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NON-ITERATIVE LOW-MULTILINEAR-RANK TENSOR1

APPROXIMATION WITH APPLICATION TO DECOMPOSITION IN2

RANK-(1, L, L) TERMS∗3

JOSÉ HENRIQUE DE MORAIS GOULART† AND PIERRE COMON†4

Abstract. Computing low-rank approximations is one of the most important and well-studied5
problems involving tensors. In particular, approximations of low multilinear rank (mrank) have long6
been investigated by virtue of their usefulness for subspace analysis and dimensionality reduction7
purposes. The first part of this paper introduces a novel algorithm which computes a low-mrank8
tensor approximation non-iteratively. This algorithm, called sequential low-rank approximation and9
projection (SeLRAP), generalizes a recently proposed scheme aimed at the rank-one case, SeROAP.10
We show that SeLRAP is always at least as accurate as existing alternatives in the rank-(1, L, L)11
approximation of third-order tensors. By means of computer simulations with random tensors, such12
a superiority was actually observed for a range of different tensor dimensions and mranks. In the13
second part, we propose an iterative deflationary approach for computing a decomposition of a tensor14
in low-mrank blocks, termed DBTD. It first extracts an initial estimate of the blocks by employing15
SeLRAP, and then iteratively refines them by recomputing low-mrank approximations of each block16
plus the residue. Our numerical results show that, in the rank-(1, L, L) case, this remarkably simple17
scheme outperforms existing algorithms if the blocks are not too correlated. In particular, it is much18
less sensitive to discrepancies among the block’s norms.19

Key words. Multilinear rank, low-rank approximation, block term decomposition, tensor.20

AMS subject classifications. 15A69, 15A03, 65F99.21

1. Introduction. Approximating high-order tensors by parsimonious models is22

a recurrent problem across many engineering and scientific disciplines. In particular,23

given an Nth-order tensor X ∈⊗N
n=1 Vn , V1 ⊗ · · · ⊗ VN , one is often interested in24

finding subspaces Un ⊆ Vn of reduced dimension such that X is well approximated25

by a tensor X̂ ∈ ⊗N
n=1 Un according to some relevant criterion. The present work26

addresses this approximation problem in the finite-dimensional complex setting with27

a least-squares (LS) criterion:28

(1) min
X̂∈⊗N

n=1 Un
‖X− X̂‖2F subj. to

{
Un ⊆ CIn

dim (Un) = Rn
for n = 1, . . . , N,29

where the target dimensions Rn ≤ In are given and ‖ · ‖F denotes the Frobenius30

norm. This is called best low-multilinear-rank approximation (LMA) problem, because31

the multilinear rank (mrank) of a tensor is defined as the tuple m = (R1, . . . , RN )32

containing the minimal numbers such that (1) yields zero, i.e., X = X̂. Contrarily to33

the best low-rank approximation problem, which is generally ill-posed for tensors of34

order higher than two, minimizers of (1) always exist [10].35

A direct connection exists between mrank and the so-called Tucker decomposition:36

every finite-dimensional complex rank-(R1, . . . , RN ) tensor1 X̂ ∈ ⊗N
n=1 CIn can be37

expressed in the form38

(2) X̂ = G
N•
n=1

U(n) , G •1 U(1) •2 . . . •N U(N),39

∗The contents of this work have been partially submitted to the EUSIPCO’2017 conference [13].
†Univ. Grenoble Alpes, CNRS, Gipsa-Lab, F-38000 Grenoble (jose-henrique.de-morais-

goulart@gipsa-lab.fr, pierre.comon@gipsa-lab.fr). This work is supported by the European Research
Council under the European Programme FP7/2007-2013, Grant AdG-2013-320594 “DECODA.”

1Though (R1, . . . , RN ) is the mrank of X̂ rather than its rank, we employ the usual terminology
“rank-(R1, . . . , RN )” without confusion since we exclusively work with the mrank throughout.
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where G ∈⊗N
n=1 CRn is called the (Tucker) core tensor, U(n) ∈ CIn×Rn is a matrix40

factor and •n denotes mode-n contraction (also called mode-n product, see subsec-41

tion 1.3 for a definition). This fundamental relation allows parameterizing problem42

(1), though in a highly non-unique manner. Furthermore, the factors U(n) can be43

constrained to have orthonormal columns without loss of generality.44

In applications, problem (1) is tackled for subspace analysis and dimensionality45

reduction purposes (see, e.g., [15, 27] and the examples given by [17]) by resorting46

to one of a host of existing iterative and non-iterative algorithms. A widely used47

iterative one is the higher-order orthogonal iteration (HOOI) [8], which extracts at48

each iteration an orthonormal basis for the dominant low-dimensional subspace asso-49

ciated with each mode by means of a singular value decompositions (SVD), thereby50

producing a low-mrank Tucker decomposition. This scheme, which is essentially an51

alternating least-squares (ALS) one with orthogonality constraints, generalizes the52

classical orthogonal iteration method [12]. A globally convergent Jacobi algorithm53

for symmetric tensors is derived in [16], being better suited than HOOI especially for54

large tensors, as it does not require SVDs. Another approach consists in iteratively55

performing the minimization over a Riemannian manifold; see [11, 17] and references56

in [17]. This allows circumventing the non-unique nature of the Tucker decomposition57

by restricting the search of the factors U(n) to the product of quotient manifolds. The58

rank-one case (i.e., Rn = 1 for all n) has been studied by [28], which proposes and59

compares three iterative algorithms.60

Non-iterative algorithms constitute a more suitable recourse whenever some error61

is tolerated or the computing cost must be kept at a low level (or both). The reason is62

that they try to compute a reasonable but generally suboptimal solution within a finite63

number of steps. As such, they are useful for initializing iterative LMA algorithms and64

also for plugging into other iterative algorithms which repeatedly compute LMAs, such65

as iterative hard thresholding (IHT) schemes for tensor completion (TC) [20, 14, 21].66

The first and foremost non-iterative LMA algorithm is known as truncated higher-67

order SVD (THOSVD) [7]. It consists in projecting X onto the tensor product of68

dominant low-dimensional modal subspaces, i.e., those which (separately) capture69

most of the energy of each modal unfolding of X (see subsection 1.3 for a definition).70

Computing these subspaces requires N SVDs. Even though this solution is suboptimal71

in general, its LS error is bounded as72

(3) ‖X− X̂‖2F ≤ N‖X−X?‖2F , where X? is a minimizer of (1).73

The alternative proposed in [25], which we refer to as sequentially optimal modal74

projections (SeMP), is less computationally intensive than the THOSVD, especially75

for small dimensions Rn. It also computes N SVDs, but they are interleaved with76

contractions which gradually reduce the tensor dimensions, each one being optimal77

given the preceding ones. Moreover, the resulting approximation error also obeys the78

bound in (3). In particular, for rank-(1, L, L) approximations SeMP was shown to79

perform at least as well as THOSVD. Simulation results presented in [25] with ran-80

dom tensors suggest that this superiority actually holds in most cases. Concerning the81

special case of rank-one approximations, [3] has come up with a two-stage algorithm82

called sequential rank-one approximation and projection (SeROAP). It first reduces83

dimensionality similarly to SeMP, and then performs a sequence of “backward” pro-84

jections to refine the approximation. For third-order tensors, it has been proven in85

[3] that SeROAP performs at least as well as SeMP and, consequently, as THOSVD86

too.87
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1.1. A generalization of SeROAP. Our first contribution is a generalization88

of SeROAP to arbitrary target mranks. We call this algorithm sequential low-rank89

approximation and projection (SeLRAP). In the case of third-order tensors, we show90

that SeLRAP performs at least as well as SeMP (and, consequently, as THOSVD) for91

rank-(1, L, L) approximations. Despite the lack of proof for other cases, such a supe-92

riority was also observed in the overwhelming majority of our numerical simulations.93

This situation is similar to that described in [25] concerning the relationship between94

SeMP and THOSVD.95

We point out that the contents of this article are partially reported in the confer-96

ence paper [13]. In that paper, we give examples of TC scenarios where a SeLRAP-97

based IHT algorithm converges faster and attains smaller approximation error than98

SeMP- and THOSVD-based ones. Here, we focus instead on applying SeLRAP to the99

decomposition of a tensor in rank-(1, L, L) blocks, as discussed next.100

1.2. Decomposition in rank-(1, L, L) terms via deflation. The block term101

decomposition (BTD) problem consists in decomposing a tensor Y ∈⊗N
n=1 CIn as [4]102

(4) Y =
∑R
r=1 Yr, such that mrank(Yr) ≤m(r) =

(
R

(r)
1 , . . . , R

(r)
N

)
.103

In particular, when N = 3 and m(r) = (1, L, L) for all r, it is known as the decompo-104

sition of Y in rank-(1, L, L) terms,2 and can be written as105

(5) Y =
∑R
r=1 ar ⊗

(
Br CT

r

)
,106

where ar ∈ CI1 , Br ∈ CI2×L and Cr ∈ CI3×L. This particularization, which we will107

denote by BTD-(1, L, L), has received a great deal of attention in the literature due108

to the various applications it finds—examples include, e.g., blind deconvolution [6],109

multidimensional harmonic retrieval [19], blind source separation [22] and electron110

energy loss spectroscopy [24].111

On the theoretical side, conditions for the uniqueness of the blocks of a BTD-112

(1, L, L) have been derived (up to a permutation of their indices) in [4, 5]. Such113

conditions are of central importance in applications because these blocks are typically114

computed as a means of estimating some quantities of interest. For the numerical115

computation of (5), an ALS algorithm has been put forth by [9]. In [18], an enhanced116

line search (ELS) scheme with exact (complex) step computation is incorporated into117

this algorithm, greatly improving its convergence speed. More recently, [23] has pro-118

posed conjugate gradient, quasi-Newton, Gauss-Newton and Levenberg-Marquardt119

algorithms for the BTD-(1, L, L) problem.120

Our second main contribution is the proposition of a deflation-based approach121

for the computation of a BTD. It extends the deflation-based canonical polyadic122

decomposition (DCPD) algorithm proposed in [2], which sequentially extracts rank-123

one terms from a tensor by computing approximations with SeROAP. Our extension,124

named deflation-based BTD (DBTD), employs SeLRAP to sequentially extract low-125

mrank approximations, yielding estimates of the desired blocks. Similarly to the126

rank-one case, a single application of this procedure does not suffice in general. So,127

an iterative refinement stage sequentially absorbs each estimated block into the residue128

and computes a new LMA, which is then subtracted from the residue. We show that129

the analysis of DCPD presented in [2] carries over to DBTD. In particular, monotonic130

2The order of the modes and, consequently, of the components in (1, L, L), can of course be
permuted without changing the nature of the problem.
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decrease of the residue norm is guaranteed under the assumption that optimal LMAs131

are computed.132

Although in principle DBTD applies to the general decomposition (4), we shall133

focus here on the computation of rank-(1, L, L) blocks. The reason is that even the134

computation of blocks Yr having mranks of the form (1, Lr, Lr) but with possibly135

different values for Lr is already considerably more difficult, due to the existence of136

local minima corresponding to wrong matchings of mranks to blocks [23]. When all137

blocks have mrank (1, L, L) (i.e., Lr = L for all r), our simulation results demonstrate138

that, despite being remarkably simple, DBTD outperforms competing alternatives,139

provided correlation among blocks is low.140

1.3. Basic definitions and notation. Before proceeding, we introduce some141

basic definitions and notation. Scalars, vectors, matrices and tensors are denoted by142

lowercase, bold lowercase, bold uppercase and calligraphic uppercase letters, respec-143

tively (e.g., x, x, X, X). The symbols ⊗ and � stand for the tensor and Kronecker144

products, respectively. The symbol O denotes the null tensor. Vector inequalities145

x ≤ y are meant entry-wise. Submatrices and subtensors are denoted by MATLAB-146

like notation, as in [X]:,1:R, which holds the first R columns of X, and [X]i,:, which147

holds its ith row. The notation X〈n〉 = (X)〈n〉 stands for the mode-n (flat) matrix148

unfolding of X, whose columns are subtensors [X]i1,...,in−1,:,in+1,...,iN sorted in reverse149

lexicographical order with respect to the fixed indices. Given X ∈ ⊗N
n=1 CIn and150

P ∈ CM×In , the mode-n contraction (or product) is defined such that (X •n P)〈n〉 =151

PX〈n〉. For brevity, we employ the shorthands NN , {1, . . . , N} , Ī ,
∏
n In and152

Īn , Ī/In. Finally, IM stands for the M ×M identity matrix.153

1.4. Paper organization. The rest of this work is organized in the following154

manner. Section 2 provides a brief review of existing non-iterative LMA algorithms,155

their properties and computational complexity. Then, our proposed approach is de-156

scribed and analyzed in section 3. Following that, section 4 introduces the DBTD157

algorithm and investigates its properties. Numerical results of computer simulations158

are presented in section 5, encompassing comparisons of SeLRAP and DBTD with159

competing alternatives for LMA and DBTD-(1, L, L) computation, respectively. Con-160

cluding remarks and perspectives are then drawn in section 6.161

2. State of the art.162

2.1. Truncated higher-order singular value decomposition. Let us de-163

note by S(I,R) = {U ∈ CI×R : UHU = IR} the Stiefel manifold of column-wise164

orthonormal matrices and define165

(6) P(I,R) =
{
P ∈ CI×I : P = UUH , U ∈ S(I,R)

}
.166

Observe that P(I,R) contains all orthogonal projectors onto R-dimensional subspaces167

of CI . With this notation, one can equivalently formulate (1) as168

(7) min
P̂(n)∈P(In,Rn)

∥∥∥X−X
N•
n=1

P̂(n)
∥∥∥2
F
.169

Introducing a telescoping sum inside the norm, one obtains170

(8) min
P̂(n)∈P(I,R)

∥∥∥∥∥X−
N∑
n=1

X
n•

m=1
P̂(m) +

N−1∑
n=1

X
n•

m=1
P̂(m)

∥∥∥∥∥
2

F

.171
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Regrouping the terms, we have [25]172

(9) min
P̂(n)∈P(I,R)

∥∥∥∥∥
N∑
n=1

X
n−1•
m=1

P̂(m) •n P̂
(n)
⊥

∥∥∥∥∥
2

F

= min
P̂(n)∈P(I,R)

N∑
n=1

∥∥∥X n−1•
m=1

P̂(m) •n P̂
(n)
⊥

∥∥∥2
F
,173

where P̂
(n)
⊥ , IIn − P̂(n) projects onto the orthogonal complement of span(P̂(n))174

and the equality follows from pairwise orthogonality of the terms in the sum. The175

nonexpansiveness of orthogonal projections entails176

(10)

N∑
n=1

∥∥∥X n−1•
m=1

P̂(m) •n P̂
(n)
⊥

∥∥∥2
F
≤

N∑
n=1

∥∥∥X •n P̂
(n)
⊥

∥∥∥2
F

=

N∑
n=1

∥∥∥P̂(n)
⊥ X〈n〉

∥∥∥2
F
.177

Hence, it follows from the Eckart–Young theorem that the upper bound in (10) is
minimized by projectors P(n) = [U(n)]:,1:Rn

([U(n)]:,1:Rn
)H , where U(n) is the matrix

of left singular vectors of X〈n〉. It is thus reasonable to approximate the solution
of (7) by these projectors. To construct them, one can compute the SVD of each
unfolding X〈n〉, and then truncate the obtained matrix of left singular vectors U(n)

at the Rnth column. These matrices are the factors of the HOSVD of X [7]. Then, a

truncated core is computed as S = X •Nn=1(
[
U(n)

]
:,1:Rn

)H , from which X̂ is obtained

via X̂ = S •Nn=1

[
U(n)

]
:,1:Rn

. Now, because these projectors P(n) are optimal when

considered separately (but not jointly), any solution X? of (1) satisfies∥∥∥P(n)
⊥ X〈n〉

∥∥∥2
F
≤
∥∥∥X〈n〉 −X?

〈n〉

∥∥∥2
F
.

Plugging this expression into (10) shows the cost function value attained by the178

THOSVD solution is no greater than N times (1), which proves the bound in (3).179

Denoting by CSVD(I,M) the number of operations required to compute the SVD180

of an I ×M matrix, THOSVD’s cost can be expressed as181

(11) CTHOSVD =
∑N
n=1 CSVD(In, Īn) +

∑N
n=1O(HnRnIn) +

∑N
n=1O(JnRnIn),182

where Hn , R1 . . . Rn−1In+1 . . . IN and Jn , I1 . . . In−1Rn+1 . . . RN . The second and183

third summations correspond to the calculation of S and X̂, respectively.3184

If one uses a standard algorithm for computing the full (“economical”) SVD prior185

to truncation, then CSVD(I,M) = O(IM min{I,M}). Though there exist methods186

which in principle cost O(RIM) for obtaining the R dominant singular triplets of an187

I ×M matrix [1], in practice they often fall behind on computing time, except for188

very small R.189

2.2. Sequentially optimal modal projections. Another way of computing190

an approximate solution of (9) is by sequentially minimizing the cost function with191

respect to the projectors. This leads to the SeMP solution [25], defined as:192

(12) Given P(1), . . . ,P(n−1), compute P(n) = arg min
P̂(n)∈P(In,Rn)

∥∥∥X n−1•
m=1

P(m) •n P̂
(n)
⊥

∥∥∥2
F
.193

For simplicity of exposition, we have considered such a computation in the natural194

order (1, ..., N), but any other order can be adopted, generally leading to different195

results. The projectors defined by (12) are computed as follows:196

3We assume that the contractions needed to calculate S and X̂ are performed in the order
n = 1, . . . , N . This simplifies the comparison with the other algorithms.
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1. Let W(1) = X.197

2. For n = 1, . . . , N :198

(i) compute the SVD of W
(n)
〈n〉 to obtain U

(n) ∈ CIn×Rn , which holds its first Rn199

left singular vectors;200

(ii) compute W(n+1) = W(n) •n U
(n)H ∈

(⊗n
m=1 CRn

)
⊗
(⊗N

m=n+1 CIn
)

.201

3. Finally, construct the solution X̂ = W(N+1) •Nn=1 U
(m)

.202

It is easy to show that the resulting approximation error is subject to the same203

upper bound as the THOSVD. Indeed, we have [25]204

‖X− X̂‖2F =

N∑
n=1

min
P̂(n)∈P(I,R)

∥∥∥X n−1•
m=1

P(m) •n P̂
(n)
⊥

∥∥∥2
F

205

≤
N∑
n=1

min
P̂(n)∈P(I,R)

∥∥∥X •n P̂
(n)
⊥

∥∥∥2
F
≤ N‖X−X?‖2F ,(13)206

207

where X? is any solution of (1). Furthermore, the SVDs in step 2.(i) for n > 1208

have smaller size than the corresponding ones computed by THOSVD, due to the209

dimension reduction performed in step 2.(ii). Thus, the resulting cost210

(14) CSeMP =
∑N
n=1 [CSVD(In, Hn) +O(HnRnIn)] +

∑N
n=1O(JnRnIn)211

is always smaller than (11), since Hn < Īn must hold for at least one n (otherwise212

there is no rank reduction). Typically, Hn < Īn for all n > 1. The smaller the ratios213

Rn/In, the greater the computational advantage with respect to THOSVD. With the214

goal of reducing the computing effort, a heuristic is described in [25] for choosing215

the order in which modes are processed. The idea is to sort them according to their216

dimensions, in ascending order. This is a greedy strategy in the sense that it picks at217

each step the mode whose unfolding has the least costly SVD.218

From our practical experience, the approximations obtained via SeMP are virtu-219

ally always more accurate than those given by the THOSVD. This is in line with the220

conclusions reported in [25]. However, a proof of its superiority currently exists only221

for rank-(1, L, L) approximations, as stated below.222

Theorem 1 (Theorem 7.2 of [25]). Let X ∈⊗3
n=1 CIn and denote by X̂SeMP and223

X̂THOSVD the rank-(1, L, L) approximations of X produced by SeMP and THOSVD,224

respectively, by processing the modes in the natural order (1,2,3). Then,225

(15)
∥∥∥X− X̂SeMP

∥∥∥2
F
≤
∥∥∥X− X̂THOSVD

∥∥∥2
F
.226

The proof given in [25] exploits the facts that (1) the projector P(1) computed227

by SeMP is the same as in the THOSVD solution and (2) W(2) actually reduces to a228

matrix when R1 = 1. Thus, P(2) and P(3) are obtained in SeMP with a single SVD.229

Because by construction these projectors are optimal given P(1), THOSVD’s outcome230

cannot be more accurate.231

2.3. Sequential rank-one approximation and projection. When R1 =232

· · · = RN = 1, problem (1) reduces to the best rank-one approximation of X. In233

other words, one seeks an elementary (or decomposable) tensor X̂ = v(1)⊗ · · · ⊗v(N)234

minimizing the cost function in (1). Note that no distinction exists between tensor235

rank and mrank in this case. The SeROAP algorithm [3] computes an approximate236

solution by proceeding as follows:237

6
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1. Order reduction stage:238

(i) Let W(1) , X.239

(ii) For n = 2, . . . , N , recursively calculate the tensor W(n) ∈
(⊗n−1

m=1 C1
)
⊗240 (⊗N

m=n CIm
)

whose vectorization w(n) , vec(W(n)) is a minimizer of241

min
λ̂∈R, û(n)∈CIn−1 ŵ(n)∈CIN ...In

∥∥∥∥W(n−1)
〈n−1〉 − λ̂ û(n)

(
ŵ(n)

)H∥∥∥∥2
F

.242

This can be done by computing the dominant singular triplet of the matrix243

W
(n−1)
〈n−1〉 ∈ CIn−1×IN ...In .244

2. Projection stage:245

(i) Let z(N−1) , w(N)∗ � u(N) ∈ CININ−1 .246

(ii) For n = N − 2, . . . , 1, project the rows of W
(n)
〈n〉 onto span(z(N+1)), i.e.,247

(16) Z
(n)
〈n〉 = W

(n)
〈n〉

[
1

‖z(n+1)‖22

(
z(n+1)z(n+1)H

)]
∈ CIn×IN ...In+1 ,248

and then obtain z(n) as z(n) = vec(Z(n)).249

3. Construct the estimate X̂ such that vec(X̂) = z(1) ∈ CIN ...I1 , or, equivalently, such250

that X̂〈1〉 = Z
(1)
〈1〉.251

It can be verified that the order reduction stage is identical to SeMP’s dimension252

reduction stage when Rn = 1 for all n. Indeed, using the above notation, the rank-253

one approximation delivered by SeMP is proportional to u(2) ⊗ · · · ⊗ u(N) ⊗ w(N).254

Intuitively, the “backward” projection stage performed by SeMP attempts to improve255

this initial recursive approximation. For third-order tensors, the following result holds.256

Theorem 2 (Theorem 1 of [3]). Let X ∈⊗3
n=1 CIn and denote by X̂SeROAP and257

X̂SeMP the rank-one approximations of X produced by SeROAP and SeMP, respec-258

tively, both processing the modes in the same (any) order. Then,259

(17)
∥∥∥X− X̂SeROAP

∥∥∥2
F
≤
∥∥∥X− X̂SeMP

∥∥∥2
F
.260

By employing a k-step Lanczos-type algorithm of cost O(kIM) to compute the261

dominant singular triplet of an I × M matrix, the order reduction stage has cost262 ∑N−1
n=1 O

(
k
∏N
m=n Im

)
. The overall complexity of SeROAP can thus be expressed as263

CSeROAP =
∑N−1
n=1

[
O
(
k
∏N
m=n Im

)
+O

(∏N
m=n Im

)]
.264

3. Sequential low-rank approximation and projection.265

3.1. Formulation and algorithm. The same principle underlying SeROAP266

can also be employed for computing an LMA of arbitrary mrank m = (R1, . . . , RN ).267

In the projection stage of SeROAP, the rows of each unfolding W
(n)
〈n〉 are projected268

onto the subspace spanned by a Kronecker-structured vector representing a tensor269

product of one-dimensional subspaces. This suggests that a general procedure should270

project these rows onto the span of a Kronecker-structured basis representing a tensor271

product of low-dimensional subspaces, in consonance with m.272

Such a generalization is accomplished by the following procedure (SeLRAP):273
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Algorithm 1 Sequentially low-rank approximation and projection (SeLRAP).

Inputs: X ∈⊗N
n=1 CIn and target mrank m = (R1, . . . , RN )

Output: An m-mrank approximation of X, X̂

1: W
(1)
〈1〉 ← X〈1〉

2: for n = 2, . . . , N + 1 do

3:

(
W

(n)
〈n−1〉,U

(n−1))← projdomsp
(
W

(n−1)
〈n−1〉, Rn−1

)
4: end for

5: Z
(N)
〈N〉 ← U

(N)
W

(N+1)
〈N〉

6: for n = N − 1, . . . , 1 do

7: compute the “thin” QR decomposition: Z
(n+1)
〈n〉

H
= Q(n+1)R(n+1)

8: Z
(n)
〈n〉 ←

(
W

(n)
〈n〉Q

(n+1)
)

Q(n+1)H

9: end for
10: return X̂ = Z(1)

1. Dimension reduction stage: In this stage, one computes a sequence of tensors274

W(n) ∈
(⊗n−1

m=1 CRn

)
⊗
(⊗N

m=n CIn
)

in exactly the same way as in SeMP.275

2. Projection stage: Then, one recursively obtains tensors Z(n) of same dimensions276

as W(n) by performing a sequence of orthogonal projections, similarly to SeROAP.277

Specifically:278

(i) Let Z(N) = W(N+1) •N U
(N)

.279

(ii) For n = N − 1, . . . , 1, the mode-n unfolding of Z(n) is computed as280

(18) Z
(n)
〈n〉= W

(n)
〈n〉Z

(n+1)
〈n〉

H
(

Z
(n+1)
〈n〉 Z

(n+1)
〈n〉

H
)−1

Z
(n+1)
〈n〉 .281

3. The desired rank-(R1, . . . , RN ) approximation is then X̂ = Z(1).282

It is not hard to check that the above procedure reduces to SeROAP when Rn = 1283

for all n. As a matter of fact, in this particular case (16) and (18) are equivalent. In284

subsection 3.3, we will give examples of application of SeLRAP which will showcase285

the Kronecker structure of the matrices Z
(n+1)
〈n〉 .286

An explicit pseudocode for SeLRAP is given in Algorithm 1. For simplicity,287

the modes are processed in the natural order (1, . . . , N). If one wishes to follow a288

different order, it suffices to permute the modes of X before running the algorithm289

and to invert this permutation afterwards. In the dimension reduction stage, SeLRAP290

employs the projdomsp routine given in Algorithm 2. When In−1 < Hn−1, instead of291

computing the SVD of W
(n−1)
〈n−1〉 this routine computes the eigenvalue decomposition292

of Y(n−1) , W
(n−1)
〈n−1〉W

(n−1)
〈n−1〉

H
, which provides U

(n−1)
. Although the asymptotic293

complexities are the same due to the computation of Y(n−1), this choice can save294

much time in practice, because of the reduced size of the decomposition problem.295

On the other hand, if In−1 ≥ Hn−1, then after computing the SVD of W
(n−1)
〈n−1〉, one296

can obtain W(n) by taking the first Rn−1 right singular vectors multiplied by their297

corresponding singular values; this is cheaper than calculating U
(n−1)H

W
(n−1)
〈n−1〉.298
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Algorithm 2 projdomsp(W, R): projects W onto its R-dimensional dominant col-
umn subspace.

Inputs: W ∈ CI×M , target dimension R ≤ I
Outputs: Ŵ and U, where U = arg minU∈S(I,R) ‖W−UUHW‖F and Ŵ = U

H
W

1: if I < M then
2: Y ←WWH

3: compute the EVD: Y =
[
U Ũ

]
Λ
[
U Ũ

]H
,

where U ∈ CI×R and Λ = Diag(λ1, . . . , λI), with λ1 ≥ λ2 ≥ · · · ≥ λI
4: Ŵ← U

H
W

5: else

6: compute the SVD: W =
[
U Ũ

] [Σ 0

0 Σ̃

] [
V Ṽ

]H
,

where U ∈ CI×R, Σ ∈ RR×R and V ∈ CM×R

7: Ŵ← Σ V
H

8: end if
9: return

(
Ŵ,U

)

Remark 3. When In−1 < Hn−1, it is actually more appropriate to first compute299

the decomposition W
(n−1)
〈n−1〉

H
= QR, with Q ∈ S(Hn−1, In−1) and R ∈ CIn−1×In−1300

via a modified Gram-Schmidt orthogonalization. Then, the SVD of R is computed,301

providing the right singular vectors of R, which are premultiplied by Q to yield those302

of W
(n−1)
〈n−1〉, and also its singular values, which equal those of W

(n−1)
〈n−1〉. Finally, W(n)

303

is calculated from the obtained right singular vectors and singular values of W
(n−1)
〈n−1〉.304

This procedure requires less flops than projdomsp (though their order-wise complex-305

ities are the same) and is more accurate. However, Algorithm 2 runs faster in MAT-306

LAB, because the computation of Y(n−1) = W
(n−1)
〈n−1〉W

(n−1)
〈n−1〉

H
is highly optimized.307

Therefore, we have adopted it in our MATLAB implementation of SeLRAP.4308

3.2. Computational complexity. In practice, Algorithm 1 performs (18) with309

the aid of an orthonormal basis for the row space of Z
(n+1)
〈n〉 , obtained thanks to a QR310

decomposition. One could also use an SVD. In any case, the constructed projector311

must have the same rank as Z
(n+1)
〈n〉 . If its rank is smaller than Rn, then this amounts to312

replacing the inverse matrix of (18) by the Moore-Penrose pseudo-inverse. Computing313

the orthonormal basis costs O(HnR
2
n) flops (assuming Hn ≥ Rn), since Z

(n+1)
〈n〉 has314

dimensions Rn × Hn, while performing the projection costs O(HnRnIn). SeLRAP315

thus has the overall complexity316

CSeLRAP =

N∑
n=1

[CSVD(In, Hn) +O(HnRnIn)]+O(HNRNIN )+

N−1∑
n=1

Cproj(Hn, Rn, In),317

4For a fair comparison, our SeMP implementation also uses Algorithm 2 for dimensionality
reduction and our THOSVD implementation computes the EVD of X〈n〉X

H
〈n〉 to obtain the dominant

subspace of X〈n〉 when In < Īn.
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Table 1
Operations involved in non-iterative LMA algorithms and their costs.

THOSVD
(I) Comput. projectors (II) Comput. truncated core (III) LMA construction

N∑
n=1

CSVD(In, Īn)
N∑

n=1

O(HnRnIn)
N∑

n=1

O(JnRnIn)

SeMP
(I) Comput. projectors (II) Dimension reduction (III) LMA construction

N∑
n=1

CSVD(In, Hn)
N∑

n=1

O(HnRnIn)
N∑

n=1

O(JnRnIn)

SeLRAP
(I) Comput. projectors (II) Dimension reduction (III) Backward projections

N∑
n=1

CSVD(In, Hn)
N∑

n=1

O(HnRnIn) O(HNRN IN ) +

N−1∑
n=1

Cproj(Hn, Rn, In)

where Cproj(H,R, I) = O(HR2) + O(HRI). The term O(HNRNIN ) outside the318

brackets corresponds to step 5 of Algorithm 1, while the second term of the first319

summand comprehends the cost of the dimension-reducing contractions. Yet, as dis-320

cussed in subsection 3.1, when In ≥ Hn then the nth term is O(HnRn) rather than321

O(HnRnIn), because one uses the right singular vectors of W
(n−1)
〈n−1〉 to form W(n).322

Note that projdomsp can be employed also in SeMP, and so the same remark applies323

to the second summation of (14). On the other hand, THOSVD can only partially324

benefit from the strategy followed in projdomsp, by computing the eigenvectors of325

X〈n〉X〈n〉
H when In < Īn.326

The same heuristic described in subsection 2.2, of processing the modes in as-327

cending order of dimensions, usually yields a significant economy of computing time328

when applying SeLRAP. This economy is all the more relevant when the ratios Rn/In329

are small and approximately equal.330

Table 1 summarizes the operations involved in THOSVD, SeMP and SeLRAP.331

Though the operations (I) and (II) are sequentially performed in THOSVD while332

they are interleaved in SeLRAP and SeMP, there is a clear parallel among equally333

numbered operations of different algorithms.334

3.3. Analysis.335

3.3.1. Fulfillment of rank constraint. We now show that the approximation336

delivered by SeLRAP actually meets the desired mrank constraint.337

Lemma 4. Let X ∈⊗N
m=1 CKm and define the tensor P ∈

(⊗n−1
m=1 CKm

)
⊗CRn⊗338 (⊗N

m=n+1 CKm

)
, for some n ∈ NN . If mrank(P) = (R1, . . . , RN ), then339

Y〈n〉 = X〈n〉P
H
〈n〉(P〈n〉P

H
〈n〉)
−1P〈n〉340

is the mode-n unfolding of a tensor Y ∈⊗N
m=1 CKm , with mrank(Y) ≤ (R1, . . . , RN ).341

Proof. Since mrank(P) = (R1, . . . , RN ), there exist G ∈⊗N
m=1 CRm and U(m) ∈342

CKm×Rm for m ∈ NN \{n} such that U(m) has orthonormal columns and343

P〈n〉 = G〈n〉
(
U(N) � . . .�U(n+1) �U(n−1) � . . .�U(1)

)T
︸ ︷︷ ︸

,UT

.344
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Hence, Y〈n〉 = X〈n〉U∗GH
〈n〉(G〈n〉G

H
〈n〉)
−1G〈n〉UT , which implies rank(Y〈n〉) ≤ Rn.345

Defining C ∈⊗N
m=1 CRm such that C〈n〉 = X〈n〉U∗GH

〈n〉(G〈n〉G
H
〈n〉)
−1G〈n〉, it follows346

that Y = C •m6=n U(m), implying rank(Y〈m〉) ≤ Rm for all m ∈ NN \{n}.347

3.3.2. Comparison with SeMP. In the following, we analytically compare348

the quadratic errors incurred by SeMP and SeLRAP for third-order tensors. Let349

m = (R1, R2, R3) and denote by X̂SeMP = S •3n=1 U
(n)

the approximation delivered350

by SeMP, where U
(n)

is as defined in subsection 2.2. Because S = X •3n=1 U
(n)H

, the351

resulting quadratic error can be written as352

εSeMP , ‖X− X̂SeMP‖2F = ‖X‖2F −
∥∥∥∥X 3•

n=1
U

(n)H
∥∥∥∥2
F

353

= ‖X‖2F −
∥∥∥∥U(1)H

X〈1〉
(
U

(3)∗
�U

(2)∗)∥∥∥∥2
F

.354

355

Since U
(1)

holds the first R1 left singular vectors of X〈1〉,356

(19) εSeMP = ‖X‖2F −
∥∥∥∥Σ(1)

V
(1)H

(
U

(3)∗
�U

(2)∗)∥∥∥∥2
F

,357

where the columns of V
(1)

are the first Rn singular vectors of X〈1〉 = W
(1)
〈1〉, while358

Σ
(1)

contains the corresponding singular values in its diagonal. This is a direct gen-359

eralization of the expression derived in [3] for the case m = (1, 1, 1).360

A similar expression can be derived for SeLRAP. First, define the orthogonal361

projector362

(20) P , Z
(2)
〈1〉

H
(

Z
(2)
〈1〉Z

(2)
〈1〉

H
)−1

Z
(2)
〈1〉.363

Using this definition along with (18) and the identities (X̂SeLRAP)〈1〉 = Z
(1)
〈1〉 and364

X〈1〉 = W
(1)
〈1〉, we derive365

εSeLRAP , ‖X− X̂SeLRAP‖2F = ‖X‖2F −
∥∥∥W(1)

〈1〉P
∥∥∥2
F
.(21)366

367

Writing W
(n)
〈n〉 = U

(n)
Σ

(n)
V

(n)H

+ E(n), the second norm in (21) can be rewritten as368

∥∥∥W(1)
〈1〉P

∥∥∥2
F

= Tr

{
PW

(1)
〈1〉

H
W

(1)
〈1〉P

}
=

∥∥∥∥Σ(1)
V

(1)H

P

∥∥∥∥2
F

+
∥∥∥E(1)P

∥∥∥2
F
.369

370

Plugging the result into (21), we have371

εSeLRAP = ‖X‖2F −
∥∥∥∥Σ(1)

V
(1)H

P

∥∥∥∥2
F

−
∥∥∥E(1)P

∥∥∥2
F

372

≤ ‖X‖2F −
∥∥∥∥Σ(1)

V
(1)H

P

∥∥∥∥2
F

.373
374
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Thus, a sufficient condition for having εSeLRAP ≤ εSeMP is375

(22)

∥∥∥∥Σ(1)
V

(1)H

P

∥∥∥∥2
F

≥
∥∥∥∥Σ(1)

V
(1)H

(
U

(3)∗
�U

(2)∗)∥∥∥∥2
F

.376

In turns out, though, that a general explicit expression for P is quite complicated.377

We thus focus on the case where R1 = 1, which implies R2 = R3 = L. (This can378

be easily seen from the mode-2 and mode-3 unfoldings of an rank-(1, R2, R3) Tucker379

model.) For this case, the following result holds.380

Theorem 5. Let X ∈ ⊗3
n=1 CIn and denote by X̂SeLRAP and X̂SeMP the rank-381

(1, L, L) approximations of X produced by SeLRAP and SeMP, respectively, by pro-382

cessing the modes in the natural order (1,2,3). Then,383

(23)
∥∥∥X− X̂SeLRAP

∥∥∥2
F
≤
∥∥∥X− X̂SeMP

∥∥∥2
F
.384

Proof. First, SeLRAP computes the SVDs385

W
(1)
〈1〉 = σ(1)u(1)v(1)H + E(1) ∈ CI1×I3I2 ,386

W
(2)
〈2〉 = U

(2)
Σ

(2)
V

(2)H

+ E(2) ∈ CI2×I3 ,387
388

where W
(2)
〈2〉 is such that W

(2)
〈1〉 = σ(1)v(1)H . Observe that, for R1 = 1,389

(24) vec
(
W

(2)
〈1〉

)
= σ(1)v(1)∗ = vec

(
W

(2)
〈2〉

)
= vec

(
U

(2)
Σ

(2)
V

(2)H

+ E(2)

)
390

and W
(3)
〈3〉 = W

(3)
〈2〉

T
= W

(2)
〈2〉

T
U

(2)∗
. Hence, the SVD of W

(3)
〈3〉 comes “for free,” being391

given by W
(3)
〈3〉 = V

(2)∗
Σ

(2)
= U

(3)
Σ

(3)
, i.e., U

(3)
= V

(2)∗
and V

(3)
= IL. Now, in392

the projection stage,393

(25) Z
(3)
〈3〉 = W

(3)
〈3〉 = U

(3)
Σ

(3) ∈ CI3×R,394

because rank(W
(3)
〈3〉) ≤ L. Furthermore, Z

(3)
〈2〉 = Z

(3)
〈3〉

T
. Thus, plugging Z

(3)
〈2〉 into (18)395

for n = 2 we obtain396

Z
(2)
〈2〉 = W

(2)
〈2〉V

(2)
V

(2)H

= U
(2)

Σ
(2)

V
(2)H ∈ CI2×I3 .(26)397

398

Since Z
(2)
〈1〉 = vec

(
Z

(2)
〈2〉

)T
, using the property vec(ABCT ) = (C�A) vec(B) we have399

Z
(2)
〈1〉 = vec

(
Σ

(2)
)T (

U
(3)
�U

(2)
)T
∈ C1×I3I2 ,400

which implies P = ‖σ(2)‖−22 U∗ σ(2) σ(2)T UT , where σ(2) , vec
(
Σ

(2)
)

and U ,401

U
(3)
�U

(2)
. Applying these definitions to (24), we have also402

(27) σ(1)v(1)∗ = Uσ(2) + vec
(
E(2)

)
.403
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In view of the derived expressions, computing the left-hand side of (22) for m =404

(1, L, L) yields405

(28)
∥∥∥σ(1)v(1)HP

∥∥∥2
2

=
(
σ(1)

)2
v(1)HPv(1) =

(
σ(1)

)2
‖σ(2)‖−22

∣∣∣σ(2)TUTv(1)
∣∣∣2 .406

Due to (27), UTv(1) =
(
σ(1)

)−1 [
σ(2) + UT vec

(
E(2)

)∗]
. But, by definition of the

SVD, the column space of E(2) is orthogonal to U
(2)

while its row space is orthogonal

to V
(2)∗

= U
(3)

. Thus, it turns out that UT vec
(
E(2)

)∗
= 0, leading to UTv(1) =(

σ(1)
)−1

σ(2). Substituting this expression into (28) yields
∥∥∥σ(1)v(1)HP

∥∥∥2
2

= ‖σ(2)‖22.

On the other hand, for R1 = 1 the right-hand side of (22) is given by(
σ(1)

)2 ∥∥∥v(1)HU∗
∥∥∥2
2

= ‖σ(2)‖22.

Therefore, (22) holds with equality, implying (23).407

Theorem 5 generalizes Theorem 2. Furthermore, together with Theorem 1, it408

implies the following.409

Corollary 6. Let X ∈⊗3
n=1 CIn and denote the rank-(1, L, L) approximations410

of X produced by SeLRAP, SeMP and THOSVD by X̂SeLRAP, X̂SeMP and X̂THOSVD,411

respectively. Suppose that the modes are processed in the natural order (1,2,3) by both412

SeLRAP and SeMP. Then,413 ∥∥∥X− X̂SeLRAP

∥∥∥2
F
≤
∥∥∥X− X̂SeMP

∥∥∥2
F
≤
∥∥∥X− X̂THOSVD

∥∥∥2
F
.414

The same results evidently apply to the cases m = (L, 1, L) and m = (L,L, 1),415

as long as the mode associated with the component Rn = 1 be the first one to be416

processed. Another consequence of Theorem 5 is that SeLRAP also satisfies the bound417

(13) in the rank-(1, L, L) case.418

Corollary 7. Let X ∈ ⊗3
n=1 CIn . For any solution X? of (1) with m =419

(1, L, L), the rank-(1, L, L) approximation of X produced by SeLRAP satisfies420 ∥∥∥X− X̂SeLRAP

∥∥∥2
F
≤ N‖X−X?‖2F .421

3.3.3. The general case m = (R1, R2, R3). For arbitrary m, W
(2)
〈2〉 is the mode-422

2 unfolding of an R1 × I2 × I3 tensor whose best rank-(R1, R2, R3) approximation is423

sought. Therefore, unlike the previous case, an explicit expression for this approxi-424

mation is not available, and a proof of superiority of SeLRAP is harder to undertake.425

We sketch below one possible way of writing the resulting projector P in this case, in426

order to give an idea of the increased complexity. Consider the matrix427

(29) Z
(3)
〈3〉 = U

(3)
Σ

(3)
V

(3)H ∈ CI3×R2R1428

obtained at the end of the dimension reduction stage. Here, we introduce the notation429

G
(3)
〈3〉 , Σ

(3)
V

(3)H ∈ CR3×R2R1 , which allows writing Z(3) = G(3) •3 U
(3)

. Hence,430

(30) Z
(3)
〈2〉 = G

(3)
〈2〉

(
U

(3)
� IR1

)T
∈ CR2×I3R1 .431
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Now,432
433

(31) Z
(3)
〈2〉

H
(

Z
(3)
〈2〉Z

(3)
〈2〉

H
)−1

Z
(3)
〈2〉 =434

(
U

(3)
� IR1

)∗
G

(3)
〈2〉

H
(

G
(3)
〈2〉G

(3)
〈2〉

H
)−1

G
(3)
〈2〉

(
U

(3)
� IR1

)T
∈ CI3R1×I3R1435

436

Next, we define437

(32) G̃
(2)
〈2〉 ,W

(2)
〈2〉

(
U

(3)
� IR1

)∗
G

(3)
〈2〉

H
(

G
(3)
〈2〉G

(3)
〈2〉

H
)−1

G
(3)
〈2〉 ∈ CI2×R3R1 .438

Since its rank is bounded by R2, it can be decomposed as G̃
(2)
〈2〉 = Ũ(2)G

(2)
〈2〉, where439

Ũ(2) ∈ CI2×R2 has orthonormal columns (one can take, e.g., its QR decomposition).440

Moreover, G
(2)
〈2〉 can be thought of as the mode-2 unfolding of a R1 ×R2 ×R3 tensor441

G(2). Thus,442

Z
(2)
〈2〉 = W

(2)
〈2〉Z

(3)
〈2〉

H
(

Z
(3)
〈2〉Z

(3)
〈2〉

H
)−1

Z
(3)
〈2〉 = Ũ(2)G

(2)
〈2〉

(
U

(3)
� IR1

)T
∈ CI2×I3R1 ,443

leading to Z
(2)
〈1〉 = G

(2)
〈1〉

(
U

(3)
� Ũ(2)

)T
∈ CR1×I3I2 . The projector P thus reads444

P =
(
U

(3)
� Ũ(2)

)∗
G

(2)
〈1〉

H
(

G
(2)
〈1〉G

(2)
〈1〉

H
)−1

G
(2)
〈1〉

(
U

(3)
� Ũ(2)

)T
∈ CI3I2×I3I2 .445

Clearly, whether

∥∥∥∥Σ(1)
V

(1)H

P

∥∥∥∥2
F

≥
∥∥∥∥Σ(1)

V
(1)H

(
U

(3)
�U

(2)
)∗∥∥∥∥2

F

holds or not is446

now a more complicated matter.447

4. Decomposition in rank-(1, L, L) terms via deflation. We propose in this448

section a deflationary algorithm whose purpose is to compute the low-mrank blocks449

constituting a BTD-(1, L, L) of a tensor X.450

4.1. Algorithm. The proposed deflationary block-term decomposition (DBTD)451

algorithm is described by Algorithm 3. We have employed the symbol Pm to denote452

an approximate projection onto Lm , {Y : mrank(Y) ≤m} which can be computed,453

e.g., by SeLRAP, SeMP or THOSVD. The resulting DBTD algorithm has a very454

simple form: at each iteration, one sequentially obtains a new estimate of each block,455

X̂r,k, by computing an mrank-m(r) approximation of the current residue tensor Er−1,k456

plus the current block estimate X̂r,k−1. The new residue tensor Er,k then corresponds457

to the resulting approximation error. Because X̂r,0 = O for all r and the initial residue458

tensor equals X, the first iteration amounts to extracting the R blocks from X in a459

greedy fashion. In general, this first iteration does not provide the sought blocks.460

Thus, DBTD refines these estimates from the second iteration onwards.461

An appropriate stopping criterion for Algorithm 3 consists in checking whether462

‖ER,k‖F is sufficiently small or the ratio ψk = ‖ER,k‖F ‖ER,k−1‖−1F is close to 1. To463

avoid a premature stop, one can verify whether the average ψk among the Ks most464

recent iterations approximately equals 1, which yields the stopping criteria465

(33) ‖ER,k‖F ≤ ε1 or

∣∣∣∣∣1− 1

Ks

Ks−1∑
l=0

ψk−l

∣∣∣∣∣ ≤ ε2,466
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Algorithm 3 Deflationary block-term decomposition (DBTD) algorithm.

Inputs: X ∈⊗N
n=1 CIn , number of blocks R and mranks m(r) = (R

(r)
1 , . . . , R

(r)
N )

Output: Estimates of the blocks X̂r ∈ Lm(r) , r = 1, . . . , R

1: X̂r,0 ← O, for r = 1, . . . , R
2: E0,1 ← X

3: k ← 0
4: while k < K and (33) is not satisfied do
5: k ← k + 1
6: for r = 1, . . . , R do
7: Er,k ← Er−1,k + X̂r,k−1
8: X̂r,k ← Pm(r)(Er,k)

9: Er,k ← Er,k − X̂r,k

10: end for
11: E0,k+1 ← ER,k
12: end while
13: X̂r ← X̂r,k, for r = 1, . . . , R

for two sufficiently small constants ε1, ε2. (In practice, one usually imposes also a467

maximum number of iterations, K).468

The cost of a DBTD iteration equals that of two additions of two I1 × · · · × IN469

tensors plus R applications of Pm(r) with the R specified block mranks:470

(34) CDBTD = O(Ī) +
∑R
r=1 CP

m(r)
,471

where CP
m(r)

denotes the cost of the LMA method. In particular, if m(r) = m =472

(1, L, L) and SeLRAP is used, we have473

CPm
= CSVD(I1, I2I3) +O(I1I2I3) + CSVD(I2, I3) +O(LI2I3) + Cproj(I2I3, 1, I1),474

with Cproj(I2I3, 1, I1) = O(I2I3) + O(I1I2I3). To derive this expression, we have475

taken into account the simplifications which apply to SeLRAP when m = (1, L, L),476

as described in subsection 3.3.2.477

4.2. Discussion on convergence. The partial convergence analysis presented478

in [2] can be straightforwardly extended to our present case. In the following, we479

briefly discuss the main implication of such an extension and the assumption which480

underlies it. Namely, if we assume that the best rank-m(r) approximation is achieved481

by Pm(r) when updating the rth block, then the following result holds.482

Proposition 8. If Pm(r) delivers the best rank-m(r) approximation of Er−1,k +483

Xr,k−1 for all r and k, then ‖ER,k‖F ≤ ‖ER,k−1‖ for all k.484

Proof. Let PXr,k−1
denote the orthogonal projection onto the modal subspaces of485

Xr,k−1, i.e., onto
⊗N

n=1 span((Xr,k−1)〈n〉). Since mrank(PXr,k−1
(Y)) ≤ m(r) for any486

Y, from the optimality of Pm(r) we have487
488

(35) ‖ (Er−1,k + Xr,k−1)−Pm(r) (Er−1,k + Xr,k−1) ‖F489

≤ ‖ (Er−1,k + Xr,k−1)−PXr,k−1
(Er−1,k + Xr,k−1) ‖F .490491

But, by definition of PXr,k−1
, the right-hand side cannot be larger than ‖Er−1,k‖F .492

Since X̂r,k = Pm(r) (Er−1,k + Xr,k−1) by construction, then the left-hand side of the493
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Table 2
Statistics of ∆ for third-order tensors

Scenario ∆(THOSVD) ∆(SeMP)
# i r mean std. dev. mean std. dev.
1 (40,80,200) (1,2,2) 8.61e-04 1.58e-05 2.86e-05 4.55e-06
2 (40,80,200) (2,4,8) 2.55e-03 2.98e-05 5.36e-05 6.17e-06
3 (40,80,200) (10,20,50) 1.38e-02 1.22e-04 5.63e-04 1.55e-05
4 (200,80,40) (2,2,1) 6.33e-04 2.23e-05 4.27e-04 2.44e-05
5 (200,80,40) (8,4,2) 1.88e-03 3.98e-05 1.41e-03 3.80e-05
6 (200,80,40) (50,20,10) 9.24e-03 1.26e-04 5.81e-03 6.16e-05
7 (40,200,200) (1,5,5) 1.20e-03 1.15e-05 1.11e-05 1.78e-06
8 (40,200,200) (2,10,10) 2.24e-03 2.01e-05 2.50e-04 6.78e-06
9 (40,200,200) (10,50,50) 1.11e-02 7.40e-05 1.26e-03 1.46e-05
10 (200,200,200) (5,5,5) 3.10e-04 3.87e-06 1.07e-04 2.48e-06
11 (200,200,200) (10,10,10) 6.73e-04 6.18e-06 2.15e-04 3.50e-06
12 (200,200,200) (50,50,50) 4.44e-03 2.95e-05 7.47e-04 6.14e-06

above inequality is precisely the norm of the residue Er,k. Therefore, at the end of494

the kth iteration, one has ‖ER,k‖F ≤ ‖ER−1,k‖F ≤ · · · ≤ ‖E0,k‖F = ‖ER,k−1‖F .495

Under optimality of Pm(r) , the above result implies ‖ER,k‖F → C for some496

C ≥ 0, since the sequence ‖ER,k‖F is non-negative and decreases monotonically with497

k. (Consequently, the second criterion of (33) is eventually satisfied.) However, in498

practice one can only resort to sub-optimal approximation schemes such as SeLRAP.499

Nonetheless, note that Pm(r) doesn’t have to be optimal, but only at least as accurate500

as PXr,k−1
. Whilst it is currently unclear whether such a weaker condition can be501

proven, our numerical results suggest that it indeed holds in practice (at least with502

high probability), as a strictly monotonic decrease of ‖Ek‖F is generally observed. We503

point out that there is some similarity between this discussion and that concerning504

the convergence of IHT schemes employing suboptimal LMAs for low-rank tensor505

recovery [21, 14].506

5. Numerical results. In the following experiments, the modes are always pro-507

cessed in the natural order in SeLRAP and SeMP, for simplicity. The reported com-508

puting times were measured in MATLAB R2013a running on a Intel Xeon ES-2630v2509

2.60 GHz with 32 GB RAM 1866 MHz. For conciseness, the notation i = (I1, . . . , IN )510

specifies the tensor dimensions in each scenario.511

5.1. Non-iterative low-mrank approximation. First, we compare the per-512

formance of SeLRAP with respect to those of THOSVD and SeMP in the task of513

LMA. To do so, similarly to [3] we measure514

∆(Alg) = 1− ‖X− X̂SeLRAP‖F
‖X− X̂Alg‖F

,515

with Alg ∈ {THOSVD,SeMP}, for 104 realizations of third- and fourth-order complex516

tensors having entries whose real and imaginary parts are drawn from (−1, 1). We517

have varied the dimensions and target mranks, yielding 12 different scenarios whose518

results are reported in Table 2. In all these scenarios, ∆ was strictly positive for519

all realizations, meaning SeLRAP always found a better approximation. Note that520

Corollary 6 only guarantees that for scenarios 1 and 7. However, inspecting Table 2521

we see that the average improvement in accuracy is generally small. This is similar to522

the conclusions reached by [25] concerning the comparison of SeMP with THOSVD.523
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Figure 1 displays, for six selected scenarios, the empirical cumulative distribution524

function (ECDF) of the time spent by each algorithm at each operation specified525

by Table 1. When the target mrank is quite small, SeMP and SeLRAP have much526

smaller overall computing time than THOSVD, as seen in Figure 1{(a),(c),(e)}. In527

Figure 1{(a),(c)}, this is mainly due to the fact that only two SVDs are required528

by SeMP and SeLRAP. In Figure 1(e), the gain comes from the dimension-reducing529

contractions which alleviate the cost of the SVDs. This observation also applies to530

the second SVD computed in Figure 1{(a),(c)}. Moreover, note that in thee cases the531

projection stage of SeLRAP is faster than the operations which construct the LMA in532

THOSVD and SeMP. The gap between THOSVD and the other algorithms is greatly533

reduced when mrank components are increased, cf. Figure 1{(b),(d),(f)}, since the534

ratio Hn/Īn is increased. Furthermore, the backward projections of SeLRAP now535

take longer than operations (III) of THOSVD and SeMP, causing its overall time to536

overcome that of SeMP.537

Note that the dimensions increase with the mode number in all scenarios of Fig-538

ure 1. As we process them in the natural order, this choice is consistent with the539

heuristic mentioned in subsection 3.2. For reference, the average overall times of540

SeLRAP in scenarios 1 and 3 of Table 2 are 0.0228 sec and 0.1497 sec, respectively,541

while in scenarios 4 and 6 (where X has the same dimensions but in reverse order)542

these times are 0.1255 sec and 0.1688 sec, respectively. The advantage of adopting543

the heuristic is thus more pronounced for smaller ratios Rn/In.544

5.2. Decomposition in rank-(1, L, L) terms. In this section, we compare545

DBTD with existing BTD-(1, L, L) computation algorithms. Three variants of DBTD546

are considered, depending on the choice of Pm: DBTD-SeLRAP, DBTD-SeMP and547

DBTD-THOSVD. The other included algorithms are ALS-ELS [18] and the Gauss-548

Newton algorithm with dogleg trust region (GN-DL) of Tensorlab [26]. Among the549

algorithms provided by Tensorlab, the latter has been chosen for its superior perfor-550

mance in our simulations, consonantly with the findings of [23].551

Our simulation scenarios encompass various levels of average correlation among552

the rank-(1, L, L) blocks. To this end, given a target correlation coefficient ρ ∈ [0, 1),553

the blocks are given by554

(36) Xr = ‖Xr‖−1F Xr, Xr = ar ⊗
(
BrC

T
r

)
,555

where a ∈ CI1 , B ∈ CI2×L and C ∈ CI3×L, are generated as
[
a1 . . . aR

]
=556

QaJ,
[
vec(B1) . . . vec(BR)

]
= QbJ and

[
vec(C1) . . . vec(CR)

]
= QcJ, with557

Qa ∈ S(I1, R), Qb ∈ S(LI2, R) and QC ∈ S(LI3, R) denoting random column-wise558

orthonormal matrices and559

(37) JTJ =


1 ρ1/3 . . . ρ1/3

ρ1/3 1 . . . ρ1/3

...
. . .

...
ρ1/3 ρ1/3 . . . 1

 .560

Since 〈Xr,Xs〉 = 〈ar,as〉
〈
BrC

T
r ,BsC

T
s

〉
= 〈ar,as〉Tr

{
CT
r C∗s BH

s Br

}
, for r = s we561

have ‖Xr‖2F = Tr
{
CT
s C∗s BH

s Bs

}
and, for r 6= s,562 ∣∣〈Xr,Xs

〉∣∣ = ρ1/3
(
Tr
{
CT
r C∗r BH

r Br

}
Tr
{
CT
s C∗s BH

s Bs

})− 1
2
∣∣Tr
{
CT
r C∗s BH

s Br

}∣∣ .563

If Qa, Qb and Qc are generated by orthogonalizing random matrices having standard564

circularly symmetric Gaussian (SCSG) entries, then
〈
Xr,Xs

〉
is normally distributed565
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Figure 1. Empirical CDFs of the times spent by each LMA algorithm at each stage.
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Figure 2. Histogram of measured correlation among blocks generated with ρ = 0.2. The red
dashed line indicates the sample mean.

around E
{〈

Xr,Xs

〉}
= ρ with a small standard deviation, which decays with the566

tensor dimensions. The histograms in Figure 2 illustrate this behavior for ρ = 0.2 in567

two cases: 1) i = (10, 75, 75), L = 30 and 2) i = (20, 150, 150), L = 60.568

We consider tensors of dimensions i = (20, 150, 150) composed by three rank-569

(1, 60, 60) blocks. For this choice of L, the uniqueness theorems of [4] do not hold. In570
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particular, the algebraic solution via generalized eigenvalue decomposition (GEVD)571

of [4, Theorem 4.1] does not apply. Nevertheless, with blocks generated as above, the572

decomposition is almost surely unique [5, Theorem 2.4]. The complete model reads573

(38) X =
∑3
r=1 λrXr + σN,574

where N has SCSG entries and σ is adjusted to impose a desired signal-to-noise ratio575

(39) SNR =
∥∥∥∑3

r=1 λrXr

∥∥∥2
F
σ−2‖N‖−2F .576

In the first scenario, for each realization of X we draw the weights λr independently577

from N (1, 0.2) and take ρ ∈ {0, 0.2, 0.4}. In ALS-ELS and GN-DL, THOSVD is578

initially applied to compress X for reducing cost. Then, after a compressed solution579

is found, it is decompressed and refined. The stopping criteria of all algorithms were580

adjusted for accurately recovering the blocks while keeping computing time reasonably581

low.582

The results for 200 realizations with SNR = 50 dB are shown in Figure 3. Specif-583

ically, we plot the ECDFs of the average normalized squared error (ANSE) over the584

blocks, defined as585

(40) ANSE = 1
3

∑3
r=1 λ

−2
r ‖λrXr − X̂r‖F ,586

and of the time spent by each algorithm. The superiority of DBTD for small ρ is clear.587

However, as ρ is increased, the amount of iterations required by DBTD quickly grows.588

For ρ = 0.4, the established maximum number of iterations K = 400 causes an early589

stop of all DBTD variants, which explains its minimum achieved ANSE of around -50590

dB. Nonetheless, the mean ANSE of DBTD-SeLRAP is lower (-38.8 dB) than that591

of ALS-ELS (-35.3 dB). For even larger values of ρ, a higher K is required, and thus592

DBTD is not recommended due to the added computing cost. Among the DBTD593

variants, DBTD-SeLRAP attains the best compromise between cost and estimation594

accuracy, as its iterations are the least costly. Perhaps somewhat surprisingly, the595

estimation performance of ALS-ELS and GN-DL is poorer for ρ = 0 than for ρ = 0.2.596

This is due to the larger proportion of realizations for which these algorithms enter597

into some region of very slow convergence and are unable to achieve sufficient progress598

within reasonable time, despite the fact that their convergence is faster for the other599

realizations.600

Figure 4 shows the results of a similar scenario, still with SNR = 50 dB, but this601

time the weights λr are drawn from N (1, 0.1). The better conditioning due to the602

less disparate block norms explains the better performances in comparison with the603

previous scenario, especially for the ALS-ELS and GN-DL algorithms. The DBTD604

algorithm, on the other hand, seems less sensitive in this regard. Overall, DBTD-605

SeLRAP still provides the best performance.606

In Figure 5, we fix ρ = 0.2 and vary L and SNR separately, with λr ∼ N (1, 0.1).607

With L = 30 (and SNR = 50 dB), it becomes possible to algebraically compute an608

approximate solution via a GEVD, because RL = 90 < min{I2, I3} = 150 [4, Theorem609

4.1]. We therefore initialize all algorithms with this solution. As seen in Figure 5,610

they are all able to satisfactorily refine it withing a few iterations, with ALS-ELS and611

GN-DL achieving the best overall performance due to their low computing times. For612

L = 90 and same SNR, the results of ALS-ELS and GN-DL are considerably degraded613

with respect to the L = 60 case. By contrast, DBTD is still able to accurately614

estimate the factors in the vast majority of realizations, though it typically needs615
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Figure 3. Performance of BTD-(1, L, L) algorithms for i = (20, 150, 150), R = 3, L = 60,
SNR = 50 dB, ρ ∈ {0, 0.2, 0.4} and λr ∼ N (1, 0.2).

more iterations (here, we have set K = 500, against K = 200 in the case L = 60).616

Finally, if we fix L = 60 and take SNR ∈ {20, 80} dB, the conclusions are similar to617

the case where SNR = 50 dB; the most perceptible difference is perhaps the increased618

computing time of ALS-ELS when SNR = 20 dB.619

6. Conclusion. We have proposed a novel non-iterative low-multilinear-rank620

approximation algorithm, SeLRAP, which generalizes the recently proposed rank-one621

approximation algorithm SeROAP. As we have demonstrated, this algorithm always622

performs at least as well as the truncated HOSVD and SeMP (also known as se-623

quentially truncated HOSVD) for rank-(1, L, L) approximation. In our numerical624

experiments with third-order random tensors, SeLRAP’s backward projection stage625

was actually able to improve upon SeMP’s solution for all employed target mranks,626

though generally by a small margin. Moreover, for small mranks it requires less627

computing effort.628

As a second contribution, we have proposed an iterative deflationary algorithm629

named DBTD for decomposing a tensor in mrank-reduced block terms. This algorithm630

is in effect a generalization of the deflationary solution proposed for computing the631

canonical polyadic decomposition, DCPD. Despite the generality of DBTD, we have632
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Figure 4. Performance of BTD-(1, L, L) algorithms for i = (20, 150, 150), R = 3, L = 60,
SNR = 50 dB, ρ ∈ {0.2, 0.4, 0.6} and λr ∼ N (1, 0.1).

kept our focus on the computation of rank-(1, L, L) blocks. Our simulations show that,633

outside the regime where an approximate algebraic solution can be computed, DBTD634

is much more effective than existing algorithms whenever the correlation among blocks635

is low. Interestingly, under these conditions it was much less sensitive than other636

alternatives with respect to the discrepancy among the norms of the different blocks.637

At the theoretical level, future research should attempt to establish convergence638

results for DBTD, perhaps imposing conditions for ensuring that (35) is met by SeL-639

RAP. The more general BTD-(1, Lr, Lr), where blocks have different mranks, is also640

left for future consideration. In this case, additional measures could possibly be taken641

to avoid local minima corresponding to wrong mrank matchings.642
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