
						2:1	2.9 7.1	CDF3_5
	8:1	4.8	11	3.1	5.4					
						4:1	3.1 7.7	CDF3_5
	16:1	7.6	15	8.5	15					
						8:1	6.3	25	Villasenor18_10
	32:1	9.6	62	13	22					
						16:1	12	40	Brislawn2
	64:1	15	227	16	28					
						32:1	17	52	Villasenor1
	128:1	19	236	17	30					

Table 4 :

 4 Relative modelling errors (%) achieved on anisotropic BRDFs acquired with our goniometer: (a) at a fixed wavelength of 650nm, (b) for a spectral range 400-950 nm.

	case	I	II
	r 1 (%)	1.3	2.7
	r 2 (%)	1.7	4
	as 1	0.017 0.037
	as 2	0.017 0.037
	as 3	0.017 0.037

Table 5 :

 5 Initial modelling error for virtual BRDF noise free data and two different compression ratios.

	level		0.2% (a)			1% (b)			5% (c)	
	case	initial	I	II	initial	I	II	initial	I	II
	r 1 (%)	0.25	1.8	2.7	1.2	1.9	2.8	6.2	3.2	3.4
	r 2 (%)	0.28	2.5	4	1.4	2.5	4	7	4.4	4.7
	as 1	0.0028 0.024 0.037	0.013	0.024 0.037	0.068	0.048 0.049
	as 2	0.0029 0.024 0.037	0.013	0.024 0.037	0.069	0.024 0.037
	as 3	0.0026 0.024 0.037	0.013	0.025 0.037	0.067	0.025 0.033

Table 6 :

 6 Relative modelling errors and spectral angle values for virtual BRDF data with different levels of multiplicative noise.

	level	2.5 * 10 -4 (d)			10 -3 (e)			5 * 10 -3 (f)	
	case	initial	I	II	initial	I	II	initial	I	II
	r 1 (%)	0.76	1.4	2.8	3	2.5	3.6	15	10	10
	r 2 (%)	1.3	1.9	4	5.2	4.3	5.1	26	20	18
	as 1	0.0039 0.017 0.038	0.015	0.018 0.037	0.079	0.057 0.052
	as 2	0.0042 0.017 0.037	0.017	0.017 0.037	0.086	0.027 0.036
	as 3	0.0024 0.017 0.037 0.0096 0.016 0.035	0.048	0.016 0.033

Table 7 :

 7 Relative modelling errors and spectral angle values for virtual BRDF data with different levels of additive noise.
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