
HAL Id: hal-01516223
https://hal.science/hal-01516223

Submitted on 29 Apr 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Decomposition-based Reasoning for Large Knowledge
Bases in Description Logics

Thi Anh Le Pham, Nhan Le Thanh, Peter Sander

To cite this version:
Thi Anh Le Pham, Nhan Le Thanh, Peter Sander. Decomposition-based Reasoning for Large Knowl-
edge Bases in Description Logics. Integrated Computer-Aided Engineering, 2008, 15 (1), pp.53-70.
�hal-01516223�

https://hal.science/hal-01516223
https://hal.archives-ouvertes.fr

Decomposition-based Reasoning for Large Knowledge
Bases in Description Logics

Thi Anh Le PHAM, Nhan LE-THANH and Peter SANDER ∗

Laboratoire I3S, Université de Nice Sophia-Antipolis, France
{tpham,nhan.le-thanh,peter.sander}@unice.fr

Abstract. Reasoning in a Knowledge Base (KB) is one of the most important applications of
Description Logic (DL) reasoners. The execution time and storage space requirements are both
significant factors that directly influence the performance of a reasoning algorithm. In this paper,
we investigate a new technique for optimizing DL reasoning in order to minimize the above two
factors as much as possible. This technique is applied to speed up TBox and ABox reasoning,
especially for large TBoxes. The incorporation of this technique with previous optimization
techniques in current DL systems can effectively solve intractable inferences. Our technique
is called "overlap ontology decomposition", in which the decomposition of a given ontology
into many sub-ontologies is implemented such that the semantics and inference services of the
original ontology are preserved. We are concerned about how to reason effectively with multiple
KBs and how to improve the efficiency of reasoning over component ontologies.

1 Introduction

In recent years, much progress has been made in developing optimization techniques
for reasoning in Description Logics [?]. The requirements of optimization are always
derived from practical applications for treating large Knowledge Bases (ontologies)
in DLs. The problem of effective reasoning with respect to a large TBox is a big
challenge because of intractable inferences, generally due to General Concept Inclu-
sions (GCIs) [?]. Each GCI causes a disjunctive expression to be added to the label
of every node in the tree generated by the tableaux algorithm, and this leads to an
exponential increase in the size of the search space to be explored by the t-rule. Con-
sequently, even a small number of GCIs can considerably degrade the performance of
a DL reasoner. Therefore obvious optimization techniques for reasoning often focus
on reducing the number of GCIs in a terminology. For example, lazy unfolding and
absorption [?] have proven to be particularly effective in dealing with terminologies.
Our research into parallelizing tableaux algorithms falls within this goal.

A wide variety of information sources exist on the internet, and Serafini [?] in-
troduced the integration of information from multiple sources. These sources can
be partially connected using mappings or linkings in Distributed Description Logics
∗ Corresponding Author: Laboratoire I3S, UMR 6070, CNRS, Les Algorithmes, Bât. Eu-

clide 2000, Route des Lucioles, BP121, 06903 Sophia-Antipolis, France; Email: pe-
ter.sander@unice.fr, Tel: +33 (0)4 9296 5160.

2 T-A-L. Pham, N. Le-Thanh and P. Sander

(DDL) [?, ?], ε - connections [?] and importings in Package-based Description Log-
ics [?, ?]. We will concentrate on the problem of splitting a wide variety of sources
into multiple small sources. Instead of reasoning on a given ontology, the tableaux
algorithms are implemented in parallel on many sub-ontologies generated from the
original ontology. We seek techniques which ensure that the answers derived from
reasoning algorithms are still correct. As a result, we introduce the decomposition of
an ontology into several sub-ontologies within the same domain as the first ontology.
Our technique is called "overlap ontology decomposition" in which decomposed on-
tologies (called sub-ontologies) keep all of the primitive concepts, primitive roles and
defined concept names of the original ontology. Only the set of axioms are divided
into several subsets. Hence, the number of axioms in each decomposed ontology is
reduced significantly from the original ontology. DDL is used for representing the
system of decomposed ontologies.

In this paper, the actual algorithm for decomposing ontologies is not presented.
We only focus on the most important properties of the ontology decomposition —
preserving the syntax, semantics, and inferences of the original ontology in the sub-
ontologies. The reasoning in the system of decomposed ontologies is implemented
with two methods. The first is called the distributed method, in which decomposed
ontologies are represented in a distributed system by distributed description logic and a
distributed tableau algorithm is applied. The second, called the parallel method, is the
normal tableaux algorithm. While many other optimization techniques are only valid
for certain DLs (they were created while developing DL systems and are applicable
to a large range of reasoning systems), our techniques are completely independent
of the DL supported by the reasoners. The algorithms are designed so that reasoning
results obtained within the decomposed ontologies are the same as for reasoning in
the original ontology.

The paper is organized as follows. In Section 2 we discuss some related work,
some basic notions in DL and DDL are recalled, and we also review several optimiza-
tion techniques that are applied in current DL reasoning systems. Section 3 defines
an overlap ontology decomposition of a TBox and presents a distributed TBox along
with its properties. In Section 4, we describe the algorithms for parallel reasoning and
distributed reasoning in DDL, a detailed proof of the inference preservation in sub-
ontologies is presented, and we also propose the soundness and completeness of the
reasoning algorithm in DDL, discussions about DDL and ontology decomposition,
and parallel and distributed reasoning. Finally, we present our conclusions and future
work in Section 5.

2 Related work

2.1 Description Logics

Description Logics (DLs) are a family of knowledge representation formalisms that
allow presenting the knowledge of an application domain (the "world") in a structured
and formally well-understood way. A knowledge base presented by a DL language is
composed of two components, called TBox and ABox. The TBox introduces the vocab-
ulary of an application domain (terminology) while the ABox contains the individuals
appearing in the domain (the description of the world).

Decomposition-based Reasoning in Description Logics 3

2.1.1 Syntax

In DL languages, the world is viewed as individuals that can be grouped into classes,
called concept names, and their properties or attributes are binary relationships, called
role names. For example, concept "GRADUATE-STUDENT" denotes a class of grad-
uate students, the role "hasPub" denotes a relationship of pairs of persons (denoted
by concept "PERSON") and publications (denoted by concept "PUBLICATION"). A
particular DL provides a specific set of constructors (see Table ??) that permits us
to establish the more complex concept descriptions, i.e., the concept expressions that
are constructed from atomic concepts and atomic roles using concept (role) construc-
tors provided by a particular DL. For instance, concept constructors as conjunction
(written A u B), universal quantification (written ∀r.C), and existential quantifica-
tion (written ∃R.C) can be used to describe the object-oriented model classes with
multiple super-classes and constraint types on members/attributes. For example, the
expression ∃hasChild.MALE describes the concept of "The set of individuals who
have at least one male child". The more complex description

PERSONuMALEu(≤ 2hasChild)u∀hasChild.FEMALE

denotes "A man who has at most two children, all of whom are female".
As a result, the DL languages are identified by the letters associated with each set

of constructors, see in Table ??

Concept constructors EL ELN FL− AL ALE ALC
universal (>) × × × × ×
bottom (⊥) × × ×
conjunction × × × × × ×
disjunction ×

negation × × ×
existential quantification × × × × × ×
universal quantification × × × ×

number restriction (≤, ≥) ×
Table 1. Some DL languages

A TBox contains a finite set of concept descriptions, called terminological ax-
ioms (or more briefly, just axioms). The axiom is an introduction of the names of new
concepts and new roles, or an assertion of a subsumption relationship between the
concepts and the roles that are functional or transitive. Given a DL language L, an
axiom in L has one of the forms:

1. A v C , primitive concept specification
2. A ≡ C , concept definition
3. C v D , general concept inclusion (GCI)
4. C ≡ D , concept equation

where A is a concept name, C,D are concept expressions in L.

4 T-A-L. Pham, N. Le-Thanh and P. Sander

For example, we examine an ontology Tuni for describing a small part of a uni-
versity and the activities that occur there (extracting some axioms from SHOE ontol-
ogy [?]).

Tuni

STUDENT v PERSON
LECTURER v PERSON
GRADUATE-STUDENT v STUDENT
THESIS v PUBLICATION
ARTICLE v PUBLICATION
BOOK v PUBLICATION
MASTER-THESIS v THESIS
DOCTORAL-THESIS v THESIS
DOCTOR v GRADUATE-STUDENT u∃ hasPub.DOCTORAL-THESIS
PROFESSOR v DOCTORu∃ work-at.UNIVERSITY

Table 2. An example of TBox Tuni

2.1.2 Semantics

In order to define the semantics of concept terms, one considers their interpretations
I, that are composed of a non empty set ∆I (the interpretation domain) and an inter-
pretation function that assigns every atomic concept A to AI ⊆ ∆I , and every role R
to one binary relation RI ⊆ ∆I ×∆I . An interpretation I is a model of a concept C
if CI is not empty. A concept C is satisfiable if it has a model and unsatisfiable oth-
erwise. We say that C is subsumed by D if CI ⊆ DI , for all I; and C is equivalent
to D (C ≡ D) if CI = DI , for every I. For example, STUDENTI = {Emile, Mary,
Marc}; or hasPubI = {(Marc, ThD1),(Marc, Ar1), (Frank, ThD1), (Frank, Ar2)}.

An interpretation I is a model of a TBox iff it satisfies every axiom A ≡ C and
P ≡ R in the TBox, i.e., if AI = CI and P I = RI for all these definitions.
For assertion component (ABox) of a knowledge base, one can introduce the individ-
uals (by giving names to them), and dominate their properties. If a, b are individual
names, C is a concept term and R is a role term, then C(a) and R(a, b) are assertions.
A finite set of such assertions is called an ABox A. An interpretation I is a model of
A iff aI ∈ AI and (aI , bI) ∈ RI .

GRADUATE-STUDENT(Mary), GRADUATE-STUDENT(Frank), STUDENT(Mary),
DOCTORAL-THESIS(ThD1), DOCTORAL-THESIS(ThD2),

ARTICLE(Ar1), ARTICLE(Ar2),
hasPub(Marc, ThD1), hasPub(Frank, ThD2), hasPub(Frank, Ar2),

work-at(Frank, Nice-University)

Table 3. An example of ABox Auni

Decomposition-based Reasoning in Description Logics 5

Constructors Syntax Semantic
top > > ∆I

bottom ⊥ ⊥ ∅
conjunction C1 u ... u Cn CI

1 ∩ ... ∩ CI
n

disjunction (U) C1 t ... t Cn CI
1 ∪ ... ∪ CI

n

negation (C) ¬C ∆I \ CI

existential quantification (E) ∃R.C
�
d ∈ ∆I |∃e : (d, e) ∈ RI ∧ e ∈ CI	

universal quantification ∀R.C
�
d ∈ ∆I |∀e : (d, e) ∈ RI ⇒ e ∈ CI	

number restriction (N) (≥) ≥ nR
�
d ∈ ∆I |card(e ∈ ∆I |(d, e) ∈ RI) ≥ n

	

number restriction (N) (≤) ≤ nR
�
d ∈ ∆I |card(e ∈ ∆I |(d, e) ∈ RI) ≤ n

	

role conjunction (R) R1 u ... uRn RI
1 ∩ ... ∩RI

n

Table 4. Syntax et Semantics of concept and role descriptions

2.1.3 Reasoning Services

The goal of a knowledge representation system is not only to store the concept defini-
tions and the assertions but also to provide inference services which make it possible
to obtain knowledge which is not represented explicitly in the base. For example, the
assertion PROFESSOR(Frank) can be drawn from TBox Tuni (Table ??) and ABox
Auni (Table ??).

• Subsumption. The concept description D subsumes the concept description C
w.r.t. TBox T , written C vT D or T |= C v D, iff CI ⊆ DI for all mod-
els I of TBox T . For example, STUDENT v PERSON . C,D are equivalent
w.r.t TBox T , written C ≡T D iff C vT D and D vT C

• Satisfiability. A concept description C is satisfiable (or consistent) w.r.t. TBox T
iff there exist a model I of TBox T such that CI 6= ∅. In this case, we say that I
is a model of C.

• Instance Checking. An individual a is an instance of a concept description C w.r.t.
TBox T and ABox A, written 〈T ,A〉 |= C(a), iff aI ∈ CI for all models I of T
and A

In fact, the satisfiability of concept description can be reduced to the subsumption
problem and inversely: For two concept descriptions C,D, we have :

• C is subsumed by D ⇐⇒ C u ¬D is unsatisfiable.
• C is unsatisfiable ⇐⇒ C is subsumed by ⊥.

2.1.4 Tableau Algorithm

The reasoning in DL is essentially based on first-order tableaux calculus. This tech-
nique eliminates redundant checks in the tableaux in order to give a strict upper bound
on the complexity of the method. Checking the satisfiability of a concept description
D is implemented by showing a model - an interpretation I = (∆I , .I) in which
DI 6= ∅. Such a model is presented by a completion tree T, in which the nodes corre-
spond to individuals, and edges are role-successor relationships (relationship between
individuals in the interpretation of a role). Each node x in the tree is labeled with a set
L(x) of primitive concepts and the negation of primitive concepts which must satisfy:

6 T-A-L. Pham, N. Le-Thanh and P. Sander

C ∈ L(x) ⇒ x ∈ CI

Each edge 〈x, y〉 in the tree is labeled with the role name:

R = L(〈x, y〉) ⇒ 〈x, y〉 ∈ RI

Assume that the concept description D is represented in ALC language. An ALC-
tableau must satisfy the following conditions:

• T1: If C ∈ L(x), then ¬C /∈ L(x)
• T2: If C1 u C2 ∈ L(x), then C1 ∈ L(x) and C2 ∈ L(x),
• T3: If C1 t C2 ∈ L(x), then C1 ∈ L(x) or C2 ∈ L(x),
• T4: If ∀R.C ∈ L(x) and R ∈ L (〈x, y〉), then C ∈ L(y),
• T5: If ∃R.C ∈ L(x), then there is some y s.t. R ∈ L (〈x, y〉) and C ∈ L(y).

The strategy of tableaux algorithms is internalization before implementing reasoning.
Given axiom i : E v F , its internalized concept is i : CEvF = ¬E t F ; for TBox
Ti, its internalized concept is CTi

=
⋂

EvF∈Ti
¬E t F . Also, the role hierarchy RTi

contains the role axioms of Ti, plus additional axioms P v U , for each role P of Ti,
with U some universal role.

The algorithm will start with the tree consisting of a singe node x0 labeled with
L(x0) = {C u CT }, where CT = u(CivDi)∈T (¬Ci tDi) and {Ci v Di} is the
set of axioms in T . T is then expanded from node x0 by repeatedly applying the
expansion rules from Table ??. The algorithm terminates either when T is complete

u-rule if 1. (C1 u C2) ∈ L(x)
2. {C1, C2} * L(x)

then L(x) −→ L(x) ∪ {C1, C2}
t-rule if 1. (C1 t C2) ∈ L(x)

2. {C1, C2} ∩ L(x) = ∅
3. D = C1 or D = C2

then a. L(x) −→ L(x) ∪ {D}
∃-rule if 1. ∃R.C ∈ L(x)

2. there is no y such that L(〈x, y〉) = R and C ∈ L(y)
then create a new node y and edge 〈x, y〉

with L(y) = {C} and L(〈x, y〉) = R
∀-rule if 1. ∀R.C ∈ L(x)

2. there is no some y such that L(〈x, y〉) = R and C /∈ L(y)
then L(y) −→ L(y) ∪ {C}

Table 5. Expansion rules for ALC language

(no further expansion rules can be applied) or when it contains a clash. A node x of a
completion tree T contains a clash if⊥ ∈ L(x) or for some A ∈ C, {A,¬A} ⊆ L(x).
The algorithm is ensured of termination using a blocking strategy, where a node x is
said to be blocked if there is some ancestor node y s.t. L(x) ⊆ L(y), y is called the
blocking node. For this approach, one can give the base of the decision algorithms
for the satisfiability and subsumption which are sound and complete with the very
expressive DL languages. However the investigation of the difference between the
expressivity of DL languages and the complexity of their inference problems is still
one of the most important questions in research on DLs.

Decomposition-based Reasoning in Description Logics 7

2.2 Distributed Description Logics

Distributed Description Logics (DDL) is proposed by Borgida and Serafini [?] for
representing and reasoning about knowledge bases (ontologies) in distributed envi-
ronments. A knowledge base (ontology) built by a concept language is generally
composed of two component levels: intensional (called TBox) and extensional (called
ABox). In DDL, each ontology corresponds to a description logic theory (TBox) and
ontologies are linked by semantic mappings (bridge rules). We briefly review some
definitions of DDL as given in [?].

2.2.1 Syntax

Let {DLi}i∈I be a collection of description logics, where I is a non empty set of
indices. For each i ∈ I, a TBox Ti is presented in a particular DLi. In order to
distinguish descriptions in each TBox Ti, we prefix the descriptions with the index of
their TBoxes. For example, i : C denotes a concept C ofDLi. The semantic mappings
between different TBoxes are depicted by using bridge rules.

Definition 1. (Bridge rule) A bridge rule from Ti to Tj is an expression in one of the
following three forms:

i : xv−→j : y, into-bridge rule

i : xw−→j : y, onto-bridge rule

i : x≡−→j : x, identity-bridge rule

where x and y are either two concepts, two roles, or two individuals of DLi and DLj

respectively.

The bridge rules from Ti to Tj represent the relations between Ti and Tj from the j-th
TBox point of view. In particular, the into-bridge rule i : A v−→ j : G expresses that,
from the point of view of Tj , the concept A in Ti is less general than its local concept
G. Similarly with the onto-bridge and identity-bridge rules.

Definition 2. (Distributed TBox) A distributed TBox (DTB) T = 〈{Ti}i∈I ,B〉 consists
of a collection of TBoxes {Ti}i∈I and a collection of bridge rules B = {Bij}i 6=j∈I

between them.

2.2.2 Semantics

Each TBox Ti is interpreted by a local interpretation Ii in its local domain. Bridge
rules are interpreted by using domain relation rij between domains.

Definition 3. (Domain Relation) A domain relation rij from ∆Ii to ∆Ij is a subset of
∆Ii ×∆Ij . We denote:

rij(d) = {d′ ∈ ∆Ij |(d, d′) ∈ rij}
rij(D) = ∪d∈Drij(d)
rij(R) = ∪(d,d′)∈Rrij(d)× rij(d′)

with D ⊆ ∆Ii and R ⊆ ∆Ii ×∆Ij .

8 T-A-L. Pham, N. Le-Thanh and P. Sander

The domain relation represents the possibility of mapping individuals from ∆Ii to
∆Ij from the point of view of DLj .

Definition 4. (Distributed Interpretation) A distributed interpretation
J = 〈{Ii}i∈I , {rij}i 6=j∈I〉 of a DTB combines the local interpretations Ii of each Ti

on the local domain ∆Ii and a family of relations rij ⊆ ∆Ii × ∆Ij between local
domains.

A distributed interpretation J = 〈({Ii}i∈I , {rij}i 6=j∈I〉 is said to satisfy the elements
of a DTB T = 〈{Ti}i∈I ,B〉 if:

J |=d i : Av−→j : G if rij(AIi) ⊆ GIj

J |=d i : Bw−→j : H if rij(BIi) ⊇ HIj

J |=d i : A v B if Ii |= A v B
J |=d Ti if Ii |= Ti

J |=d T if J |=d Ti and J |=d Bij ,∀i, j ∈ I
T |=d i : A v B if ∀J, J |=dT =⇒ J |=d i : A v B

Definition 5. (Distributed Abox) A distributed Abox (DAB) A =
〈
{Ai}i 6=j∈I ,C

〉
consists of a set of Aboxes {Ai}i∈I , and a set C = Cij i 6=j∈I of partial, identity and
complete individual correspondences from i to j. For every k ∈ I , all descriptions in
Ak must be in the corresponding language DLk, and for every correspondence rule
i : x 7→ j : y or i : x

≡7→ j : x or i : x
=7→ j : {y1, y2, ...} in Cij , the individual name x

must be in DLi,DLj , and y1, y2, ... must be in DLj .

A distributed interpretation J d-satisfies the elements of a DAB A =
〈
{Ai}i∈I ,C

〉
according to the following clauses: For every i, j ∈ I

J |=d i : x 7→ j : y, if yIj ∈ rij(xIi)

J |=d i : x
≡7→ j : x, if rij(xIi) = xIj

J |=d i : x
=7→ j : {y1, y2, ...}, if rij(xIi) = {yIj

1 , y
Ij

2 , ...}
J |=d i : C(a), if Ii |=d C(a)

J |=d i : p(a, b), if Ii |=d p(a, b)
J |=d Ai, iff J |=d π for every assertion π = C(a), p(a, b) in Ai

J |=d A, if for ∀i ∈ I, J |=d Ai and
J d-satisfies every individual correspondence in C.

A |=d i : C(a), if for every distributed interpretation J,

J |=d A implies J |=d i : C(a).
A |=d i : p(a, b), if for every distributed interpretation J,

J |=d A implies J |=d i : p(a, b).

2.3 Optimization Techniques

The normal tableaux algorithm is too slow to form a basis for a useful system of
description logic. Therefore we studied and used some optimization processes that

Decomposition-based Reasoning in Description Logics 9

improve the execution of the algorithm of the satisfiability test. In this section, we are
going to recall some optimization techniques for solving the reasoning problems in
DL which aim at eliminating redundant non-deterministic applications of expansion
rules during satisfiability checking (see, e.g., [?]) used in systems as FACT [?].

2.3.1 Normalization, simplification and encoding

In general terminologies, large and complex concepts are usually built up from less
complex descriptions. Whenever checking the satisfiability of a concept expression
by the basic tableaux algorithm, i.e., unfolding these large and complex concepts, a
clash is only detected when an atomic concept and its negation occur in the same node
label. The algorithm is not effective when a clash can be detected immediately due to
obvious unsatisfiability in its description.

Example 1. Testing the satisfiability of the concept expression ∃R.C u ∀R.¬(C tD)
where R is a complex role and C,D are complex concepts.

If C is large, then the unfolding of C can lead to costly wasted work, while if
∃R.Cu∀R.¬(CtD) is transformed into u{¬(∀R.¬C),∀R.¬u{C,D}}, then a con-
tradiction will be detected immediately, independently of the structure of C. Hence,
the detection of clashes can be addressed by normalizing and recoding all concept
expressions into a lexically normalized form, and by identifying lexically equivalent
expressions. These transformations are realized by the normalize and encode func-
tions in [?]. Simplifications can also be examined during the normalizing process for
eliminating redundancy and help to identify obvious satisfiability and unsatisfiabil-
ity. Contradictions would be detected whenever a concept expression and its negation
appear in the same node label.

2.3.2 GCI absorption

Absorption has been a key optimization technique in the past for processing DL on-
tologies [?]. It aims to reduce the number of GCIs by absorbing them into primitive
concept introduction axioms whenever possible. The structure of absorbable GCIs is
suggested by the syntax of the Grail concept description language in the Galen termi-
nology that belongs to one of the following forms [?]:

1. GCI whose antecedent is only a primitive concept name.
2. GCI whose antecedent is either a conjunctive concept expression or a non-

primitive concept name whose definition is a conjunctive concept expression. The
first conjunct of a conjunctive concept expression is always either a primitive
concept name or a non-primitive concept name whose definition is a conjunctive
concept expression.

• For GCIs of form ??, CN v C and CN v D are absorbed into :
CN v C uD
with semantic correspondence:
CNI ⊆ CI ∧ CNI ⊆ DI ⇐⇒ CNI ⊆ CI ∩DI

10 T-A-L. Pham, N. Le-Thanh and P. Sander

• For GCIs of form ??: CN u C v D is absorbed into:
CN v D t ¬C
with semantic correspondence:
CNI ∩ CI ⊆ DI ⇐⇒ CNI ⊆ DI ∪ ¬C)I

where CN is a primitive concept name and C,D are concept expressions.

2.3.3 Semantic branching

Syntactic branching in standard tableaux algorithms works by choosing an unex-
panded disjunction and searching the different models obtained by adding each of the
disjuncts. These branches are not disjoint, so an unsatisfiable disjunct may occur in
different branches and it would lead to wasted effort for discovering the unsatisfiabil-
ity. This problem is dealt with by the semantic branching technique adapted from the
Davis-Putnam-Logemann-Loveland procedure (DPL), for example tableau expansion
of a node x, where {(C tD1), (C tD2)} ⊆ L(x) and C is an unsatisfiable concept
expression. Syntactic branching will generate four branches in which two branches
contain C — this is obviously redundant. By choosing only a single disjunct C and
adding ¬C to L(x), we obtain two possible sub-trees for searching by the semantic
branching technique.

2.3.4 Heuristics

For reasoning algorithms, heuristics can be employed to attempt searching in some
"good" order for inference rule applications (rule heuristics) and, for non-deterministic
rules, the order in which to explore the different expansions chosen by rule applica-
tions (expansion-order heuristics). The goal is to try to select an order that leads earlier
to a model discovery (the input will be satisfiable) or to a proof that no model exists
(the input will be unsatisfiable). One of the most well-known and widely used heuris-
tics in the SAT problem is MOMS (Maximum Occurrences in clause of Minimum
Size) [?]. It is simple, easy to apply, rather precise, and problem-independent. Its goal
in DL reasoning is simply to prefer the expressions having maximum occurrences of
a disjunct in the disjunctions of minimum size.

3 Decomposition

As mentioned above, the optimization techniques presented are only actually effective
in some cases with the particular structures of GCIs. Our work consists in eliminat-
ing GCIs as much as possible from the general ontology (a TBox) by decomposing
an ontology into several sub-ontologies (a distributed TBox). The reasoning is then
implemented on these sub-ontologies that have overlap in content. The reasoning ef-
fect depends on the decomposition method of the original TBox, and we propose a
technique called "overlap ontology decomposition". In this paper, we examine only
the simplest case, decomposing a TBox into two smaller TBoxes. The general case is
presented in [?].

Decomposition-based Reasoning in Description Logics 11

3.1 Definitions

Let C,R,B,A be the sets of primitive concepts, primitive roles, defined concept
names, and axioms respectively of TBox T . We denote:

T = (C,R,B,A),
B = {B | B ≡ C)},
A = {(D v E)},

where B is a concept name and C,D,E are concept expressions.
Note that B ≡ C is a particular form of D v E because (B ≡ C) ⇐⇒ (B v

C and C v B), however B ≡ C is also called a defined concept. Thus, a concept defi-
nition is also an axiom. We define a decomposition of T called overlap decomposition
as follows:

Definition 6. (Overlap Decomposition) 〈{Ti}, {Bij}i 6=j∈{1,2}〉 (denoted by T or T12)
is an overlap decomposition of a TBox T if:

• Each component Ti consists of all primitive concepts, primitive roles and concept
names of T , i.e., Ti = (C,R,B,Ai), where Ai = {(i : C v i : D)}, with
i ∈ {1, 2}.

• Ai ⊆ A; ∪i Ai = A and ∩iAi = ∅.
• Bij is a set of semantic mappings (identity bridge rules) between Ti and Tj . A

semantic mapping is an identity relationship between two concepts (two roles)
that co-occur in two axioms of different TBoxes (Bij can be empty if Ai and Aj

are "disjoint" 2).

Thus, an overlap decomposition of a TBox T is a special distributed TBox, because
Bij includes only identity bridge rules. It captures all properties of general distributed
TBoxes (as given the section above) and some particular properties (see the following
section). We need to give a strategy for decomposing T into subsets {Ti} such that
each Ti is a DL formalism of a certain ontology.

The set of semantic mappings between two TBoxes is determined by finding con-
cept (role) names that co-occur in these TBoxes, and by representing them in the form
of bridge rules in DDL. We use B to indicate the whole set of bridge rules obtained.

In decomposition, the domain relation rij between Ii and Ij can be considered as
an identity mapping in that it maps an object of ∆Ii to itself in ∆Ij , i.e., rij(x) = x.
The essence of this decomposition is to only examine the axioms, i.e., the set of axioms
of the original TBox are divided into several subsets of axioms for sub-TBoxes. We
are concerned with the axioms because their presence can lead to an ExpTime lower
bound for the complexity of the reasoning problem [?]. However, the large number
of concepts and roles presents difficulties for maintaining, reusing and developing
independently of the component ontologies.

For example, to illustrate a decomposition of TBox Tuni in Table ??, see Table ??.
Table ?? depicts two decomposed TBoxes T1, T2 of TBox Tuni. T1, T2 have a seman-
tic mapping

2 Ai and Aj are called disjoint if there is not a common concept (a role) occurring in both Ai

and Aj

12 T-A-L. Pham, N. Le-Thanh and P. Sander

T1

STUDENT v PERSON
LECTURER v PERSON
GRADUATE-STUDENT v STUDENT
DOCTOR v GRADUATE-STUDENT u∃ hasPub.DOCTORAL-THESIS
PROFESSOR v DOCTOR u∃ work-at.UNIVERSITY

T2

THESIS v PUBLICATION
ARTICLE v PUBLICATION
BOOK v PUBLICATION
MASTER-THESIS v THESIS
DOCTORAL-THESIS v THESIS

Table 6. A decomposition of TBox Tuni into its two sub-TBoxes

1:DOCTORAL-THESIS ≡−→ 2:DOCTORAL-THESIS, where DOCTORAL-THESIS
is a concept name. We only show the decomposition of the set of axioms, in addition
Tuni, T1 and T2 have a shared set of concepts and roles :
{STUDENT, PERSON, LECTURER, GRADUATE-STUDENT, THESIS, PUBLI-
CATION, ARTICLE, BOOK, MASTER-THESIS, DOCTORAL-THESIS, DOCTOR,
PROFESSOR, hasPub, work-at}.

3.2 Additive properties of distributed TBox in a decomposition

Decomposing a TBox is also represented by a distributed TBox, therefore it assumes
all the properties of a general distributed TBox, as well as some additional properties.
Concerning interpretations "satisfying" TBoxes, we can add :

J |=d i : A≡−→j : A if rij(AIi) ≡ AIj

J |=d i : A v j : B if rij(AIi) ⊆ BIj

T |=d i : A v j : B if for ∀J, J |=d T ⇒ J |=d i : Av−→j : B

Note that, all Ti, (i ∈ I) have the same set of concepts and roles of T , so we write
i : X to show that we are talking about concept (role) X in Ti. Furthermore, we
particularly note that DDL expresses "directionality" / "no backflow", i.e., the set of
bridge rules Bij implies that information flow is only propagated from Ti to Tj , and
not in the inverse direction. This property is used to avoid the infinite loop when
propagating tableaux algorithms between local ontologies, hence we need to designate
the direction of bridge rules for each pair of TBoxes. For convenience, we stipulate
that if there is a set of bridge rules Bij from Ti to Tj then Ti is called the source TBox
and Tj is called the target TBox.

3.3 Decomposition Properties

Intuitively, a decomposition 〈{Ti},Bij〉 of T is "good" if the quantity of common
objects (concepts and roles) in the decomposed ontologies is as small as possible and

Decomposition-based Reasoning in Description Logics 13

there are about the same number of axioms in each of the two sub-ontologies. De-
composed ontologies are consistent, in that they have the same domain as the original
ontology, because they duplicate all concepts and roles of the original ontology. We
can easily infer that the decomposed ontologies also have the same interpretation as
the original ontology.

In addition, we have the following properties:

1. The preservation of concepts (roles): each concept (role) of T is also a concept
(role) in all Ti.

2. The preservation of axioms: A ⊆ ∪iAi. Indeed, each axiom C v D of ontology
T is also an axiom in one of Ti. Note that there is no axiom which co-occurs in
two different ontologies (i.e., the sets of axioms of two different ontologies are
disjoint).

3. The semantic mappings are proposed in order to conserve the relationships of
entities between sub-ontologies, they present only identity relationships between
two concepts (two roles) that co-occur in two axioms of two different ontologies.
They are presented by bridge rules B.

4. The preservation of semantics, i.e., ∆ = ∆i, and ·I = ·Ii , i = 1, 2; I, Ii are the
interpretations of T and Ti respectively.

5. The preservation of inference services, i.e., if a concept description is satisfiable
w.r.t. T , then it is also satisfiable w.r.t. 〈Ti,B〉, and conversely.

The three first properties are easy to deduce from the definition of decomposition,
and prove the preservation of syntax. They ensure that ({Ti},B) is well represented
by DDL. In the following sections, we focus on the two most important properties of
decomposition - semantic and inference preservation. The definitions and proofs are
only examined in a DTB decomposition 〈{Ti},B〉 of T , i.e., T and {Ti} have the
same set of concept and role names. Therefore, instead of saying "common (primitive)
concept (role) names" we use the shorter "(primitive) concept (role) names".

Also from these properties, we propose two reasoning approaches with decom-
posed ontologies. By characterizing the decomposition form, we will show that there
exists a deterministic algorithm making it possible to decompose an ontology repre-
sented by a DL into several ontologies represented by DDL conforming to this form.

Definition 7. (Expansion) Formally, expanding a concept, a concept description, or
even a bridge rule is defined recursively as follows:
Expansion Ex(.) is a mapping from a concept (a concept description, or a bridge rule)
into a set of primitive concepts and primitive roles which occur in their definitions:

• If A is an atomic primitive concept (role) or its negation, then Ex(A) = {A}
• If A is a defined concept in form ∃R.C or ∀R.C, then Ex(A) = {A} ∪ Ex(R) ∪

Ex(C)
• If A is a defined concept in form C1 u C2 or C1 t C2 , then Ex(A) = {A} ∪

Ex(C1) ∪ Ex(C2)
• If A is a composite concept description in form ρ(M1, ...,Mk),where ρ is a concept

constructor, Ex(ρ(M1, ...,Mk)) = ∪i{Ex(Mi)}
• For an into (onto) bridge rule Bk = 1 : C

v→ 2 : D (Bk = 1 : C
v→ 2 : D),

Ex(Bk) = Ex(C) ∪ Ex(D)
• For an identity bridge rule Bk = 1 : C

≡→ 2 : C, Ex(Bk) = Ex(C)

14 T-A-L. Pham, N. Le-Thanh and P. Sander

• Ex(.) can be extended for a set of bridge rules:

Ex({Bk}) =
⋃
k

Ex(Bk), with Bk ∈ Bij

Expanding a concept description C can be understood as the set of concepts and roles
constructing C.

Definition 8. (Decomposition Function) We define a decomposition function #() (as
given in [?]) from concepts and roles of the original Tbox T to concepts and roles in
Ti (i∈ I) as follows:

1. If M is a primitive concept (role), then #(M) = (i : M)
2. If M is a concept expression with concept constructor ρ taking k arguments, M =

ρ(M1, ...,Mk),
then #(ρ(M1, . . . ,Mk) = Top u ρ(#(M1), . . . ,#(Mk))

3. If M is a role expression with role constructor ρ taking k arguments, M =
ρ(M1, ...,Mk),
then #(ρ(M1, . . . ,Mk) = ρ(#(M1), . . . ,#(Mk))

Example 2. #(Student u ∃hasPub.Article) produces
Top u i : Student u ∃(i : hasPub).(Top u i : Article)

We now provide a DTB in DDL. First, ANYTHING, NOTHING denote the top and
bottom concepts of T respectively. They are distinguished from the top (Topi) and
bottom (Boti) concepts of Ti.

We apply # for a global TB T , then generate a DTB #(T) = ({Ti}i∈I ,Bij)
in the language DDL, where Bij is the set of identity bridge rules, composed of the
following axioms:

1. copy all the axioms of global TBox to the same local TBox Ti, i ∈ I:
i : #(X) v #(Y) , for all X v Y ∈ T and #(X) ∈ Ti ;#(Y) ∈ Ti

2. i : #(X) ≡−→ j #(X), for all X ∈ T , #(X) ∈ Ti;#(X) ∈ Tj and X ∈
Ex(Ai), X ∈ Ex(A2)

3. ANY THING v Topi to ensure that Topi is not empty
4. Boti v NOTHING to restrict Boti to always be the incoherent concept
5. (i, A) v Topi to ensure that Topi is the proper local top of its IS-A hierarchy
6. to ensure that each role R is in the same domain and space of Topi:

Topi v ∀(i, R).(Topi) for every role R of T the space of (i, R) is in ∆Ii

∃(i, R).ANY THING v Topi, R is only defined in ∆Ii .

Definition 9. Given two Tboxes Ti and Tj , i 6= j, with their interpretations Ii =
(∆Ii , ·Ii) and Ij = (∆Ij , ·Ij) respectively. We say that Ti and Tj are interpreted in
the same domain (or Ii and Ij have the same domain) iff ∆Ii = ∆Ij and ·Ii = ·Ij

for all common primitive concepts (roles).

As already mentioned in [?] by Borgida and Serafini, the semantics of concept de-
scriptions denoted ρ(arg1, .., argn) is a function fρ of its arguments. We examine
some examples:

Example 3. (C1uC2)I = CI
1 ∩CI

2 is equal to f∩(CI
1 , CI

2) for an associated semantic
function f∩(XC1, XC2,∆

I) = {d ∈ ∆I |XC1(d) ⊆ XC2}.

Decomposition-based Reasoning in Description Logics 15

Example 4. (∀R.C)I = all(R,C)I is equal to fall(RI , CI) for an associated seman-
tic function fall(XR,XC,∆I) = {d ∈ ∆I |XR(d) ⊆ XC}.

Definition 10. Let ρ be a concept constructor whose semantics can be expressed
as ρ(arg1, .., argn)I = fρ(argI1 , ..., argIn,∆I), for a function fρ(X1, ..., Xn, DY)
whose definition contains no references to I. Let B1, ..., Bn,W,∆ be sets such that
W ⊆ ∆, and each Bj is either a subset of W or of W × W, 1 ≤ j ≤ n. Then ρ
is called a local constructor if fρ satisfies : fρ(B1, ..., Bn,∆) = fρ(B1, ..., Bn,W),
when it is a concept or role constructor.

Proposition 1. If two Tboxes Ti and Tj are interpreted in the same domain, then
CIi = CIj , for every C is an arbitrary common concept description of Ti and Tj .

Proof. Since Ti and Tj are interpreted in the same domain, we have CIj ≡ CIi ,
RIj ≡ RIi , where C,R are a common primitive concept and role respectively. By
induction on the structure of an arbitrary concept (role) B, we easily show that BIj ≡
BIi .

For arbitrary common concept descriptions M , they will be constructed from the
common primitive concepts (roles). Suppose M has the form ρ(M1, ...,Mk), where
concepts Mi, ...,Mk are less complex than M , and occur also in Tj , ρ is a concept
constructor taking k arguments.

By structural induction on M , we obtain M
Ij
p ≡ MIi

p ∀p = 1, .., k. We need now
show that MIi = MIj . Indeed, MIj ≡ (ρ(M1, ...,Mk))Ij ≡ fρ(M

Ij

1 , ...,M
Ij

k ,∆Ij) ≡
fρ(MIi

1 , ...,MIi

k ,∆Ii) ≡ (ρ(M1, ...,Mk))Ii ≡ MIi .

4 Reasoning with decomposed ontologies

4.1 Decomposition TBox

Reasoning within a large ontology can be reduced to some reasoning procedures in
its sub-ontologies based on parallel or distributed approaches. Reasoning services in
modern DLs are essential concept satisfiability and subsumption problems that are
solved by tableaux algorithms. To simplify the description, we examine the ontology
in language ALC.

An ALC TBox decomposition (a distributed ALC terminology) is presented with
the following formation rules:

• Axioms are of the form:

i : C v D|i : C ≡ D|i : R v S

where C and D are concept expressions in Ti, R and S are role names in Ti, and
i ∈ I

• Concept expressions are of the form:

i : CN |> |⊥ |¬i : C |i : C uD |i : C tD|∃R.i : C|∀R.i : C

where CN is a concept name in Ti, C and D are concept expressions in Ti, R and
S are role names.

16 T-A-L. Pham, N. Le-Thanh and P. Sander

• Bridge rules are of the form:
i : X≡−→j : X

for all X ∈ T , X ∈ Ti, X ∈ Tj and X ∈ Ex(Ai), X ∈ Ex(Aj)

The semantics of distributed ALC concept expressions are described in terms of a
global interpretation I = 〈{Ii}i∈I , {rij}i 6=j∈I〉 that needs to satisfy all the properties
in Definition 4 and additive properties of decomposition TBox.

In the following sections, two approaches for reasoning in decomposed ontologies
will be introduced in more detail, the so-called parallel and distributed techniques.
The tableaux algorithms will be applied on local ontologies and then either merged in
the parallel case or propagated in the distributed case.

4.2 Parallel Reasoning

The main idea of parallel reasoning for a decomposed TBox T = 〈{Ti}, {Bij}〉 is to
construct multiple local tableaux Ti on Ti instead of a single global tableau. The role
of local TBoxes is the same in this approach, i.e., we don’t need to distinguish source
TBox and target TBox, because the tableaux algorithms are completely independently
implemented on local TBoxes, and are then combined. In a previous version of this
paper [?], we proposed merging all nodes of local tableaux. Nevertheless, in the worst
case, i.e., all branches in local tableaux of Ti and Tj are open, merging all the nodes
in Ti and Tj can be conducted in exponential time. To eliminate redundant merging,
in this section we address a merging condition for nodes in the different tableaux.

First, we introduce a new notion, complete bridge rule, which is an identity relation
i : X

≡→ j : X with X ∈ {Ex(Q) ∪ Ex(Bij)}, where Q is a query expression. In the
case that we are examining, Q is testing concept C. In other words, the set of complete
bridge rules, denoted by Mij , is extended from Bij . It consists of a fixed component
(Bij) and a variable component depending on the queries. It helps merging (in the
parallel case) and propagation (in the distributed case) of local tableaux. Two nodes
in two tableaux are only merged if there is at least one complete bridge rule between
them. A combined tableau of local tableaux is defined as follows:

Definition 11. (Combined Tableau) A combined tableau for a distributed TBox T =
〈{Ti} , {Bij}〉 is a tuple 〈{Ti} , {mij}i 6=j〉, where Ti is a local tableau of Ti, mij is
the image relation between Ti and Tj , such that it creates mappings from nodes in Ti

to nodes in Tj . For a node x ∈ Ti and a node y ∈ Tj , (x, y) ∈ mij if they contain at
least a complete bridge rule.

We concretely examine the satisfiability testing of a concept C w.r.t T and w.r.t
({T1, T2}). In order to test the satisfiability of concept C w.r.t ({T1, T2}), we im-
plement simultaneously and independently normal tableaux algorithms T1(C) and
T2(C) on the TBoxes T1 and T2 respectively. This results in:

1. If T1(C) or T2(C) is unsatisfiable then we conclude that C is also unsatisfiable
w.r.t T .

2. Else, i.e., all T1(C) and T2(C) are thus satisfiable then we make a merge of T1

and T2, denote T1 ⊕T2, as follows:
After calculating tableaux on T1and T2, two model trees AM1 and AM2 are re-
spectively generated. Non-clash nodes in AM1 can be joined with non-clash nodes

Decomposition-based Reasoning in Description Logics 17

in AM2 by pairs (if they contain complete bridge rule), generating new nodes in a
merging model tree.
Suppose that m non-clash leaf nodes of AM1 are merged with n non-clash leaf
nodes of AM2 (m,n are non-negative integers), then m × n new nodes will be
generated in the merging tree. If all these m × n nodes in the merging tree are
also clashes, then we conclude that C is unsatisfiable w.r.t T1, T2. Otherwise we
conclude that C is satisfiable, i.e., if there exists at least one node that is non-clash,
then we conclude that C is satisfiable.

Finally, merging two nodes xT1-label L(xC
T1

) and xT2-label L(xC
T2

) into a single node
xT12-label L(xC

T12
) = L(xC

T1
) ∪ L(xC

T2
), according to the following principles:

• ∃R.C1 ∈ L(xC
T1

) and ∃R.C1 ∈ L(xC
T2

), then the union of these labels consists of
a node xT12-label L(xC

T12
) = L(xC

T1
)∪L(xC

T2
), and an edge-label R between xT12

and a node y : {C1}
• ∃R.C1 ∈ L(xC

T1
) and ∃R.C2 ∈ L(xC

T2
), then the union of these labels is com-

posed of xT12-label L(xC
T12

) = L(xC
T1

) ∪ L(xC
T2

), and an edge-label R between
xT12 and a node y : {C1, C2}

• ∃R1.C1 ∈ L(xC
T1

) and ∃R2.C2 ∈ L(xC
T2

), then the union of these labels consists
of a node xT12-label L(xC

T12
) = L(xC

T1
) ∪ L(xC

T2
), and two edges that one-label

R1 between xT12 and a node y1 : {C1},and other-label R2 between xT12 and a
node y2 : {C2}

• ∃R.C1 ∈ L(xC
T1

) , ∀S.C2 ∈ L(xC
T2

) and R v S , then the union of these nodes is
composed of node xT12-label L(xC

T12
) = L(xC

T1
) ∪ L(xC

T2
), and an edge-label R

between xT12 and a node y : {C1, C2}

where R,R1, R2 and S are role names, C1 and C2 are concept names.

Example 5. Merging two nodes x1 with label L(x1) = {C,D,∃R.C2,∀R.C3} and
x2 with label L(x2) = {C,∃R.C4,∀R.C3,∃R1.C5} of trees T1 and T2 respectively
(see Figure ??).

In parallel reasoning, tableaux algorithms are applied on local TBoxes, and termina-
tion is thus ensured by the blocking strategy [?].

However, this reasoning approach proves difficult in the merging implementation.
In the case that the number of open nodes in local tableaux is large, merging can
result in exponential behavior. So, instead of merging local tableaux, we propose using
distributed reasoning in the following section.

4.3 Reasoning in Distributed Description Logics

In this section, we introduce a reasoning algorithm based on the distributed reasoning
procedure of Serafini and Tamilin [?], which takes a complex concept C as input and
returns the result of its (un)satisfiability test. In this approach, the reasoning needs to
distinguish source (denoted by Ts) TBoxes and target TBoxes (denoted by Tt). To em-
phasize this difference, we denote a decomposed TBox by T = 〈{Ts, Tt},Bst〉 instead
of T = 〈{Ti},Bij〉. For simplification, we only examine the distributed TBoxes that

18 T-A-L. Pham, N. Le-Thanh and P. Sander

Input: Concept C
Output: Satisfiable / Unsatisfiable

1: BEGIN
2: T1 = Tab1(C);
3: T2 = Tab2(C);
4: Mij = Ex(Bij) ∪ Ex(C);
5: if (T1 is not clashed) and (T2 is not clashed) then
6: T = ∅;
7: for each open branch β1 in T1 do
8: for each open branch β2 in T2 do
9: repeat
10: select node x1 ∈ β1 and node x2 ∈ β2

11: if L1(x1) ∩ L2(x2) ⊂ Mij then
12: L12(x12) = L1(x1) ∪ L2(x2)
13: T = T ∪ x12

14: end if
15: until ((β1 is open) and (β2 is open) and (there exist not verified nodes in β1 or β2))
16: end for
17: end for
18: end if
19: if ((T1 is clashed) or (T2 is clashed) or (T is clashed)) then
20: return unsatisfiable
21: Else
22: return satisfiable
23: END.

Table 7. Parallel tableaux algorithm

consist of one source TBox and one target TBox.
For example, checking the satisfiability of an ALC concept expression C w.r.t T and
w.r.t T = 〈{Ts, Tt},Bst〉, where Bst is a set of semantic mappings (identity bridge
rules) from Ts to Tt.

The key idea is to first build a local completion tree Tt by running a local tableau
algorithm on the target TBox Tt. According to the tableau algorithm, each node x
generated during completion tree building is labeled with a function L(x) containing
concepts that x must satisfy. We then try to close open branches of Tt by checking the
complete bridge rules between Tt and the other source TBoxes Ts, which could pass
the computation to those TBoxes. We note that the propagation of DTab only follows
one direction, from s to t, and not in the opposite direction.

Definition 12. A distributed tableau for an ALC distributed TBox 〈{Ts, Tt},Bst〉 is
a tuple DT = 〈{Ts, Tt} , {rst}s 6=t〉, where Ts, Tt are local ALC tableaux on local
source TBox Ts, and local target TBox Tt respectively, rst is the mapping relation
between TBox Ts and Tt, such that it creates mappings from a subset of axioms in
Ts to a subset of nodes in Tt. For an open node x ∈ Tt and a axiom Ak ∈ Ts,
(Ak, x) ∈ rij if there exists at least a complete bridge rule between Ak and x.

Decomposition-based Reasoning in Description Logics 19

{C, D,∃R.C2,∀R.C3} {C,∃R.C4,∀R.C3,∃R1.C5}

R

~~
~~

~~
~~

~~

R
;;

;;
;;

;;
;

R1

{C2, C3} {C3, C4} {C5}

OOOOOOOOOOOOO

'' llllllllllllllll

uu

{C, D,∃R.C2,∀R.C3,∃R.C4,∃R1.C5}

~~
~~

~~
~~

~~

R
;;

;;
;;

;;
;

R1

{C2, C3, C4} {C5}

Fig. 1. Merging two nodes of T1 and T2

Since in this case, distributed tableaux algorithm implements one set of complete
bridge rules, DT needs to satisfy the five conditions T1-T5 in section 2.1.4 and the
following additional condition:

• T6: If G ∈ L(x), i : G
≡→ j : G ∈Mij , G ∈ Ex(j : Ak), and

Tabi(L(x)) = unsatisfiable
then L(x) −→ L(x) ∪ {Ex(Ak)}

where Mij is a set of complete bridge rules.

Algorithm

A tableau-based decision procedure for T |=d C is described as follows. Initially
we implement the tableau algorithm T1(C) and T2(C) on two TBoxes T1 and T2

simultaneously (in parallel). We will get the two following cases:

1. IF T1(C) or T2(C) is unsatisfiable (i.e., all the leaf nodes of T1(C) or of T2(C)
are the clashes) then we conclude that C is also unsatisfiable w.r.t T

2. ELSE (both T1(C) and T2(C) are satisfiable, i.e., there exists at least a clash-free
leaf node of T1(C) and one of T2(C)), then we continue applying the tableau
algorithm on T1 for the leaf nodes of T2(C) using the identity bridge rules, i.e.,
T1(T2(C)) is applied only with non-clashes leaf nodes of T2(C). Some axioms

20 T-A-L. Pham, N. Le-Thanh and P. Sander

of T1 that contain the concepts and roles in the applied bridge rules between T1

and T2 are added to the constraint system for T1(T2(C)).

Input : Concept C
Output : Satisfiable /Unsatisfiable

1: BEGIN

2: T1 = Tab1(C);
3: T2 = Tab2(C);
4: If (T1 is not clashed) and (T2 is not clashed) then
5: T = Tab2(C) {execute the local reasoning in T2 and generate complete tree}
6: for each open branch β in T do
7: repeat
8: select node x ∈ β ;
9: Iidt

1 (x) = {D|1 : D
≡→ 2 : D, D ∈ L(x)}

10: if (Iidt
1 (x) 6= ∅) then

11: repeat
12: select D ∈ Iidt

1 (x);
13: if D ∈ Ex(2 : Ak) then
14: L(x) → L(x) ∪ {Ex(2 : Ak)}
15: endif
16: until there exist not selected elements in Iidt

1 (x)
17: if (dTab1(L(x))) is not satisfiable then
18: close {clash in x}
19: break; {verify next branch}
20: end if
21: end if
22: until ((β is open) and (there exist not verified nodes in β))
23: end for {all branches are verified}
24: end If
25: if (T is clashed) or (T1 is clashed) or (T2 is clashed) then
26: return unsatisfiable;
27: else
28: return satisfiable;
29: end if
30: END

Table 8. Distributed tableaux algorithm

Distributed Tableau for Decomposition TBox

To construct a distributed model for a decomposition ontology, we start with a list
of initial ABox nodes corresponding to a local ontology. New facts can be added
to the ABox forest by applying tableau expansion rules. First of all, nodes will be
generated in the target ABox tree Aj by applying traditional tableau expansion rules.
New facts in the open nodes of the target ABox tree should then be sent to the source
ABox Ai, i.e., a fact C(x) is generated in an open node L(x), L(x) will be sent
to the source ABox if there is a bridge rule i : C

≡→ j : C, therefore C(x) and

Decomposition-based Reasoning in Description Logics 21

¬C(x) can be generated in the source ABox tree. All clashes can be detected locally.
Note that Ai is built from L(x) and the axioms contain the bridge rules used. Thus,
knowledge propagated in this case is just the axioms, and we can call this process
axiom propagation. Since the facts are only sent from the target ABox to the source
ABox by using the complete bridge rules, there is no message cycle between ABox
trees and the termination of the algorithm is still ensured using the blocking strategy.

Theorem 1. (Termination) For any acyclic DTBox T and for any ALC concept D,
distributed tableaux for testing the satisfiability of D terminates.

Example 6. For a distributed TBox T = 〈{T1, T2},B12〉, suppose that T1 contains an
axiom C u∃R.D v E, T2 contains axioms A v B and ∀R.B v C, and B12 contains
two bridge rules 1 : C

≡→ 2 : C and 1 : R
≡→ 2 : R. A query is proposed to check

that concept C subsumes concept description ∀R.A uD (∀R.A uD is subsumed by
concept C) w.r.t T.

This problem can be transformed into checking the satisfiability of ((∀R.A uD) u ¬C),
see Figure ??.

Tab2 ((∀R.A uD) u ¬C)

•

•

•

• •

•

• •

• •

1 : x ((∀R.A uD) u ¬C) u (¬A tB) u (¬∀R.B t C)

1 : x (∀R.A, D,¬C) , (¬A tB) , (∃R.¬B t C)

1 : x ∀R.A, D,¬C,¬A,∃R.¬B 1 : x ∀R.A, D,¬C, B, C

1 : x ∀R.A, D,¬C,¬A, C 1 : x ∀R.A, D,¬C, B,∃R.¬B
R R

1 : y A,¬B clash 1 : y A,¬B clash

⊥ ⊥

clash clash

Fig. 2. Example of distributed tableau terminates in T1

In this example, we stopped at Tab2 because all the branches in T2 are closed (all
leaf nodes of the local completion tree T2 are clashed), thus ((∀R.A uD) u ¬C) is
unsatisfiable w.r.t T2, i.e., T2 |= ∀R.A uD v C or T12 |=d ∀R.A uD v C. We will
address one more example:

Example 7. For a distributed TBox T = 〈{T1, T2},B〉, where
T1 = {AquaticAnimal v ¬TerrestrialAnimal, TerrestrialAnimal v Animal},
T2 = {Fish v AquaticAnimal},
B12 = {1 : AquaticAnimal

≡→ 2 : AquaticAnimal}.
A query is proposed to check that Animal subsumes Fish (Fish is subsumed by
Animal) w.r.t T.

A brief representation for concept and role notations will be convenient to follow
the illustration of the algorithm as in Figure ??, where T1 = {B1 v ¬B2, B2 v A2},

22 T-A-L. Pham, N. Le-Thanh and P. Sander

T2 = {A1 v B1}, and B12 = {1 : B1
≡→ 2 : B1}. We want to check that A2

subsumes A1 (A1 is subsumed by A2) w.r.t T. This problem can be transformed into
checking the satisfiability of A1 u ¬A2, see Figure ??.

Tab2 (A1 u ¬A2)

•

•

• •

•

1 : x (A1 u ¬A2) u (¬A1 tB1)

1 : x (A1,¬A2), (¬A1 tB1)

1 : x A1,¬A2,¬A1 1 : x A1,¬A2, B1

clash 1 : x A1,¬A2, B1

Apply complete bridge rules 1 : B1
≡→ 2 : B1,

1 : A1
≡→ 2 : A1 and 1 : A2

≡→ 2 : A2

and compute the tableau on T2

Tab2(A1 u ¬A2 uB1)

Tab1 (A1 u ¬A2 uB1)

•

•

•

• •

•

2 : x′ (A1 u ¬A2 uB1) u (¬B2 t ¬A2) u (¬B1 tB2)

2 : x′ A1,¬A2, B1, (¬B2 t ¬A2), (¬B1 tB2)

2 : x′ A1,¬A2, B1,¬B2,¬B1 2 : x′ A1,¬A2, B1,¬A2, B2

2 : x′ A1,¬A2, B1,¬B2, B2 2 : x′ A1,¬A2, B1,¬A2,¬B1

clash clash clash clash

Fig. 3. Example of distributed tableau terminates in T2

In this example, all open branches of Tab2 are passed to T1 by the complete bridge
rules and Tab1 is implemented. All the branches in Tab1 are then closed, thus (A1 u
¬A2) is unsatisfiable w.r.t T12, in other words T12 |=d A1 v A2.

Theorem 2. (Soundness and Completeness) An ALC-concept D is satisfiable in dis-
tributed TBox T iff the distributed tableau construction for D can generate a complete
and clash-free completion tree.

Soundness and completeness of the algorithm follow from the observation that ALC
expansions for decomposition TBox will send concept facts of an open node to the
source ABox, and inconsistency is detected when both C(x) and ¬C(x) co-occur in
some local ABox. The inconsistency in the distributed ABox must necessarily result
in an inconsistency of some local ABox; and an inconsistency in a local ABox will
imply that the distributed ABox is also inconsistent.

Theorem 3. Given a TBox T and its decomposition presented as a distributed TBox
T12 = 〈T1, T2,B12〉, then

T12 |=d i : X v j : Y ⇔ T |= X v Y,

Decomposition-based Reasoning in Description Logics 23

where X, Y are concepts in T , i, j ∈ {1, 2} and i 6= j.

Proof. (=⇒) T12 |=d i : X v j : Y ⇒ T |= X v Y
Let I be an interpretation satisfying T (I |= T), with the domain ∆I , we prove

that I |= X v Y (or XI ⊆ Y I). Indeed,

1. Starting from I, we define J = 〈{Ii}, {rij}〉, where:
• Ii is an interpretation with respect to the domain ∆Ii and ∆Ii = ∆I . I, Ii

and J are in the same domain (for all i ∈ I). Thus, Ii interprets every prim-
itive concept, role (or special concept ANYTHING) (i, C) of Ti by the rule
#(C)Ii = CI .

• {rij} are identity relations, i.e., rij(CIi) ≡ CIj , for all identity bridge-rules
between Ti and Tj .

First, we need to prove that Ii and J are interpretations of Ti and T12 respectively.
We can easily show that (∆i , ·Ii) is an interpretation of Ti, because:

∆Ii is not empty (1)
ANY THINGIi = ∆Ii (2)

NOTHINGIi = ∅ (3)
MIi ⊆ ∆Ii for every concept M of Ti (4)

RIi ⊆ ∆Ii ×∆Ii for all the roles R of Ti (5)

According to the overlap decomposition, for each defined concept (role) M of
T , there exists a defined concept (role) #M in Ti(i ∈ I) and #(M)Ii = MI

(because Ii and I are in the same domain).
Moreover, we have #(M)Ii = MI , for every arbitrary concept (role) M in Ti

(follows from Proposition 1 in Subsection 3.3, #(M)Ii = (i,M)Ii = MI).
Consequently,

#(M)Ii ⊆ #(N)Ij ⇔ MI ⊆ NI

For each axiom (i, V) v (i,W) of Ti, by the overlap decomposition, there exists
an axiom V v W of T .
Since I satisfies T and (V v W) ∈ T , consequently I |= V v W ⇒ V I ⊆
W I . In addition, #(M)Ii = #(N)Ii ⇔ MI = NI , therefore

V I ⊆ W I ⇒ #(V)Ii ⊆ #(W)Ii ⇔ Ii |= (i, V) v (i,W) (6)
⇒ J |=d i : V v W

From (1)–(6) above, we obtain

Ii |= Ti ⇒ J |=d Ti (7)

For each identity bridge-rule i : V ≡−→j : V . Since V I ≡ #(V)Ii and V I ≡
#(V)Ij ⇒ #(V)Ii ≡ #(V)Ij

⇒ J |= i : V ≡−→j : V (8)

From (7) and (8), we have J |= T12.

24 T-A-L. Pham, N. Le-Thanh and P. Sander

2. Now, by the hypothesis and MI = #(M)Ii we deduce that

J |= i : X v j : Y ⇒ #(X)Ii ⊆ #(Y)Ij

⇒ XI ⊆ Y I

⇒ I |= X v Y

(⇐=) T |= X v Y ⇒ T12 |= i : X v j : Y
Let J = 〈{Ii}, {rij}〉 be a d-interpretation satisfying T12, where Ii is an inter-
pretation of Ti, {Ti}i∈I are in the same domain, {rij}i 6=j are identity relations
between two domains ∆Ii and ∆Ij . It should be shown that

J |= i : X v j : Y ((X)Ii ⊆ #(Y)Ij)

We define an interpretation I, with the domain ∆ ≡ ∆Ii ,∀i ∈ I , that interprets a
primitive concept (role) C of T using the rule CI = #(C)Ii .
We need to prove that I |= T . Indeed, for each arbitrary concept (role) M of T ,
there exists a concept (role) correspondent #M in Ti and we have

MI = #(M)Ii(follows the above proof) (9)

For each axiom V v W of T , by the overlap decomposition, there exists an
equivalent axiom #V v #W in Ti.
Because J |=d T12 ⇒ J |=d Ti,∀i ∈ I ⇒ Ii |= Ti

Starting from #V v #W ∈ Ti , we have Ii |= #V v #W ⇒ #(V)Ii ⊆
#(W)Ii ⇒ V I ⊆ W I

⇒ I |= V v W (10)

From (9) and (10), ⇒ I |= T .
Otherwise, from T |= X v Y (by the hypothesis) ⇒ I |= X v Y ⇒ XI ⊆
Y I ⇒ #(X)Ii ⊆ #(Y)Ij ⇒ J |= i : X v j : Y

The main message of Theorem 1 is that in decomposition TBox, the decision whether
T12 |=d i : X v j : Y corresponds to a standard subsumption relation in T , T |=
X v Y .

4.4 Discussion

This section will discuss the distinction between ontology decomposition and dis-
tributed description logic that conducted reasoning to parallel and distributed tech-
niques as mentioned above.

Ontology Decomposition and Distributed Description Logic

DDL is an extension of DL starting from one of the challenges in the semantic web,
that of being able to solve the reasoning problem with a large number of overlapping
and heterogeneous local ontologies, in which each ontology describes an application
domain from a local and subjective perspective. For example, to describe people, on-
tology 1 uses the concept "PERSON" whereas ontology 2 uses "COUPLE". There are

Decomposition-based Reasoning in Description Logics 25

clear relations between these two ontologies, e.g., if two persons in ontology 1 have
a marriage relationship, then they make a couple in ontology 2. These interrelation-
ships are represented by semantic mappings (bridge rules). Local ontologies, however,
are independent, autonomous, and interpret different domains. Hence, reasoning and
query handling are only implemented locally, i.e., a query is handled on one local on-
tology and knowledge can be propagated from other local ontologies through semantic
mappings. Reasoning in DDL is based essentially on a global ontology that is com-
bined from all local ontologies and semantic mappings between them [?, ?]. In fact,
this approach meets some drawbacks as mentioned in [?]. The first one is that the cost
in space for reasoning with the global ontology is much larger than the sum of space
costs for reasoning with the local ontologies. Thus a suitable combination of local on-
tologies is necessary for global reasoning. The second one is that the global reasoning
loses the autonomy of local ontologies, i.e., reasoning in the local ontologies can be
done by specific reasoners that are optimized by local languages, whereas reasoning
in the global ontology has to be performed by the most general reasoner which is ca-
pable of dealing with the most general local language. The third one is that in some
cases the combination of local ontologies as a whole is not available, this can lead to
an inconsistency in the global ontology or limit the access to the local ontologies.

Our approach, ontology decomposition, starts from the opposite idea where we
want to divide a large ontology into multiple smaller ontologies and to reason in the
systems of these ontologies. We have chosen to work with ontology decomposition
because it provides the highest degree of de-coupling between different ontologies.
This is important for our purposes as we want to support localized reasoning. Local
ontologies in this case are in the same domain as the original ontology since they share
the set of concepts and roles of the original ontology. Ontology decomposition can be
examined as a particular case of DDL, where its semantic mappings are only identity
relations between concepts (roles) that co-occur in two axioms of different ontologies.
The most important results are the preservation of semantic and inference services
between the original ontology and the decomposition ontology. Furthermore, queries
can be handled simultaneously and return the results on local ontologies. A query can
be also decomposed into sub-queries which are then handled separately on the local
ontologies, and the results are then combined. When a query is given, a set of bridge
rules (extracted from the concepts and roles that occur in the query expression) will
be added into the complete bridge rules. This is to support propagating the knowledge
from the other ontologies, i.e., in fact, there are may be some concepts (roles) in the
query expression that were not present in the bridge rules, and the reasoning will not be
adequate if we lack the knowledge that needs to be transfered from these added bridge
rules. Thus the reasoning in source TBoxes is only implemented with the axioms that
contribute to the presence of complete bridge rules.

From characteristics of the ontology decomposition, we have proposed some rea-
soning techniques as mentioned in the above section.

Parallel and distributed reasoning

In parallel reasoning, local tableaux are created simultaneously on local ontologies,
open nodes in local tableaux are then merged and combined for the results. Merging
is done through the set of complete bridge rules. For larger ontologies which may be

26 T-A-L. Pham, N. Le-Thanh and P. Sander

difficult to decompose into disjointed partitions, this method is very effective. How-
ever, the cost for merging is large if there are a large number of open nodes in the
local ontologies. Queries can be also decomposed into sub-queries and are settled in
parallel on local ontologies, with query answers subsequently combined.

In distributed reasoning, we minimize the number of axioms (GCIs) used. The
results are obtained on local ontologies. This approach is suitable for larger ontologies
that can be partitioned into disjoint sub-ontologies as the propagating rules are applied
as little as possible.

However, for ontologies where the decomposed ontologies are complete discon-
nected (the set of bridge rules is empty), reasoning results can be concluded directly
on the local ontologies without the need for merging (as in the parallel case) nor for
axiom propagation (as in the distributed case).

5 Conclusion and future work

In this paper, we have proposed two algorithms for reasoning in a decomposed ontol-
ogy based on parallel and distributed approaches. Previous optimizations for reasoning
are only effective in certain knowledge bases and some special structures. Decompos-
ing an ontology into smaller ontologies contributes to improving the speed of reason-
ers, which operate on the sub-ontologies, while preserving the reasoning results of the
original ontology. This technique is applicable to most real-life ontologies, especially
for ontologies with large numbers of GCI axioms and a complex structure. The best
results of decomposition preserve the reasoning services of the original ontology. In
cases where there may be little beneficial effect, at least the technique does not falsify
results.

Although concrete decomposition techniques were not presented in this paper,
some essential properties of decomposition that influence the reasoning performance
have been provided. The effective optimizing algorithms for decomposing a large on-
tology will be introduced in a subsequent paper. This again depends on having an
effective (and cheap) method for analyzing the likely characteristics of a given test
ontology. We are also performing more experiments with very large KBs, e.g., UMLS,
for showing the effect of reasoning over decomposed ontologies. Reasoning in mul-
tiple decomposed ontologies (the case where an ontology is decomposed into many
sub-ontologies) by combining both parallel and distributed methods will be the sub-
ject of a future paper. We are embarking on optimizing the decomposition algorithm
using graph theory and treating queries effectively in DDL. An efficient solution for
decomposition into several sub-ontologies and reasoning over those sub-ontologies
will be proposed.

Acknowledgements

A preliminary version of this paper has been published in the CE2006 international
conference [?], and we would like to thank all the reviewers for their very useful
comments.

Decomposition-based Reasoning in Description Logics 27

References

[1] F. Baader et al, An empirical analysis of optimization techniques for terminological rep-
resentation systems or: Making KRIS get a move on. In Proceedings of the 3rd Inter-
national Conference on Principles of Knowledge Representation and Reasoning, KR-92,
pages 270-281, Boston (USA), 1992

[2] F. Baader and W. Nutt, Basic Description Logics. Spinger, 2003.
[3] J. Bao, D. Caragea and V. Honavar, A Distributed Tableau Algorithm for Package-based

Description Logics. In Proc. of the IEEE/WIC/ACM International Conference on Web
Intelligence, pages 404-410. 2006.

[4] J. Bao, D. Caragea and V. Honavar, On the Semantics of Linking and Importing in Modular
Ontologies. In I. Cruz et al. (Eds.): ISWC 2006, LNCS 4273, pages 72-86. 2006.

[5] A. Borgida, L. Serafini, Distributed Description Logics: Assimilating information from
peer sources. Journal of Data Semantics, 1:153-184, 2003.

[6] F. M. Donini, Complexity of Reasoning. Description Logic Handbook 2003: 96-136.
[7] J. W. Freeman, Improvements to Propositional Satisfiability Search Algorithms. Disserta-

tion in Computer and Information Science, 1995.
[8] V. Haarslev and R. Möller, High Performance Reasoning with Very Large Knowledge

Bases. DL-2000.
[9] V. Haarslev and R. Möller, Optimizing TBox and ABox Reasoning with Pseudo Models.

DL-2000.
[10] I. Horrocks, Optimizing Tableaux Decision Procedures for Description Logics. PhD the-

sis, University of Manchester, 1995.
[11] I. Horrocks and U. Sattler, Optimised Reasoning for SHIQ. In Proc. of the 2005 De-

scription Logic Workshop (DL 2005), volume 147 of CEUR, 2005.
[12] I. Horrocks and P. F. Patel-Schneider, Fact and dlp. In Proc. of the Automated Reasoning

with Analytic Tableaux and Related Methods (TABLEAUX 1998), pages 27-30, 1998.
[13] B. Nebel, Terminological Reasoning is Inherently Intractable. Artificial Intelligence,

43:235-249.
[14] T. A. L. Pham, Raisonnement sur des ontologies décomposées. Rapport de recherche, Lab

I3S, Université de Nice-Sophia Antipolis, 2006.
[15] T. A. L. Pham, N. Le-Thanh, Decomposition-based Reasoning for Large Knowledge

Bases in Description Logics. Proceedings of the 13th ISPE International Conference on
Concurrent Engineering: Research and Applications, Antibes, French Riviera, France,
18-22 September 2006.

[16] T. M. Pham, De la logique de description à la logique de description distribuée: Etude
préliminaire de la décomposition de l’ontologie. Report of Master, Nice-Sophia Antipolis
University, September 2005.

[17] L. Serafini and A. Tamilin, DRAGO: Distributed Reasoning Architecture for the Semantic
Web. Technical Report T04-12-05, ITC-irst, December 2004.

[18] E. Sirin et al., Optimizing Description Logic Reasoning with Nominals: First Results.
UMIACS Technical Report 2005-64.

