
HAL Id: hal-01516270
https://hal.science/hal-01516270

Submitted on 11 May 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Accurate Shadows by Depth Complexity Sampling
Vincent Forest, Loïc Barthe, Mathias Paulin

To cite this version:
Vincent Forest, Loïc Barthe, Mathias Paulin. Accurate Shadows by Depth Complexity Sampling.
Computer Graphics Forum, 2008, 27, pp.663 - 674. �10.1111/j.1467-8659.2008.01164.x�. �hal-01516270�

https://hal.science/hal-01516270
https://hal.archives-ouvertes.fr

EUROGRAPHICS 2008 / G. Drettakis and R. Scopigno
(Guest Editors)

Volume 27 (2008), Number 2

Accurate Shadows by Depth Complexity Sampling

Vincent Forest, Loïc Barthe and Mathias Paulin†

University of Toulouse, France-IRIT-CNRS

(a) (b) (c)

Figure 1: High quality shadows produced by our algorithm. The 1024×1024 images are computed in 4 seconds on a traditional
Japanese scene composed of 501,650 triangles, semi-opaque occluders and 4 omni-directional area lights.

Abstract
The accurate generation of soft shadows is a particularly computationally intensive task. In order to reduce ren-
dering time, most real-time and offline applications decorrelate the generation of shadows from the computation
of lighting. In addition to such approximations, they generate shadows using some restrictive assumptions only
correct in very specific cases, leading to penumbra over-estimation or light-leaking artifacts. In this paper we
present an algorithm that produces soft shadows without exhibiting the previous drawbacks. Using a new efficient
evaluation of the number of occluders between two points (i.e. the depth complexity) we either modulate direct
lighting or numerically solve the rendering equation for direct illumination. Our approach approximates shadows
cast by semi-opaque occluders and naturally handles area lights with spatially varying luminance. Furthermore,
depending on the desired performance and quality, the resulting shadows are either very close to, or as accu-
rate as, a ray-traced reference. As a result, the presented method is well suited to many domains, ranging from
quality-sensitive to performance-critical applications.

Keywords: Soft Shadows, Depth Complexity Sampling, Penumbra Wedge

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Color, shading, shadow-
ing, and texture

1. Introduction

Shadows are fundamental for the realism of virtual 3D
scenes. They give information about the relationship be-

† {Vincent.Forest, Loic.Barthe, Mathias.Paulin}@irit.fr

tween objects and enhance rendering quality by modelling
light-surface visibility. Hard shadows are the simplest to
generate. Considering the light as a point, they result from
the visibility query between a point p in the scene and the
light. If the light is not reduced to a simple point, more re-
alistic soft shadows are produced by evaluating the part of

c© 2008 The Author(s)
Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.
Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and
350 Main Street, Malden, MA 02148, USA.

V. Forest, L. Barthe & M. Paulin / Accurate Shadows by DCS

the light source visible from p. Soft shadows can be seen
as a direct extension of hard shadows since they require the
evaluation of the visibility query between p and an infinite
number of samples from the light source. The computation
of soft shadows is therefore time-consuming and specific al-
gorithms are required to reduce computational complexity.

For interactive applications, the required real-time frame
rate is reached by computing approximated soft shadows.
This approximation can be either visually plausible, when
it is based on the filtering of hard shadow boundaries
[RSC87, Fer05], or physically plausible, when it is com-
puted by evaluating the light area visible from the points
p seen in the scene [AAM03, GBP06]. However, these last
algorithms generate artifacts from overlapping penumbrae,
light-leakage and/or have performance bottlenecks. Most of
them are based on the shadow maps framework [Wil78]. As
a result, they are subject to the artifacts introduced by the
discrete, surjective representation of the scene. In addition,
their computational complexity and memory consumption
increase when they deal with omni-directional lights rather
than spot lights. Others are object-based shadow volume al-
gorithms [Cro77]. They do not exhibit the shadow map lim-
itations and despite fill-rate bottleneck and geometry con-
straints they produce exact hard shadows and they naturally
handle point, spot and infinite lights.

Contribution: Starting from these observations, we take
advantage of the robustness of shadow volumes to com-
pute soft shadows as accurately as a ray-traced refer-
ence with a controllable, quality-dependent frame-rate rang-
ing from real-time to interactive. In addition, our unified
framework provides the required information to correctly
solve the rendering equation [Kaj86] for direct illumina-
tion from area light sources. Thus, it is well suited for
many domains, ranging from quality-sensitive applications
to performance-critical ones. Our technique is summarized
as follows. For each light, we identify the visible surface
points in the penumbra region using the penumbra wedge
primitive [AMA02, AAM03]. The depth complexity func-
tion returns the number of occluders between two points
[LAA∗05, LLA06]. We evaluate this function between each
surface point in the penumbra, and a set of light samples,
with a new technique better suited for our real-time require-
ments. This allows us to directly identify the visible light
samples for the surface points, i.e. those with a depth com-
plexity equal to zero. Then we use this information to either
compute the amount of visible light or solve the rendering
equation for direct illumination with an accuracy depending
on the light sampling.

The remainder of the paper is organized as follows. Sec-
tion 2 presents a brief overview of previous work on the gen-
eration of soft shadows. In section 3, we describe how the
depth complexity function is used to compute the amount
of light visible from a point p according to the opaqueness
of the occluder and the luminance of the light samples. The

real-time depth complexity computation is detailed in sec-
tion 4 while section 5 presents the light sampling strategy.
In section 6 we show how our approach is used to solve the
rendering equation [Kaj86] for direct illumination. Section 7
describes the GPU implementation. Finally, we present re-
sults in section 8 and we end with a discussion of directions
for future work.

2. Related work

Shadow computation is a widely studied problem and a sur-
vey on hard shadows has been presented by Woo et al.
[WPF90], while real-time soft shadows have been recently
covered by Hasenfratz et al. [HLHS03]. In this section, we
focus on the most recent contributions.

Shadow maps [Wil78] have been widely extended to pro-
vide soft shadows. Some algorithms use a set of shadow
maps per light, limiting their use to static scenes [ARHM00,
HBS00, SAPP05]. Others use a single light sample depth
map and try to preserve high performance by imposing scene
limitations [SS98,BS02] or using heuristics [AHT04,ED06]
rather than visibility computations. Recently, Atty et al.
[AHL∗06] and Guennebaud et al. [GBP06] introduced soft
shadow mapping. In order to compute visibility, they con-
sider the depth map as a discrete representation of the scene
and they back-project shadow map samples [DF94] onto the
light source. The same concept is presented by Aszódi and
Szirmay-Kalos [ASK06] and Bavoil et al. [BCS06]. Where
the back-projected samples overlap, however, this leads to
penumbra over-estimation that can be reduced by a more ac-
curate occluder detection [GBP07] or by a logic binary com-
bination of the back-projected samples [SS07].

Although these algorithms produce convincing results,
the inherently discrete, surjective nature of their image-
based framework limits their accuracy. This is why, despite
the constraints on the occluding geometries, the penumbra
wedge algorithm [AMA02, AAM03] is particularly attrac-
tive. A penumbra wedge conservatively bounds the penum-
bra region defined by a silhouette edge seen from the light
center. Thus, each point p inside a wedge has its light vis-
ibility potentially influenced by the corresponding edge. In
the penumbra wedge algorithm, the amount of light seen by
p is computed by the accumulation of the occluded area of
the projected silhouette edges onto the light source. How-
ever, the overlapping of the back-projected edges leads to
over-estimated shadows that can be reduced by an expensive
blending heuristic [FBP06].

Laine et al. [LAA∗05] generalized the penumbra wedge
method for offline rendering for planar area light sources.
In order to compute physically based soft shadows they use
the wedges to define a list of edges that can influence the
amount of visible light for a point p. In a second step, they
project the edges, seen from p, onto the light source and they
use special edge rules to evaluate the depth complexity of

c© 2008 The Author(s)
Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.

V. Forest, L. Barthe & M. Paulin / Accurate Shadows by DCS

a set of light samples. Finally, to determine whether sam-
ples with the lowest depth complexity are occluded, a single
shadow ray is cast to one of them. Despite its accuracy, this
approach can be less efficient than common ray-traced shad-
ows. Lehtinen et al. [LLA06] improve its efficiency and re-
duce its memory consumption by storing edges in a BSP tree
instead of the conservative hemicube data structure. In our
approach, neither data structures storing silhouette edges for
each p, nor explicit edge rules for depth complexity compu-
tation, are necessary. In addition, our approach is not limited
to planar area light sources and it is well suited to interactive
rendering of dynamic scenes.

3. From Depth Complexity to Visibility Coefficient

Real-time physically plausible soft shadow algorithms
[AAM03, GBP06] decorrelate the generation of shadows
from the computation of lighting by defining a visibility
buffer (v-buffer) storing for each viewed point p of the scene
its corresponding visibility coefficient (v-coef ∈ [0,1]). We
denote as v-coef the percentage of visible light and, in this
section, we propose a very simple v-coef formulation based
on the depth complexity between p and a set of light sam-
ples.

Overview: The depth complexity function returns the num-
ber of occluders between two points. Considering a light
sample s and a surface point p, s is visible from p if its depth
complexity from p is equal to zero. Thus, a v-coef for p can
be simply computed from a set of N samples uniformly dis-
tributed over a light l as:

V (l↔ p) = 1− 1
N

N−1

∑
i=0

Sat
(
D

(
si,l ↔ p

))
(1)

where D
(
si,l ↔ p

)
returns the depth complexity ∈ N be-

tween the ith light sample si,l and p. Sat (x) is a saturating
function that clamps x into [0,1].

Textured light: Area light sources such as a fire or a TV
screen have a spatially varying luminance. Using depth com-
plexity, such textured light sources can be simply taken into
account during the v-coef computation by multiplying the
visibility query (i.e. the saturated depth complexity) by the
sample luminance L.

V rgb (l↔ p) =
1
N

N−1

∑
i=0

Lrgb
i,l −Lrgb

i,l ·Sat
(
D

(
si,l ↔ p,

))
(2)

The sample luminance can be encoded with an arbitrary
color space. However, since the red, green, blue (RGB) rep-
resentation is well suited for common rendering engines, we
define sample luminance and v-coef as RGB values∈ [0,1]3.
In addition, sample luminance can vary over time. We take
into account these animated textured lights by adding time
dependence to the luminance.

Surface opaqueness: In order to compute soft shadows cast
by semi-opaque occluders, we must evaluate the amount of
attenuated light from s to p. This is done by replacing the
depth complexity function D

(
si,l ↔ p

)
in equation 2 by a

light attenuation function Dr
(
si,l ↔ p

)
computed by sum-

ming the occluders’ percentage of opaqueness. The opaque-
ness factor is a constant for an occluding surface and it simu-
lates surfacic light attenuation. Functions D and Dr are equal
for opaque occluders and in the following, we do not differ-
entiate, instead denoting D and Dr as a real depth complexity
function. Note that our surface opaqueness computation is an
approximation producing accurate results only when a single
semi-opaque surface occludes p. Indeed, the light contribu-
tion is derived from the sum of opaquess factors while it
should rather be modulated by the attenuation factor of all
occluding surfaces.

4. Local Depth Complexity Computation

This section details the streamed evaluation of the depth
complexity function. In a first step, we compute the silhou-
ette edges from the entire scene w seen from a light l. Then,
we initialize the depth complexity between p and a set of
light samples from the pool of edges E (section 4.1). Finally,
the wedges W built from silhouette edges are used to define
points p whose shadow term is affected by E and to locally
update their depth complexity (section 4.2).

4.1. Depth Complexity Initialization

The depth complexity between p and a light sample s was
originally defined as the number of surfaces that a ray from
p to s intersects. A depth complexity of n (n greater than
zero) means that n surfaces occlude s as seen from p. How-
ever, potential changes in the visibility function can occur
only on the silhouette edges. It is therefore sufficient to track
the occluding silhouette loops rather than the occluding sur-
faces. In consequence, we reformulate the depth complexity
function as the number of silhouette loops occluding s from
p.

This reinterpretation addresses a limitation of previous al-
gorithms. Indeed, as explained by Laine et al. [LAA∗05],
each silhouette edge generates a local change in the depth
complexity function and the set of all silhouette edges repre-
sents its derivative. Integrating over the local changes results
in integrating the derivative of the depth complexity func-
tion, and gives the depth complexity without the constant
of integration. In order to define this constant, Laine et al.
cast a shadow ray towards the light sample with the low-
est depth complexity, thus limiting the performance and the
dynamism of the rendered scene. However, the shadow vol-
ume algorithm computes for each visible point p the number
of occluding silhouette loops. Using the previous reformula-
tion, this defines the constant in the integration of the depth
complexity function derivative. As a result we can avoid the

c© 2008 The Author(s)
Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.

V. Forest, L. Barthe & M. Paulin / Accurate Shadows by DCS

Figure 2: Update of the depth complexity of a set of light
samples seen from a point p. Each occluding edge is pro-
jected from p onto the light source. The covered samples are
then incremented or decremented according to the wedge
type (outer or inner).

ray casting by initializing the constant of integration with the
result of the shadow volume step.

Note that this is quite similar to the initialization step of
the penumbra wedge approach [AAM03]. The main differ-
ence is that we consider the result of the shadow volume
computation as the depth complexity between the light sam-
ples and p rather than an approximation of its initial v-coef.

4.2. Update of the Depth Complexity

Algorithm 1 update_depth_complexity(Wedges W)
1: for all we ∈W do
2: for all p in we do
3: e← edge associated with we;
4: ep← e projected from p onto the light;
5: ep

c ← ep clipped against the light border;
6: for i = 0 to NBR_LIGHT _SAMPLES−1 do
7: if p.sample[i] is covered by ep

c then
8: if we is an outer wedge then
9: p.sample[i].depth_complexity + = 1;

10: else
11: p.sample[i].depth_complexity − = 1;
12: end if
13: end if
14: end for
15: end for
16: end for

The depth complexity integration is performed as in algo-
rithm 1.

The depth complexity between a point p and a set of light
samples is updated by processing the silhouette edges whose
projections from p overlaps the light source (line 3). Due
to its linear nature, the integration can be performed sepa-
rately for each projected edge and it is independent for each
light sample (line 6). Thus, we update the depth complex-
ity counter independently for each light sample as follows.
The shadow volume quadrilateral splits each wedge into two
parts: the inner part and the outer part. In both cases, the
edge is projected onto the light source (line 4) to define the
covered light samples (line 7). Their corresponding depth

complexity counters are then incremented (line 9) or decre-
mented (line 11) if the wedge is respectively outer or inner
(figure 2). Since projected edges are clipped (line 5), silhou-
ette edges crossing the light border are also naturally han-
dled (standard offline integrations require specific treatments
here).

4.3. The Counter Packing

Figure 3: Simultaneous update of f our counters ∈ [0..255]
packed in a f our-byte value. Left: operations on the packed
representation; right: resulting value of the packed counters.

The depth complexity is evaluated with edges encoded
as a streamed data set rather than a common static list. In-
stead of iterating over the list of edges to globally compute
the depth complexity between a sample s and a point p, we
progressively update it for each edge that potentially affects
the visibility. This avoids the use of a costly pre-computed
static space-partitioning data structure referencing silhouette
edges [LAA∗05,LLA06]. For each visible point p we main-
tain a set of depth complexity counters corresponding to the
set of light samples. Therefore the number of available coun-
ters must be equal to the number of light samples, and the
precision available has to be sufficient to store the maximum
number of occluders.

Rendering engines provide render buffers with, typically,
f our values (red, green, blue and alpha). In order to pro-
vide a sufficient number of counters being both efficiently
stored and updated, we pack several counters into a single
value as illustrated in the following example. Considering a
value v encoded in a 32-bit unsigned integer. The value v
can store a single counter ranging from 0 to 232− 1 or, for
instance, f our values ranging from 0 to 255 in f our consec-
utive bytes. This packed representation is particularly well
suited for a vectorized incrementation/decrementation. In-
deed, assuming that the resulting values do not overflow the
domain of the counters, the addition of a f our-byte value
with correctly positioned bits performs a vectorized update
of the counters as shown in figure 3.

4.4. Advantage and Drawbacks

Counter packing provides an efficient update of the depth
complexity counters and increases their quantity. However,
only unsigned integers can be used. Even though depth com-
plexity cannot be negative, inner wedges can affect the depth
complexity counters before the outer wedges, resulting in

c© 2008 The Author(s)
Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.

V. Forest, L. Barthe & M. Paulin / Accurate Shadows by DCS

temporary negative values. Thus, we split the depth com-
plexity update into two batches, where outer wedges are
treated before the inner ones. Furthermore, semi-opaque oc-
cluders require the use of floating point values. We approx-
imate this by discretizing and mapping the opaqueness do-
main into integers. Note that this limits the precision of both
counters and opaqueness.

The depth complexity updates are performed according to
the primitives extruded to the silhouette edges and hence, no
explicit access to the occluding surfaces is required. How-
ever, this precludes the use of surfaces with varying opaque-
ness.

(a) Standard (b) Accurate (c) RT reference

Figure 4: Comparison of silhouette edge determination
methods for soft shadows generation. Detecting the silhou-
ette edges from the light center (a) leads to an under-
estimated penumbra while considering the whole surfacic
light (b) avoids this single light sample artifact and produces
shadows identical to the ray-traced reference (c).

Standard silhouette detection from the center of the light
leads to the well known single light sample artifact (fig-
ure 4(a)). We avoid this using a more accurate approach (fig-
ure 4(b)). Considering the planes of two triangles connected
to an edge, the edge is a silhouette if a part of the light source
is in the positive side of one plane and in the negative side of
the other [LAA∗05]. Even though this detection is more ac-
curate, note that it generates several silhouette loops where
only one is produced by a standard detection. This detection
therefore cannot be used on semi-opaque occluders, since
the overlapped silhouette loops result in an over-estimated
opaqueness factor.

Finally, the presented algorithm generalises the penumbra
wedge approach [AAM03] and it can be easily integrated
into the penumbra wedge framework.

5. Light Sampling Strategy

The quality of the reconstructed visibility function between
a point p and an extended light source depends on both the
number of samples and their distribution over the light (fig-
ure 5). In this section we detail our sampling strategy and
propose a method to dynamically adjust the balance between
the precision of the depth complexity and the number of
samples.

5.1. Samples Distribution

In order to accurately evaluate the visibility function for
p, it is necessary to distribute random samples onto the
light source using an adapted probability distribution func-
tion [PH04]. However, a fixed sampling pattern for all p may
become visible (figure 5(a)), even with several light sam-
ples. In order to alleviate this drawback, one can vary the set
of samples for each p by randomly rotating the initial sam-
pling pattern (figure 5(b)). In addition to this decorrelation,
we perform a better distribution of the samples using a strat-
ified sampling strategy. (figures 5(c) and 5(e)).

5.2. Interleaved Sampling

Correlated samples generate visible sampling patterns and
their decorrelation generates noise. Interleaved sampling
[KH01] takes advantage of both distributions. The main idea
is that for neighbour points, a measured signal may produce
the same result. Thus, the signal for nearby points is sampled
with an interleaved sampling distribution and finally merged
into a single sampling pattern. Segovia et al. [SIMP06] pro-
posed a real-time framework for this technique. To conserve
the coherence between neighbour pixels, they split the ren-
dered image into sub-buffers containing the pixels that use
the same distribution of samples. After sampling the desired
signal, they gather the sub-buffers and filter the result ac-
cording to the normal and depth discontinuities.

Interleaved sampling can be efficiently used in our frame-
work (figure 5(d) and 5(f)). However, in order to avoid multi-
ple rendering of shadow volumes and wedges, we use neither
the image splitting nor the gather step. In spite of the loss of
near points coherence, no drop of performance occurs since
no coherent memory access is required (section 7).

5.3. Adaptive Sampling

The maximum depth complexity of the rendered scene de-
pends on the scene complexity and the point of view. While
rendering a plain leads to a globally low depth complexity,
a forest rendering generates many occlusions. Given a fixed
amount of available memory for a visible point p, we pro-
pose a simple way to dynamically adjust the precision and
the number of packed depth complexity counters.

The maximum depth complexity between the light sam-
ples and p is equal to the maximum number of occluding
silhouette loops. Thus, in a first step, we track the maximum
integration constant mc resulting from the depth complex-
ity initialization of the current visible points. Then we use
this value to define the counter packing encoding. As an il-
lustration, consider the previous example where f our-byte
are available for each visible point. With mc in [256,65535],
two counters of two-byte (∈ [0,65535]) can be packed with-
out overflow, while mc in [128,255] allows the use of f our
counters of one byte (∈ [0,255]).

c© 2008 The Author(s)
Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.

V. Forest, L. Barthe & M. Paulin / Accurate Shadows by DCS

(a) 64 correlated (b) 64 decorrelated (c) 64 stratified (d) 64 interleaved (e) 16 stratified (f) 16 interleaved

Figure 5: Comparison of the soft shadow quality according to the number of samples and the sampling strategy. Shadows are
generated with either 64 (a, b, c, d) or 16 (e, f) samples using a correlated (a), decorrelated (b), decorrelated and stratified (c,
e) or interleaved sampling pattern (d, f).

6. Sampling of the Direct Illumination

The depth complexity function is used to compute a visibility
coefficient of a point p. The v-coef is then used to modulate
the direct illumination of p computed from the center of the
light. Hence, considering a set of j lights, the direct illumi-
nation according to a given point of view x′ is computed as:

L (p→ x′) = Le (p→ x′) + ∑
j

fs (x→ p→ x′)L (x→ p)

V (lx↔ p)
cosθocosθi

||x−p||2
(3)

where Le is the emitted radiance and fs is the BSDF. Even
though the visibility is evaluated for an area light source, the
direct lighting is still computed using point lights. In order
to compute an accurate direct illumination for extended light
sources, we have to solve the rendering equation [Kaj86] for
the surfaces S of the area light sources:

L (p→ x′) = Le (p→ x′) +
Z

S
fs (x→ p→ x′)L (x→ p)

υ (x↔ p)
cosθocosθi

||x−p||2
dA (x) (4)

Note that the binary visibility υ(x↔ p) can be very simply
evaluated from the depth complexity function as:

υ (x↔ p) = H (D (x↔ p)) (5)

where H(x) is the Heaviside function that returns one if x
is strictly positive and zero otherwise. Thus, we can numer-
ically solve the equation 4 for the direct illumination, using
a set of N samples uniformly distributed over each extended
light source, and their corresponding depth complexity:

L (p→ x′) = Le (p→ x′)

+ ∑
j

A (l j)
N

N−1

∑
k=0

fs
(
xk, j → p→ x′

)
L

(
xk, j → p

)
H

(
D

(
xk, j ↔ p

)) cosθocosθi

||x−p||2
(6)

where xk, j is the kth sample of the light j and A
(
l j

)
is the

area of the jth light source. This equation 6 naturally handles
textured lights since the incoming radiance L

(
xk, j→ p

)
of

the light samples is explicitly defined. Note that we replace
the Heaviside function by the Saturate one when simulating
semi-opaque occluders.

Figure 6: Overview of our algorithm for GPU implementa-
tion of the proposed depth complexity evaluation. All compu-
tations are performed on the GPU without transferring data
to main memory.

7. Implementation

In this section, we present a GPU-intensive implementation
of our algorithm. The proposed rendering algorithm (algo-
rithm 2) is developed for the latest generation of graphics
hardware. We therefore use fragment programs (FP), ver-
tex programs (VP) and geometry programs (GP). Figure 6
summarizes the GPU implementation and the render context
organization, which we elaborate in the following explana-
tions.

7.1. Sampling Distributions

Depending on the sampling strategy and light type we pre-
compute, and store into textures, the corresponding 2D
sample distribution (we assume that omni-directional light
sources can be parametrized in 2D). In order to limit the re-
quirements on memory and the number of texture accesses,

c© 2008 The Author(s)
Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.

V. Forest, L. Barthe & M. Paulin / Accurate Shadows by DCS

Algorithm 2 render_scene(Scene w, RenderView v)
Require: Pre-computed samples pattern

set_up_camera(v);
(color-buffer, z-buffer)← draw_ambient_lighting(w);
if Interleaved Sampling then

init_discontinuity_buffer();
end if
for all l ∈ w.lights do

clear_shadow_buffers();
E← silhouette_edges(l, w);
init_depth_complexity(E);
if Adaptive sampling then

define_max_depth_complexity();
end if
Wo← build_outer_wedges(E);
Wi← build_inner_wedges(E);
update_depth_complexity(Wo, Wi);
if v-buffer is used then

v-buffer← v-coef_from_depth_complexity();
if Interleaved Sampling then

filter_v-buffer();
end if
color-buffer+ =draw_modulated_direct(l, w);

else
if Interleaved Sampling then

color-buffer+ =filter(direct_illumination(l, w));
else

color-buffer+ =direct_illumination(l, w);
end if

end if
end for

we pack several 2D sample positions per texel. Since the
sample positions are computed in the normalized texture
space, a precision of one byte per coordinate does not in-
troduce a significant error. This precision allows us to en-
code two sample positions in a texture channel of f our-byte.
Hence, using f our channels (i.e. a RGBA texture), we obtain
eight sample positions in one texture fetch. Note that tex-
tured lights require the luminance of each sample. Thus, in
addition to their packed position, we pre-compute for these
lights an N×M 24-bit RGB texture that stores the N sample
luminances for M sets of decorrelated sample patterns.

7.2. Soft Shadow Volumes Framework

Silhouettes detection: We perform silhouette detection on
the GPU using a specific GP. The detected silhouettes are
stored on the GPU in a Transform Feedback Buffer (TFB).
Since writing to the TFB is asynchronous, CPU computa-
tions such as scissor rectangle definition or depth bounds
evaluation [Len05] are performed in parallel. Note that ac-
cording to the desired quality and performance trade-off, the
silhouette determination can be computed with either accu-
rate or standard detection.

Shadow volumes: Silhouette edges are then used in the
shadow volume pass to define the initial value of the depth
complexity function. We perform silhouette edge extrusion
with a GP. In order to avoid a costly access to the stencil
buffer, the z-fail stencil test [Car00] is performed in a single
pass in a simple FP. The resulting value is then cumulatively
blended in the alpha channel of the color buffer:
face.x = fragment is front-facing ? 1 : -1

ATTRIB face = fragment.facing;

ATTRIB fPos = fragment.position;

TEMP r0;

texture[0] == zBuffer

TEX r0.x, fPos, texture[0], RECT;

SGE r0.x, fPos.z, r0.x;

MUL result.color.w, r0.x, -face.x;

For a robust z-fail stencil update, the shadow volumes have
to be capped. Thus, we use a specific GP to compute the
shadow volumes capping in an additional geometric pass.

Figure 7: Triangle strip used for the half-wedge generation.
This strip implicitly defines coherent normals for each face.
Therefore, common optimisations based on the face orienta-
tions can be used [Len05].

Wedges: In order to reduce memory consumption, wedges
are robustly extruded to infinity during the depth complex-
ity evaluation, rather than being pre-computed and stored.
We perform this construction with a GP. However, the per-
formance of a GP is influenced by the number of generated
data. Thus, the number of required vertexes is minimized
using a single triangle strip per wedge and only twelve ver-
texes per half-wedge. Figure 7 illustrates this generation of
wedges. Also, common fill-rate optimisations and fragment
rejection are used during the wedges rendering. We refer
to [Len05] and [FBP06] for additional details.

7.3. The Depth Complexity Computation Step

Counter packing representation: Since reading and writ-
ing in the same buffer is prohibited, we use the blending
operations of the GPU to perform the counter updates. Un-
fortunately, even though the latest GPUs support integers,
their blending is not yet supported. This avoids a naïve GPU
implementation of the depth complexity update. On the one
hand, the counter packing corresponds to a base decomposi-
tion where each base factor encodes the value of a counter
with a precision up to the base−1 e.g. two counters c0 and
c1 ∈ [0 · ·255] packed in a two-byte value k is decomposed in

c© 2008 The Author(s)
Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.

V. Forest, L. Barthe & M. Paulin / Accurate Shadows by DCS

Figure 8: Determination of the samples covered by the projected clipped edge ep
c . A cube map encodes the covered samples

from the origin to vx (x ∈ {0,1}) while a 2D texture stores the samples covered by the ep
c line. The effective covered samples are

then simply defined by a logical combination of the fetched bitfields.

base 256 as k = c0 ∗2560 + c1 ∗2561. On the other hand the
simple precision floating point values are supported for both
buffer format and blending operations. With this representa-
tion, one can count up to 224−1 without missing an integer
value and this value can be expressed in the following base
decomposition:

224−1 = 255∗
(

2560 + 2561 + 2562
)

(7)

= 63∗
(

640 + 641 + 642 + 643
)

(8)

= 15∗
(

160 + 161 + 162 + 163 + 164 + 165
)

(9)

= 7∗
(

80 + 81 + 82 + 83 + 84 + 85 + 86 + 87
)

(10)

Thus, we use the floating point representation and the base
decompositions exposed in equations 7, 8, 9 and 10, to pack
the depth complexity counters.

Depth complexity initialization: We present the depth
complexity initialization with a fixed Base 64 (B64) counter
packing representation (equation 8). A B64 counter pack-
ing provides sixteen depth complexity counters per 128-bits
RGBA buffer. We then use Multi Render Target (MRT) to in-
crease the number of counters. Even tough recent GPUs sup-
port up to eight MRT, we limit the memory bandwidth and
its consumption by using at most f our MRTs (i.e. 64 coun-
ters). The depth complexity initialization of the 64 counters
is then very simply performed via an FP as:

ATTRIB fPos = fragment.position;

TEMP r0;

texture[0].w == stencil value

266305 == 64^0 + 64^1 + 64^2 + 64^3

TEX r0.w, fPos, texture[0], RECT;

MUL r0.w, r0.w, 266305;

MOV result.color[0], r0.w;

MOV result.color[1], r0.w;

MOV result.color[2], r0.w;

MOV result.color[3], r0.w;

Depth complexity update: One of the main challenge we
face while updating the depth complexity is efficiently de-
termining samples covered by the projected clipped edge
ep

c . Despite having access to eight sample positions in one

(a) (b) (c)

Figure 9: (a) Illustration of the artifacts introduced by a dis-
cretization of the back projected edges and the correspond-
ing covered samples in a 1024× 1024 4D texture (16 MB).
(b) Our discretization using a 64× 64× 6 cube map and a
512× 512 2D texture (4.375 MB). (c) Determination of the
covered samples without discretization.

texture fetch, a naïve search leads to a complexity in O(N)
where N is the number of samples. We therefore propose an
efficient discrete approach to finding the covered samples.
A pre-computed 4D texture [AAM03] uses large amount of
memory and produces discretization artifacts (figure 9(a)),
while the Hough transform, as in [ED07], requires that
we either approximate, or pre-compute, the unsupported
arc-cosine function. This leads to either additional texture
fetches or heavy computation. Hence, we propose a new dis-
crete representation (figures 8 and 9(b)). First, covered sam-
ples lying in a sector defined by the origin and vector vx
(x ∈ {0,1}) are encoded in a bit field and stored in a cube
map. Then, a 2D texture indexed by the orthogonal projec-
tion of the light center onto the line ep

c stores the bit field
of samples covered by this line. The final bit mask M is
then simply defined as M = v1.bits & (∼ v0.bits) & ep

c .bits.
Finally, we iterate through the bits of M to update the cor-
responding counters. Despite the use of integer operations,
which are less efficient than floating point, this method re-
quires only three texture fetches and a logical combination
to define all the covered samples. Note that this discretiza-
tion is robust even though the light center passes through the
line ep

c . Indeed, in this case, the effective covered samples
are just defined by the cube map and so the 2D texture has
to store a field of bits set at one.

c© 2008 The Author(s)
Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.

V. Forest, L. Barthe & M. Paulin / Accurate Shadows by DCS

7.4. Rendering the Direct Illumination

Finally, the depth complexities associated with a fragment
are used to solve either the equation 6 or to compute
the corresponding v-coef (equation 2). The first approach
merges the direct illumination computation with the visibil-
ity queries while the second performs an additional step to
compute the v-coef used to modulate the direct lighting. The
resulting lighting contribution is then cumulatively blended.
Note that in both cases, the interleaved sampling strategy re-
quires an additional filtering step combining the interleaved
sampling patterns [SIMP06].

8. Results

8.1. Memory Cost

Format Memory cost

(a) Silhouettes TFB 1,310,720× 32F 5MB
(b) Samples position 64 samples packed in RGBA 32F 128B

(c) Edge LUT
(

5122 + 6∗ 642
)
∗ RGBA 32F 4.375MB

(d) Per light LUT 64× 64 RGB 8UB 12KB
(e) Color + Stencil buffer RGBA 16F 8MB
(f) Z-buffer DEPTH_COMPONENT24 3MB
(g) V-buffer RGB 8UB 3MB
(h) Discontinuity buffer Alpha 8UB 1MB
(i) Temp filtered buffer RGBA 8UB 4MB
(j) Deferred buffer RGB 32F 12MB
(k) DC-buffer(s) RGBA 32F 16MB

Table 1: Detailed memory costs of our algorithm implemen-
tation with a 10242 image resolution. An edge LUT (c) stores
our discret covered samples representation while a per light
LUT (d) stores the luminance texture lookup defined per tex-
tured light. The v-buffer (g) is not used when the equation
6 is solved. Finally, discontinuity (h), temp filtered (i) and
deferred (j) buffers are only necessary with an interleaved
sampling strategy.

Table 1 shows the memory used by data structures in our
implementation. We do not apply any texture compression
in order to present significant memory cost without the in-
fluence of a specific/subjective compression method. In ad-
dition, we reserve 5MB of memory for the silhouettes Trans-
form Feedback Buffer, allowing us to store up to 655,360
silhouette edges.

The memory requirement of our algorithm is independent
of the scene complexity and depends only on the algorithm
parametrization and the light types of the scene. Using only
one depth complexity buffer (DC-buffer) for direct illumina-
tion without textured light and covered samples discretiza-
tion requires only (a) + (b) + (e) + (f) + (k) ≈ 32MB of
memory. On the other hand, computing an image modulated
by the v-buffer, with ten textured lights, f our DC-buffers, an
interleaved sampling strategy and the discrete covered sam-
ples representation requires (a)+(b)+(c)+10∗(d)+(e)+
(f)+ (g)+ (h)+ (i)+ (j)+ 4 ∗ (k) ≈ 105.575MB of mem-
ory. However, this memory requirement is not a limitation
on current high-end GPUs.

8.2. Performances

Figure 10: Time in milliseconds of the rendering for a 10242

image. Japan1: 4 lights, 501,650 polygons; Japan2: Japan1
scene with a reduced number of polygons (246,176 trian-
gles); Kitchen: 2 lights, 146,131 polygons; Doom3: 2 lights,
17,693 polygons.

Figure 11: Time in milliseconds of the rendering steps
according to the algorithm parametrization. The two test
scenes are lit by a single light that generates large
penumbra region. Image resolution: 10242; Polycount:
Japan=501,650, Doom3=17,693

We present the performance on a complete 1024× 1024
image rendering. Indirect lighting is approximated with an
irradiance map [RH01] and the Blinn BRDF [Bli77] is used
for the materials’ appearance. Our renderer is based on the
OpenGL API and all the shaders are written in the pseudo as-
sembly language of the NV_gpu_program4 extension. The
results are measured on a 64-bits Linux workstation with a
Core 2 Duo E6700, 4GB of DDR2 800Mhz and a Geforce
8800GTX. Our benchmarks measure the global rendering
time (figure 10) and the cost of the different steps (fig-
ure 11) on three test scenes (figure 12) with varying al-
gorithm parametrization. To stress our approach, the light
sources are not attenuated and so they do not take advan-
tage of per-light scissor and depth bound optimisations. Fi-
nally, we use a counter packing representation where each
DC-buffer stores 16 depth complexity counters with a preci-
sion up to 63 (equation 7).

Figure 10 illustrates that the Depth Complexity Sampling
with 16 samples (DCS16) is approximately 5 times faster
than using 64 samples (DCS64). This performance improve-
ment is explained by the limitation on memory bandwidth
and texture fetches, in addition of the reduction in working

c© 2008 The Author(s)
Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.

V. Forest, L. Barthe & M. Paulin / Accurate Shadows by DCS

(a) Japan (b) Kitchen (c) Doom3

Figure 12: The three test scenes used in our benchmark. (a) and (b) are high-polygon scenes while (c) is a game scene including
animated skinned characters.

load of the raster operation unit. To reduce the noise of the
shadows computed with 16 depth complexity counters, the
interleaved sampling strategy can be used with a negligi-
ble performance cost. Computing shadows for semi-opaque
occluders is less than 4% slower than the common depth
complexity sampling. Note that compared to a direct light-
ing modulated by a v-buffer, solving the equation 6 leads
to a performance drop between 8% and 12%, except for the
game scene, where the rendering time is multiplied by more
than 2. This result is explained by the effectiveness of the
v-buffer on low-polygon scenes. Indeed, in these scenes the
simple direct lighting computation step is very fast, since
very few triangles have to be transformed. However, solving
the equation 6 is more computationally intensive and results
in a more important performance gap between the two di-
rect lighting approaches than on a high-polygon scene (fig-
ure 11). Finally, we observe in figure 11 that our discrete
covered samples representation improves performance by a
percentage between 25% and 33% with respect to a naïve
search of the covered samples.

9. Discussion and Future Works

The presented depth complexity sampling algorithm allows
the generation of fast and accurate shadows. However, since
it uses the soft shadow volume framework, it handles only
polygonal models and is submitted to fill-rate bottleneck.
Furthermore, the splitting of wedges in inner and outer parts
generates aliasing due to precision errors. Nevertheless, our
approach is orthogonal to the previous object-based methods
and thus it may take advantage of all their current and future
improvements.

Due to its sampling nature, and despite the use of the
adaptive sampling strategy, the proposed algorithm is still
exposed to the sub-sampling artifacts. However, since we use
a Monte Carlo sample distribution, averaging the result of
several runs would give a solution that would be statistically
very close to the exact solution. One can therefore imagine
a progressive rendering or a multi-GPU system where each
picture is computed according to different sampling distri-
bution and then averaged in the final image.

The adaptive sampling algorithm defines the counter
packing representation for a given point of view. Note that
the counter packing encoding can be locally defined per
pixel rather than globally set for the current rendered image.
A simple idea is to track the number of wedges bounding
each pixel.

The lack of integer support in the blending stage limits
both the precision of the counters and the efficiency of mem-
ory usage. In addition, despite the use of an adaptive sam-
pling strategy, the counter packing robustness is still com-
promised by an eventual overflow error. We propose an API
extension that address these limitations by exposing a buffer
as a pool of m available bits for each pixel. The application
would explicitly define how to partition m into N channels,
while a pool of bits would be reserved to save the state of
each channel (overflow error, NaN indicator etc.).

(a) pWedge (b) DCS (c) RT

Figure 13: Comparison of the shadows generated by the
penumbra wedge algorithm (a), our Depth Complexity Sam-
pling (b) and a Ray-Traced reference (c). In addition of the
overlapping penumbrae artifact, the penumbra wedge algo-
rithm produces an incorrect lighting due to the single light
sample direct lighting computation.

10. Conclusion

We have presented an accurate and efficient soft shadow vol-
ume algorithm based on a new fast evaluation of the depth
complexity function. The proposed algorithm addresses the
limitations of both the penumbra wedge approach [AAM03]
(figure 13) and the offline soft shadow volume methods
[LAA∗05, LLA06]. We have demonstrated that, despite its

c© 2008 The Author(s)
Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.

V. Forest, L. Barthe & M. Paulin / Accurate Shadows by DCS

object-based nature, this algorithm can efficiently deal with
complex animated models lit by a complex direct illumina-
tion. Contrary to the image-based approaches, our method
does not use a discrete, surjective scene representation. In
addition it naturally handles the omni-directional surfacic
lights without any additional drop in performance or specific
treatments.

Acknowledgements

We thank Tom Cashman for his help in the completion of the
paper.

References

[AAM03] ASSARSSON U., AKENINE-MÖLLER T.: A geometry-
based soft shadow volume algorithm using graphics hardware. ACM
Transactions on Graphics, Proc. SIGGRAPH 22, 3 (2003), 511–
520.

[AHL∗06] ATTY L., HOLZSCHUCH N., LAPIERRE M., HASEN-
FRATZ J.-M., HANSEN C., SILLION F.: Soft shadow maps: Effi-
cient sampling of light source visibility. Computer Graphics Forum
25, 4 (2006), 725–741.

[AHT04] ARVO J., HIRVIKORPI M., TYYSTJÁRVI J.: Approximate
soft shadows with an image-space flood-fill algorithm. Computer
Graphics Forum, Proc. EUROGRAPHICS 23, 3 (2004), 271–280.

[AMA02] AKENINE-MÖLLER T., ASSARSSON U.: Approximate
soft shadows on arbitrary surfaces using penumbra wedges. In
Proc. EG Workshop on Rendering Techniques (2002), Eurographics,
pp. 297–306.

[ARHM00] AGRAWALA M., RAMAMOORTHI R., HEIRICH A.,
MOLL L.: Efficient image-based methods for rendering soft shad-
ows. In Proc. SIGGRAPH (2000), ACM Press, pp. 375–384.

[ASK06] ASZÓDI B., SZIRMAY-KALOS L.: Real-time soft shad-
ows with shadow accumulation. In EUROGRAPHICS short papers
(2006).

[BCS06] BAVOIL L., CALLAHAN S. P., SILVA C. T.: Robust Soft
Shadow Mapping with Depth Peeling. Tech. Rep. UUSCI-2006-028,
University of Utah, 2006.

[Bli77] BLINN J. F.: Models of light reflection for computer synthe-
sized pictures. In Proc. SIGGRAPH (1977), ACM Press, pp. 192–
198.

[BS02] BRABEC S., SEIDEL H.-P.: Single sample soft shadows us-
ing depth maps. In Proc. Graphics Interface (2002), pp. 219–228.

[Car00] CARMACK J.: Email to private list. Id-Software, 2000.

[Cro77] CROW F. C.: Shadow algorithms for computer graphics. In
Proc. SIGGRAPH (1977), ACM Press, pp. 242–248.

[DF94] DRETTAKIS G., FIUME E.: A fast shadow algorithm for area
light sources using backprojection. Computer Graphics Forum 28
(1994), 223–230.

[ED06] EISEMANN E., DÉCORET X.: Plausible image based soft
shadows using occlusion textures. In Proc. of the Brazilian Sympo-
sium on Computer Graphics and Image Processing (2006), Confer-
ence Series, IEEE Computer Society, pp. 155–162.

[ED07] EISEMANN E., DÉCORET X.: Visibility sampling on gpu
and applications. Computer Graphics Forum, Proc. EUROGRAPH-
ICS 26, 3 (2007), 535–544.

[FBP06] FOREST V., BARTHE L., PAULIN M.: Realistic
soft shadows by penumbra-wedges blending. In Proc. SIG-
GRAPH/EUROGRAPHICS conference on Graphics hardware
(2006), Eurographics, pp. 39–48.

[Fer05] FERNANDO R.: Percentage-closer soft shadows. In SIG-
GRAPH Sketches (2005), ACM Press, p. 35.

[GBP06] GUENNEBAUD G., BARTHE L., PAULIN M.: Real-time
soft shadow mapping by backprojection. In Proc. EG Symposium on
Rendering (http://www.eg.org/, 2006), Eurographics, pp. 227–234.

[GBP07] GUENNEBAUD G., BARTHE L., PAULIN M.: High-quality
adaptive soft shadow mapping. Computer Graphics Forum, Proc.
EUROGRAPHICS 26, 3 (2007), 525–533.

[HBS00] HEIDRICH W., BRABEC S., SEIDEL H.-P.: Soft shadow
maps for linear lights. In Proc. EG Workshop on Rendering Tech-
niques (2000), Eurographics, pp. 269–280.

[HLHS03] HASENFRATZ J.-M., LAPIERRE M., HOLZSCHUCH N.,
SILLION F.: A survey of real-time soft shadows algorithms. In State-
of-the-Art Report, Proc. EUROGRAPHICS (2003), Eurographics.

[Kaj86] KAJIYA J. T.: The rendering equation. In Proc. SIGGRAPH
(1986), ACM Press, pp. 143–150.

[KH01] KELLER A., HEIDRICH W.: Interleaved sampling. In Pro-
ceedings of the 12th Eurographics Workshop on Rendering Tech-
niques (2001), Eurographics, pp. 269–276.

[LAA∗05] LAINE S., AILA T., ASSARSSON U., LEHTINEN J.,
AKENINE-MÖLLER T.: Soft shadow volumes for ray tracing. ACM
Transactions on Graphics, Proc. SIGGRAPH 24, 3 (2005), 1156–
1165.

[Len05] LENGYEL E.: Advanced stencil shadow and penumbra
wedge rendering. Game developer Conference, unpublished slides,
2005.

[LLA06] LEHTINEN J., LAINE S., AILA T.: An improved
physically-based soft shadow volume algorithm. Computer Graph-
ics Forum, Proc. EUROGRAPHICS 25, 3 (2006), 303–312.

[PH04] PHARR M., HUMPHREYS G.: Physically Based Rendering:
From Theory to Practice. Morgan Kaufmann, 2004, ch. Monte Carlo
Integration I: Basic Concepts, pp. 631–660.

[RH01] RAMAMOORTHI R., HANRAHAN P.: An efficient represen-
tation for irradiance environment maps. In Proc. SIGGRAPH (2001),
ACM Press, pp. 497–500.

[RSC87] REEVES W. T., SALESIN D. H., COOK R. L.: Render-
ing antialiased shadows with depth maps. Proc. SIGGRAPH 21, 4
(1987), 283–291.

[SAPP05] ST-AMOUR J.-F., PAQUETTE E., POULIN P.: Soft shad-
ows from extended light sources with penumbra deep shadow maps.
In Proc. of Graphics Interface (2005), pp. 105–112.

[SIMP06] SEGOVIA B., IEHL J.-C., MITANCHEY R., PÉROCHE B.:
Non-interleaved deferred shading of interleaved sample patterns. In
Proc. SIGGRAPH/EUROGRAPHICS conference on Graphics hard-
ware (2006), Eurographics, pp. 53–60.

[SS98] SOLER C., SILLION F.: Fast calculation of soft shadow tex-
tures using convolution. In Proc. SIGGRAPH (1998), ACM Press,
pp. 321–332.

[SS07] SCHWARZ M., STAMMINGER M.: Bitmask soft shadow.
Computer Graphics Forum, Proc. EUROGRAPHICS 26, 3 (2007),
515–524.

[Wil78] WILLIAMS L.: Casting curved shadows on curved surfaces.
In Proc. SIGGRAPH (1978), ACM Press, pp. 270–274.

[WPF90] WOO A., POULIN P., FOURNIER A.: A survey of shadow
algorithms. IEEE Compututer Graphics Application 10, 6 (1990),
13–32.

c© 2008 The Author(s)
Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.

