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Abstract

Raytracing metaballs is a problem that has numerous applications in the rendering of dynamic soft objects such as
fluids. However, current techniques are either limited in the visual effects that they can render or their performance
drops as the number of metaballs and their density increase. We present a new acceleration structure based on
BVH and kd-tree for efficient raytracing of a large number of metaballs. This structure is built from an adapted
SAH using a fast greedy algorithm and allows the visualization of several hundreds of thousands metaballs at
interactive-to-real-time framerates. Our method can handle arbitrary rays to simulate any complex secondary
effects such as reflections or soft shadows, and is robust with respect to the density of metaballs. We achieve this
performance thanks to a balanced CPU-GPU (using CUDA) implementation of the animation, structure creation,
and rendering.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Raytracing; I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling—
Curve, surface, solid, and object representations; I.3.7 [Computer Graphics]: Three-Dimensional Graphics and
Realism—Visible line/surface algorithms

1. Introduction

Modeling and visualizing fluids and other dynamic objects
of varying topology is a difficult problem. One common rep-
resentation uses a large number of implicit surfaces known
as soft objects or metaballs [Blo97]. However visualizing a
large number of metaballs in real time remains a difficult
problem in itself due to their implicit nature.

A common method to display metaballs is ray casting,
which has the benefit of rendering the surface very pre-
cisely. Since no analytical solution is known in the general
case, the ray-isosurface intersection is usually computed iter-
atively via for instance, ray marching [Har93], Bezier clip-
ping [NN94] or interval arithmetic [Flo08, KHK∗09]. Un-
fortunately, computing such intersections can become prob-
lematic since the cost of evaluating the potential function
of the surface increases as the number of metaballs grows.
Most papers that tackle this issue try to reduce the cost and
the number of evaluations of this potential function, for in-
stance by reconstructing the potential function along the ray
[WT90, NN94].

Another solution tessellates the isosurface, and then ras-

terizes the corresponding polygons [Ura06]. The main prob-
lem of this technique is that the resulting mesh is very depen-
dent of the tessellation sampling grid, and thus some geome-
try can be missed if the grid resolution is too low. Moreover,
the cost of meshing the surface can become another issue
when dealing with large numbers of metaballs.

Figure 1: Screenshot of a fluid simulation composed of 10,000
metaballs rendered with reflection and refraction using our tech-
nique. Our acceleration structure makes their visualization possible
at an interactive framerate.
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In this paper, we present a new acceleration structure,
combining aspects of a kd-tree and a BVH. This structure
allows interactive raytracing of large numbers of metaballs
while still capturing advanced secondary lighting effects
such as true mirror reflections, translucencies and soft shad-
ows (cf. Figure 1).

Our method aims at reducing the number of evaluations
of the potential function. Our ray-isosurface intersection test
works efficiently by evaluating the metaballs potential field
at only a few points along the ray. The use of an acceler-
ation structure, such as a BVH, can make our intersection
tests even faster by reducing the number of metaballs ac-
counted for. However, a BVH needs specific attention for it
to work with metaball rendering, which we detail in Sec-
tion 4. As successfully done with triangles [EG07, SFD09],
we show that a specific Surface Area Heuristic (SAH) and
the fitting of the bounding boxes of each node can make the
BVH more robust according to the density of the metaballs.
Our GPU implementation shows that scenes composed of a
large number of metaballs can be rendered at an interactive-
to-real-time framerate.

2. Related work

2.1. Density function

A metaball i is a potential field centered at a point pi called
the center of the metaball. This potential field is often de-
scribed by a density function fi, which decreases as we move
away from pi. N metaballs define a single potential field f
as the sum of the density function of each metaball. Visual-
izing metaballs actually looks for the isosurface defined by
the equation:

f (x) =
N

∑
i=0

fi(x)−T = 0

for a chosen threshold value T . The original potential field
is Blinn’s blob [Bli82], for which the density function is de-
fined as a Gaussian function, and thus has an infinite support.
Other common density functions are piecewise polynomials
of the form:

fi(x) =

{ (
1− ‖x−pi‖2

Ri
2

)α

if ‖ x− pi ‖ ≤ Ri;
0 otherwise.

The larger the value for α, the smoother the surface. These
density functions have a finite support, which allows skip-
ping metaballs that are out of the range of any point x when
computing f (x). The sphere centered at pi and of radius Ri
is called the bounding sphere of metaball i. Our method is
presented using this last potential field, but it handles any
finite support density function.

2.2. Raytracing metaballs on the GPU

A number of papers have addressed the issue of render-
ing metaballs using the GPU. Iwasaki et al. [IDYN06] per-
form surface reconstruction of a particle simulation on GPU.

However, since their method discretizes the surface, it might
fail to render high frequency details such as thin splashes
in fluid simulations. Van Kooten et al. [vKvdBT07] ren-
der metaballs on the GPU using point-based visualization
of particles spread uniformly along the isosurface, but their
method can miss small objects as well.

Loop and Blinn [LB06] ray cast piecewise algebraic sur-
faces defined by Bezier tetrahedra on the GPU using Bern-
stein polynomials. However their method is not really suited
for a large number of metaballs as the cost of computing the
coefficients of the polynomials at each vertex of the tetra-
hedra depends on the number of metaballs. More recently,
Kanamori et al. [KSN08] efficiently ray cast a large number
of metaballs on GPU using depth peeling and Bezier clip-
ping [NN94], but since they rely on rasterization from the
image, their method is limited to primary rays, thus restrict-
ing their rendering effects to the ones achievable in screen
space (for instance, shadow maps or screen space ambient
occlusion), contrary to our method which performs true ray
tracing.

In order to render point clouds, Wald and Seidel [WS05]
first reconstruct a potential field of finite support using a par-
tition of unity, and then perform a kd-tree accelerated ray
tracing of an isosurface on the CPU. Our method for render-
ing metaballs has similarities with their technique: we both
use an acceleration structure built greedily over the bound-
ing boxes of the primitives with the use of a SAH, and then
try to reduce the size of its nodes in order to reduce the num-
ber of intersection tests. Their method for reducing the size
of a node consists in slicing that node in thin layers, then
checking which layers do not intersect the surface in order
to remove them from the node. This last step is done in a
Monte-Carlo way, by evaluating the potential field at several
samples at the base of each layer. This technique increases
drastically the construction time of the kd-tree as hundreds
of samples are needed to safely remove a layer. This is not
a problem in their context, since they consider static geome-
tries only. The optimizations of our acceleration structure are
efficient and enough to achieve interactive rendering of dy-
namic metaballs. In our context, our intersection test is also
more accurate than the ray marching they use.

3. Intersection test

Numerous methods for ray-isosurface intersection have been
studied. The Bezier clipping method, developed by Nishita
and Nakamae. [NN94], is robust but requires to sort the in-
tersections with the metaballs’ bounding spheres along the
ray. Sorting these intersections can be efficiently realized for
primary rays, thanks to their coherency, by rasterizing the
bounding spheres as did Kanamori et al. [KSN08].

Our method for intersecting the isosurface consists in two
steps. First it looks for an interval [a;b] along the ray con-
taining only the first intersection. Then it uses the secant
method [MKF∗04, NMHW02] to narrow this interval until
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sufficient precision is reached. The secant method always
converges if there is only one intersection in [a;b].

To find such a starting interval, we make the assumption
that wherever the ray intersects the isosurface, the potential
will be positive at at least one of the points pmi , correspond-
ing to the projection of the center pi of each metaball i on
the ray. While this assumption is true for most rays, it can be
false for very few rays that are nearly tangent to the surface.
Fortunately, missing these tangential rays hardly causes any
visual artifacts, and denser sets of metaballs create less sil-
houettes. We then set b as the first point pmi met by the ray
at which the potential is positive and a as the origin of the
ray. If f (pmi) < 0 for every i, we consider that our ray does
not intersect anything, due to our above assumption.

Once the intersection point has been computed, the nor-
mal is found in a standard manner by computing the gradient
of the potential field at that point.

4. BVH for rendering metaballs

In order to make the intersection computation more efficient
and keep interactive the whole rendering process, we must
build an acceleration structure that minimizes the number of
metaballs for ray-metaball intersection tests.

A Metaball Connected Set (MCS) is defined as a set of
metaballs creating a continuous surface (cf. Figure 2). As the
metaballs move in the scene, the number and configuration
of the MCSs are likely to vary at each frame.

Figure 2: A set of metaballs defining two MCSs in red and
blue.

A BVH is an efficient acceleration structure for many
primitives, which can be built quickly either on CPU
[Wal07] or GPU [LGS∗09]. However, in our context, a clas-
sical BVH built to enclose the MCSs would not work well.
Indeed, the metaballs usually define only a few MCSs, un-
less the metaballs are sparsely distributed, which is not the
case for most fluid simulations. Therefore, such a BVH
would result in a tree of low depth, whose nodes would each
encompass a large number of metaballs.

Instead, we propose to compute the BVH on the meta-
balls’ bounding spheres. However, such a structure does not
contain all the necessary data to be able to perform ray-
isosurface intersection tests within the nodes themselves,
since the surface generated by the metaballs in a node might
get modified by metaballs outside that node. We thus modi-
fied the BVH to add split metaballs to the nodes at the leaves.

The split metaballs of a node are the metaballs that do not

belong to the node, but whose bounding spheres intersect the
bounding sphere of at least one metaball from that node. One
can see the split metaballs of a node as the minimal set of
metaballs required to compute any intersection in that node.
Thus, storing the indices of those split metaballs in each leaf
makes the BVH fully functional and autonomous.

The BVH accelerates intersection tests by reducing the
number of metaballs accounted for: when looking for an in-
tersection in a leaf, we explore only the projections pmi of
each metaball i from that leaf and use only the metaballs
and split metaballs of the leaf to compute the value of the
potential field at any point. Note that it is unnecessary to
compute and look for an intersection at the projection pm j of
all split metaballs j, as they belong to other leaves and will
be explored when looking for an intersection in those leaves
anyway.

4.1. Construction

The modified BVH is built as a classical BVH, from top to
bottom. As in [Wal07], at each step of the construction, sev-
eral ways of splitting the latest node built are browsed us-
ing binning. The best split position is then evaluated using a
greedy SAH and its cost is compared to the cost of turning
that node into a leaf. However, at each step of the algorithm,
we keep track of the split metaballs of each node. Each time
a node is split into two children, the split metaballs of each
child are computed by looking both at the split metaballs of
their parent and the metaballs of the other child (cf. Algo-
rithm 1).

Algorithm 1 Construction of a BVH for metaballs
1: BUILDNODE(nodeMballs, splitMballs, nodeBbox) {
2: find best splitting plane s for nodeBbox using binning
3: leftChildMballs, rightChildMballs←∅
4: leftChildBbox, rightChildBbox← emptyBbox
5: for each i in nodeMballs do
6: if pi is at the left of s then
7: leftChildMballs← leftChildMballs ∪ {i}
8: leftChildBbox← leftChildBbox ∪ bbox(i)
9: else

10: rightChildMballs← rightChildMballs ∪ {i}
11: rightChildBbox← rightChildBbox ∪ bbox(i)
12: end if
13: end for
14: leftSplitMballs←∅
15: for each i in splitMballs ∪ rightChildMballs do
16: if i overlaps the bounding sphere of any j ∈ left-

ChildMballs then
17: leftSplitMballs← leftSplitMballs ∪ {i}
18: end if
19: end for
20: BUILDNODE(leftChildMballs, leftSplitMballs, leftChildBbox)

21: execute the instructions 14−20, but for the right node }
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5. Fitted-BVH

As the leaves of the modified BVH can overlap each other,
the same intersection can be computed several times dur-
ing ray traversal. This becomes an issue when dealing with
dense sets of metaballs as the leaves grow bigger, therefore
increasing the cost of computing a ray-isosurface intersec-
tion.

The Fitted-BVH (FBVH) reduces the number of redun-
dant intersection tests during the traversal of the structure.
When two nodes A and B of the modified BVH overlap each
other, most of the metaballs from A whose bounding spheres
intersect the overlapping volume A∩B are duplicated as split
metaballs in B. Therefore, during ray traversal, the surface
generated by those metaballs can be intersected several times
as stated earlier.

Like a BVH, an FBVH is a tree in which the bounding
boxes of two child nodes define a partition of the surface
encompassed by their parent node. However, contrary to a
BVH, the two child nodes cannot intersect each other (cf.
Figure 3). Therefore, if we explore the leaves in order of
traversal, we can stop as soon as an intersection is found,
thus minimizing any redundant test.

Figure 3: An FBVH is a surface partition tree where two
child nodes cannot overlap each other.

Since the bounding boxes of two child nodes cannot in-
tersect each other anymore, they no longer correspond to the
bounding boxes of the metaballs they contain. Instead, they
determine a region of space that contains a portion of the
surface generated by the metaballs and split metaballs of the
nodes. Therefore, there is not much difference between the
metaballs and the split metaballs of a node: the union of both
determines the set of metaballs whose bounding spheres in-
tersect the node. However, we will continue to separate these
two sets as it makes the construction of the FBVH more con-
venient.

Actually, the main difference with a kd-tree is the pres-
ence of a bounding box for each node, which enables a tight
encompassing of the metaballs bounding spheres when they
are sparse enough. This is of prime importance here as the
cost of intersecting a leaf is high (cf. Section 5.1.1). Such an
encompassing can be done with a kd-tree using techniques
like empty space cutoff implemented using our fitting tech-
niques (cf. Section 5.1.2) and our optimizations (cf. Section

5.3). However it would require additional nodes (up to 5 ad-
ditional nodes to remove all empty space around the bound-
ing box of a node) that would create additional branchings
during the traversal of the structure. Those branchings are
detrimental when using SIMD architectures such as a GPU,
since they may reduce instruction coherency. This makes us
believe that our FBVH should be a little faster than such
a kd-tree in this context, even though we did not actually
implement one. The difference of performance is probably
small anyway as the cost of intersecting a leaf is much higher
than the one of the ray traversal.

5.1. Construction

5.1.1. Surface Area Heuristic for metaballs

SAH is essential to build the acceleration structure in a fast,
greedy way. However, it has to be carefully designed to en-
sure good performance during ray traversal. The usual cost
considered when splitting a node N into two nodes A and B
is

Csplit(A,B) = ρA×CA +ρB×CB

where Ci is the cost of computing an intersection in node
i, and ρi is the probability of having a ray intersect
node i knowing that its parent node has been intersected.
Csplit(A,B) is compared to the cost of leaving N as a leaf.

ρi is estimated as the ratio Ai/AN of the surface area of the
bounding box of node i over the surface area of the bounding
box of its parent node N. Usually, the cost of intersecting a
surface generated by a primitive is the same in each node,
so Ci is in O(n) where n is the number of primitives in node
i (we can even set Ci = n if all primitives are of the same
type). This is not the case for metaballs though, as the cost
of evaluating the potential field depends on the number of
metaballs in the current leaf.

When looking for an intersection in a leaf, we compute the
projections on the ray of every center of the leaf’s metaballs.
The potential field is evaluated at those projection points,
and each of these evaluations is done in O(n) operations
where n is the number of metaballs in the leaf. Thus this
base interval finding step is done in O(n2) operations.

Starting from this analysis, our cost function should be
Ci = n2 + λ× n where n2 corresponds to the base interval
finding and the λ×n to the secant method. The value for con-
stant λ is difficult to determine, as it depends on the number
of iterations needed by the secant method to converge. How-
ever, it is clear that n2 is the dominant term for leaves com-
posed of many metaballs (which is the case for dense sets of
metaballs). Thus we can as well set λ = 0 in those cases. In
our experiments, neglecting λ×n and setting Ci = n2 did not
have much impact in terms of rendering speed in the case of
sparse metaballs either.
5.1.2. Algorithm

To build the FBVH, we proceed as with the modified BVH.
However, when splitting a node, we compute a first bounding
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box for each child by splitting the node’s bounding box at the
split plane (cf. Figure 4 (a)). The metaballs from the node are
distributed to either the left or the right child according to
the splitting plane. Then, any metaball from the node’s split
metaballs or the right child’s metaballs that overlaps the left
child node is duplicated in its split metaballs, and the same
is done for the right child node (cf. Algorithm 2).

We then try to fit the bounding box of each child node to
its primitives (hence the fitted-BVH). This step is crucial to
achieve good performance as the cost of intersecting a leaf is
high (O(n2), see Section 5.1.1). In order to do so, we com-
pute the bounding box of the metaballs and split metaballs
for each child (cf. Figure 4 (b)). Each resulting bounding
box is then intersected with its previous bounding box (cf.
Figure 4 (c)).

(a) (b) (c)

Figure 4: When splitting a node, the bounding boxes of the
metaballs and split metaballs of each child are computed (b).
Intersecting them with the former bounding boxes of each
child (a) gives their new bounding boxes (c).

Algorithm 2 Construction of an FBVH for metaballs
1: BUILDNODE(nodeMballs, splitMballs, nodeBbox) {
2: find best splitting plane s for nodeBbox using binning
3: leftChildMballs←∅, rightChildMballs←∅
4: leftChildBbox← nodeBbox.splitLeftAlong(s)
5: rightChildBbox← nodeBbox.splitRightAlong(s)
6: leftMballBbox← emptyBbox
7: rightMballBbox← emptyBbox
8: for each i in nodeMballs do
9: distribute i to either the left or right child node and

update left and right metaball bounding boxes accord-
ingly as in Algorithm 1

10: end for
11: leftSplitMballs←∅
12: for each i in splitMballs ∪ rightChildMballs do
13: if i overlaps leftChildBbox then
14: leftSplitMballs← leftSplitMballs ∪ {i}
15: leftMballBbox← leftMballBbox ∪ bbox(i)
16: end if
17: end for
18: leftChildBbox← leftChildBbox ∩ leftMballBbox
19: BUILDNODE(leftChildMballs, leftSplitMballs, leftChildBbox)

20: execute the instructions 11−19, but for the right node }

5.2. Ray traversal

The ray traversal is not much different from the one of a
BVH. When a ray intersects a node, we load the bounding
boxes of both child nodes and compute which one is inter-
sected first (if any). The first one to be intersected is then
traversed first. As soon as an intersection is found, we can
stop the traversal since other leaves can only result in an in-
tersection farther away.

The intersection computation in a leaf is a little different
than when using a BVH. Since the split metaballs of the cur-
rent leaf are not fully encompassed within another leaf, their
projection along the ray has to be computed and checked as
well when looking for an interval containing the first root of
the potential field.

5.3. Optimizations

The bounding boxes of the nodes, built from the bounding
spheres of their metaballs, might not fit as tightly to the sur-
face they encompass after the fitting step described in Sec-
tion 5.1.2. We propose a modification to the computation of
the bounding box of a set of metaballs that leads to better fit-
ted nodes. We also observed that some of the split metaballs
of the nodes do not contribute to the surface encompassed
by that node and propose a technique for discarding them.

5.3.1. Bounding box computation

When computing the bounding box of some metaballs, we
usually compute the smallest bounding box which encom-
passes every metaballs’ bounding sphere. However, the sur-
face generated by the metaballs might not be so close from
the bounding spheres (cf. Figure 5). Thus it is possible to
compute a tighter bounding box, which would ensure better
performance by reducing the number of intersection tests in
each leaf.

Figure 5: The bounding box encompassing the bounding
spheres of the metaballs might not be the tightest one around
the surface itself.

A way to do so is to consider that the largest sphere gen-
erated by the metaballs is obtained when every metaball of
the leaf shares the same center, creating a sphere of radius r
such that

n

∑
i=1

fi(r) = T where fi(r) =

(
1− r2

R2
i

)α

in our case. This sum is bounded by n× fK(r) where K is
the metaball with the largest bounding sphere (of radius RK)
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in the node. Thanks to this, we can easily compute an upper
bound for r:

rmax = RK ×

√
1−

(
T
n

) 1
α

.

Therefore, ri = min(Ri,rmax) can be used as the radius of
metaball i’s bounding sphere when computing the bounding
box of the metaballs.

5.3.2. Discarding non contributing split metaballs

The split metaballs of a node have bounding spheres overlap-
ping their node’s bounding box. However, some of the split
metaballs might belong to an MCS which does not overlap
the node, i.e., they do not contribute to any surface in that
node (cf. Figure 6). Therefore, storing them as split meta-
balls is useless and harmful, as they increase computation
time for the intersection tests in the node.

Figure 6: Some of the split metaballs whose bounding
sphere (in red) intersects a node do not generate a surface
(in green) intersecting that node. Storing them in that node is
useless. Note that any metaball participating to the surface
in a node has to be stored in that node.

Identifying such split metaballs that can thus be removed
is a difficult problem. However, some conservative tests can
be applied. Given split metaball i, we test:

• that the sphere centered at pi and of radius rmax (see
above) does not overlap the node’s bounding box. This
ensures the MCS containing metaball i does not intersect
the node.
• that for any other metaball j of the node,

‖ pi− p j ‖≥ Ri + rmax.

This ensures metaball i does not interfere with the surface
generated by any other metaball j of the node.

If both those tests succeed, the metaball can be safely dis-
carded from the split metaballs.

6. Results

We wrote our implementation in C++ and CUDA. We per-
form the FBVH construction on the CPU, while ray traver-
sals and intersection computations are done on the GPU.
This allows us to compute the FBVH of the next frame on the
CPU while the current frame is being rendered on the GPU,
thus hiding its computation cost. In order to benefit from
cache for data access, metaballs and node data are stored in

the GPU texture memory. Traversal on the GPU is done us-
ing a stack stored in local memory. Animation of metaballs
is done on the GPU, then transferred to the host memory.
We use streaming so that memory transfers between CPU
and GPU can be hidden with computations (cf. Figure 7).

Figure 7: Runtime scheme. Animation of the metaballs (Ai, in
blue) is done on the GPU, then transferred to the host (Mi). The
host computes the BVH or FBVH (CBi, in orange), then transfers it
to the device memory (Bi). Rendering (Ri, in green) is done on the
GPU while the CPU computes the acceleration structure for the next
frame. Most of the memory transfers are hidden thanks to streaming.

Our configuration test is a PC with an intel Core 2 E6600
(2.66 GHz) and an Nvidia GTX 280. We compared the
FBVH to the BVH in various scenes (cf. Table 1 and Fig-
ure 8). In most scenes, we observed a significant gain of per-
formance over the BVH, especially with those scenes con-
taining dense sets of metaballs. In these cases, such as the
Pool scene, the FBVH can lead to more than 3 times faster
renderings. The difference of performance with the BVH
decreases with the density of metaballs, but as long as the
metaballs are not too sparse, the FBVH still outperforms the
BVH. It is also worth considering that while the times of
construction of both structures are of the same magnitude,
the FBVH is usually a little faster to build. This can seem
surprising, as it could have been expected that fitting the
bounding boxes of each node would result in a larger amount
of computations. Actually, even if the bounding boxes of the
nodes have a few more steps in their construction, their re-
duced sizes lead to fewer split metaballs to track during the
construction of the structure, hence the speedup.

Considering equivalent parameter values (such as meta-
ball radius, implicit surface polynomial degree, etc.) and
hardware as those used in [KSN08], we estimate that our
raytracer (acting as a ray caster in this context) would be
about 30% slower than their rasterization-based method.
This is a good performance for a pure raytracer that, by na-
ture, is not limited to primary ray effects. Moreover, in our
implementation, the cost of additional non-primary rays can
be quite low (cf. Table 2).

We measured the average number of node traversals, in-
tersection tests, and the average number of metaballs con-
sidered in these intersection tests per ray (cf. Table 3). As
one can see, the FBVH does a clearly better job at culling
unnecessary nodes and metaballs.

The effect of using the adapted SAH n2 instead of the
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(a) (b) (c)

(d) (e) (f)

Figure 8: Screenshots of the different test scenes: (a,b) the Tornado scene, rendered using three levels of reflection; (c) the Molecule 1 scene,
rendered with Phong shading; (d) the Molecule 2 scene, rendered with ambient occlusion using 64 shadow rays per pixel; (e) the Pool scene,
rendered using Fresnel reflectance; (f) the Scattered metaballs scene (pure ray casting). All these scenes are rendered at a 640×480 resolution
in our tests.

Scene
number of modified BVH FBVH
metaballs avg time of fps avg time of fps

construction min max avg construction min max avg

Scattered metaballs
30,000 101 ms 4.6 12.4 7.4 79 ms 4.9 12.5 9.4
100,000 160 ms 1.8 3.9 3.3 150 ms 2.3 9.1 4.3

Tornado
4,000 8.0 ms 3.6 5.4 4.6 5.5 ms 4 14.5 11

128,000 500 ms 0.6 1.1 1.0 290 ms 1.9 2.6 2.4
Molecule 1 5,440 8.9 ms 3.2 8.6 5.8 9.9 ms 7.5 24.1 17.7
Molecule 2 5,440 8.9 ms 0.5 0.7 0.6 9.9 ms 1.2 1.4 1.3

Pool 10,000 41 ms 1.5 2.3 1.9 40 ms 4.1 11.0 7.1

Table 1: Rendering time in fps of various scenes containing metaballs using an acceleration structure (cf. Figure 8). The construction of the
acceleration structure is completely hidden by the rendering in most cases.

Scene
Effects (avg fps)

Ray cast
Hard Hard shadows + 1 Hard Shadows + 3

shadows level of reflection levels of reflection

Molecule 22.3 17.7 12.7 8.2
Tornado 5.7 4.9 3.4 2.5

Table 2: Performance of our algorithm with secondary ef-
fects.

standard one n provides much better performance overall.
In our tests, the Pool scene gains 40% more fps using the
adapted SAH (5.1 fps with the standard SAH, 7.1 fps with
ours). Our SAH leads to a tree that is better suited for our
intersection test than the standard one, hence the better per-
formance.

We also measured the effects of fitting the bounding boxes

Number of Number of No. metaballs
traversals intersection tests considered

BVH 9.3 1.2 83.5
FBVH 6.2 0.5 35.1

Table 3: Average number of traversals, intersection tests,
and metaballs considered per ray on the Tornado scene.

of the nodes to their metaballs, as explained in Section 5.1.2.
To this effect, we omitted the fitting step during the construc-
tion of the FBVH so that each node’s bounding box was just
the result of splitting the bounding box of its parent. As one
can see in Table 4, the number of intersection tests avoided
by the fitting step clearly leads to better performance. This
gain of performance increases with the density of metaballs,
since the cost of computing an intersection in a leaf increases
with the number of metaballs in that leaf. Therefore, it is a
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worthy improvement since it does not impact the FBVH con-
struction cost too much.

Scene
Without the With the
fitting step fitting step

build time avg fps build time avg fps
Molecule 1 8.7 ms 12.7 9.2 ms 14.6

Pool 35 ms 3.2 37 ms 6.5

Table 4: Benefits of fitting the nodes’ bounding boxes after
a split during the construction of the FBVH.

Scene
Optimizations (avg fps)

None
Tighter Discarding

Both
Bbox metaballs

Molecule 1 14.6 15.3 16.7 17.7
Pool 6.5 6.7 6.8 7.1

Table 5: Benefits of the optimizations.

The optimizations presented in Section 5.3 bring a notice-
able performance improvement (cf. Table 5), but their impact
decreases as the density of the metaballs increases. This was
to be expected, as the value of rmax increases with the num-
ber of metaballs overlapping each node. Therefore, it might
be preferable to skip these optimizations in the leaves con-
taining more than a dozen metaballs, as their cost increases
with the number of metaballs (especially the discarding of
the split metaballs), and since they can drastically increase
the time of construction of the FBVH.

7. Conclusion and future work

We have presented a new acceleration structure for the ren-
dering of metaballs, that supports advanced secondary ef-
fects. The resulting speedup enables the visualization of a
large number of metaballs at interactive-to-real-time framer-
ates on the GPU. The FBVH provides a consequent speedup
compared to the BVH in the case of dense sets of metaballs
and can be built quickly on the CPU using our SAH.

However, for extremely dense sets of a large number of
metaballs, the construction time of the FBVH might become
an issue, as there is a lot of split metaballs to track. In those
cases, for the first levels of the tree, we do not use binning
to find the best splitting plane for each node but simply split
the nodes along their longest axis. This does not affect the
quality of the tree too much and provides a good speedup.

Another issue is the time of computing a ray-isosurface
intersection in leaves that contain many metaballs. In these
cases, the leaves usually contain a single MCS whose surface
is very close to the leaves’ bounding boxes. We will work on
approximations to accelerate intersection with the isosurface
in these cases.
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